Exemplo n.º 1
0
 def animate3D(self,x,y,z,timeinfo,outfile=None):
     """
     3D animation of the particles using mayavi
     """
     
     from mayavi import mlab
     from suntvtk import SunTvtk
     
     # Initiate the particle model        
     self.__call__(x,y,z,timeinfo,runmodel=False)
     
     # Initiate the suntans tvtk class
     self.vtk = SunTvtk(self.ncfile)
     
     # Plot the bathymetry
     self.vtk.plotbathy3d(colormap='bone')
     
     # Plot the particles
     self.vtkobj = mlab.points3d(self.particles['X'],self.particles['Y'],self.particles['Z']*self.vtk.zscale,\
         color=(1.0,1.0,0.0),scale_mode='none',scale_factor=100.0,opacity=0.8)
                   
     nt = len(self.time_track)         
 
     @mlab.animate
     def anim():
         ii=-1
         while 1:
             if ii<nt-1:
                 ii+=1
             else:
                 ii=0
             
             # Advect the particles
             self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
             
             # Update the plot object
             self.vtkobj.mlab_source.x = self.particles['X']
             self.vtkobj.mlab_source.y = self.particles['Y']
             self.vtkobj.mlab_source.z = self.particles['Z']*self.vtk.zscale
            
             #titlestr=self._Spatial__genTitle(tt=ii)
             #self.title.text=titlestr
             
             self.vtk.fig.scene.render()
             yield
     
     if outfile==None:
         anim() # Starts the animation.
Exemplo n.º 2
0
 def animate3D(self,x,y,z,timeinfo,outfile=None):
     """
     3D animation of the particles using mayavi
     """
     
     from mayavi import mlab
     from suntvtk import SunTvtk
     
     # Initiate the particle model        
     self.__call__(x,y,z,timeinfo,runmodel=False)
     
     # Initiate the suntans tvtk class
     self.vtk = SunTvtk(self.ncfile)
     
     # Plot the bathymetry
     self.vtk.plotbathy3d(colormap='bone')
     
     # Plot the particles
     self.vtkobj = mlab.points3d(self.particles['X'],self.particles['Y'],self.particles['Z']*self.vtk.zscale,\
         color=(1.0,1.0,0.0),scale_mode='none',scale_factor=100.0,opacity=0.8)
                   
     nt = len(self.time_track)         
 
     @mlab.animate
     def anim():
         ii=-1
         while 1:
             if ii<nt-1:
                 ii+=1
             else:
                 ii=0
             
             # Advect the particles
             self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
             
             # Update the plot object
             self.vtkobj.mlab_source.x = self.particles['X']
             self.vtkobj.mlab_source.y = self.particles['Y']
             self.vtkobj.mlab_source.z = self.particles['Z']*self.vtk.zscale
            
             #titlestr=self._Spatial__genTitle(tt=ii)
             #self.title.text=titlestr
             
             self.vtk.fig.scene.render()
             yield
     
     if outfile==None:
         anim() # Starts the animation.
Exemplo n.º 3
0
class SunTrack(Spatial):
    """
    Particle tracking class
    """
    
    verbose = True
    
    # Interpolation method
    interp_method = 'mesh' # 'idw' or 'nearest' or 'mesh'
    # IF interp_method == 'mesh'
    interp_meshmethod = 'nearest' # 'linear' or 'nearest'
    
    advect_method = 'rk2' # 'euler' or 'rk2'

    is3D = True
    
    # 
    
    def __init__(self,ncfile,**kwargs):
        """
        Initialize the 3-D grid, etc
        """
        
        self.__dict__.update(kwargs)

        if self.is3D:
            Spatial.__init__(self,ncfile,klayer=[-99],**kwargs)
            # Initialise the 3-D grid
            self.init3Dgrid()
        else: # surface layer only
            print '%s\nRunning in 2D mode...\n%s'%(24*'#',24*'#')
            Spatial.__init__(self,ncfile,klayer=['surface'],**kwargs)
            self.nActive = self.Nc

        #self.klayer=np.arange(0,self.Nkmax)
            
        # Step 2) Initialise the interpolation function
        if self.is3D:
            if self.interp_method in ('idw','nearest'):
                self.UVWinterp = interp3D(self.xv3d,self.yv3d,self.zv3d,method=self.interp_method)
                # Interpolation function to find free surface and seabed
                self.Hinterp = interp3D(self.xv,self.yv,0*self.xv,method='nearest')
                
            elif self.interp_method == 'mesh':
                if self.interp_meshmethod == 'nearest':
                    self.UVWinterp = \
                        interp3Dmesh(self.xp,self.yp,-self.z_w,self.cells,\
                            self.nfaces,self.mask3D,method='nearest')
                elif self.interp_meshmethod == 'linear':
                        self.UVWinterp =\
                            interp3Dmesh(self.xp,self.yp,-self.z_w,self.cells,self.nfaces,\
                            self.mask3D,method='linear',grdfile=self.ncfile)
        else:
            # Surface layer use nearest point only for now
            self.UVWinterp = interp2Dmesh(self.xp,self.yp,self.cells,\
                    self.nfaces,method='nearest')


    def __call__(self,x,y,z, timeinfo,outfile=None,dtout=3600.0,\
    	tstart=None,agepoly=None,age=None,agemax=None,runmodel=True, **kwargs):
        """
        Run the particle model 
        
        Inputs:
            x, y, z - release locations of particles [n_parts x 3]
            timeinfo - tuple (starttime,endtime,dt) 

	    (optional)
	    tstart - start time of each particle (format seconds since 1990-01-01)
	    	if None defaults to starting all particles from starttime.
	    agepoly - x/y coordinates of a polygon which ages particles
	    age, agemax - vectors of length n_parts containing the initial age and agemax. (leave
	    	as None to set to zero)
        """

        self.__dict__.update(kwargs)
        
        self.getTime(timeinfo)
        
        # Initialise the particle dictionary
        self.particles={'X':x,'Y':y,'Z':z,'X0':x,'Y0':y,'Z0':z}
	
        # Initialise the age calculation
        self._calcage = False
        if not agepoly == None:
            self._calcage = True
            self.agepoly = agepoly
            if age==None:
                age=np.zeros_like(x)
            if agemax==None:
                agemax=np.zeros_like(x)
            
        self.particles.update({'age':age,'agemax':agemax})

        # Set the particle time start and activate if necessary
        self.initParticleTime(tstart)

        # Initialse the outut netcdf file
        if not outfile==None:
            self.initParticleNC(outfile,x.shape[0],age=self._calcage)

        if self.verbose:
            print '#######################################################'
            print 'Running SUNTANS particle tracking\n'
            print 'Releasing %d particles.\n'%self.particles['X'].shape[0]
            print '######################################################'
            
        
        # Initialise the currents
        self.initCurrents()
        
        # Start time stepping
        tctr=dtout
        ctr=0
        if runmodel:
            for ii,time in enumerate(self.time_track):
                tctr+=self.dt
                # Step 1) Advect particles
                self.advectParticles(time,self.time_track_sec[ii])

                # Write output if needed 
                if not outfile==None and tctr>=dtout:
                    self.writeParticleNC(outfile,self.particles['X'],\
                        self.particles['Y'],self.particles['Z'],\
                        self.time_track_sec[ii],ctr,age=self.particles['age'],\
                        agemax=self.particles['agemax'])

                    tctr=tctr//dtout
                    ctr+=1
    
   
    def advectParticles(self,timenow,tsec):
        """
        Advect the particles
        """          
        t0 = clock()
        if self.verbose:
            print '\tTime step: ',timenow
         
        # Activate particles for current time step
        self.activateParticles(tsec)

        # Advection step 
        if self.advect_method=='euler':
            self.euler(timenow,tsec)
            
        elif self.advect_method=='rk2':
            self.rk2(timenow,tsec)
            
        else:
            raise Exception, 'unknown advection scheme: %s. Must be "euler" or "rk2"'%self.advect_method

        # Reset inactive particles
        self.resetInactiveParticles()

        # Call the age calculation
        if self._calcage:
           self.CalcAge()
            
        
        t1 = clock()
        if self.verbose:
            print '\t\tElapsed time: %s seconds.'%(t1-t0)
            
    def euler(self,timenow,tsec):
        """
        euler time integration
        """
        self.updateCurrents(timenow,tsec)
        
        # Interpolate the currents
        u = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.u)
        v = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.v,update=False)
        if self.is3D:
            w = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.w,update=False)
        #u,v,w = self.timeInterpUVWxyz(tsec,self.particles['X'],self.particles['Y'],self.particles['Z'])
        
        self.particles['X'] += u*self.dt
        self.particles['Y'] += v*self.dt
        if self.is3D:
            self.particles['Z'] += w*self.dt
            # Check the vertical bounds of a particle 
            self.particles['Z'] = self.checkVerticalBounds(self.particles['X'],self.particles['Y'],self.particles['Z'])
            
    def rk2(self,timenow,tsec):
        """
        2nd order Runge-Kutta advection scheme
        """
        
        self.updateCurrents(timenow,tsec)
        
        # Interpolate the currents
        u = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.u)
        v = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.v,update=False)
        if self.is3D:
            w = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.w,update=False)
        #u,v,w = self.timeInterpUVWxyz(tsec,self.particles['X'],self.particles['Y'],self.particles['Z'])

        x1 = self.particles['X'] + 0.5*self.dt*u
        y1 = self.particles['Y'] + 0.5*self.dt*v
        if self.is3D:
            z1 = self.particles['Z'] + 0.5*self.dt*w
        
            # Check the vertical bounds of a particle 
            z1 = self.checkVerticalBounds(x1,y1,z1)
        else:
            z1 = self.particles['Z']
        
        # Update the currents again
        self.updateCurrents(timenow+timedelta(seconds=self.dt*0.5),tsec+self.dt*0.5)
        
        u = self.UVWinterp(x1,y1,z1,self.u)
        v = self.UVWinterp(x1,y1,z1,self.v,update=False)
        if self.is3D:
            w = self.UVWinterp(x1,y1,z1,self.w,update=False)
        #u,v,w = self.timeInterpUVWxyz(tsec,x1,y1,x1)
        
        self.particles['X'] += u*self.dt
        self.particles['Y'] += v*self.dt
        if self.is3D:
            self.particles['Z'] += w*self.dt
            
            # Check the vertical bounds of a particle again 
            self.particles['Z'] = self.checkVerticalBounds(self.particles['X'],self.particles['Y'],self.particles['Z'])

	# Check the horizontal coordinates
	#    This is done by default in the messh interpolation class
	#self.particles['X'],self.particles['Y'] = self.checkHorizBounds(self.particles['X'],self.particles['Y'])
        
    def checkHorizBounds(self,x,y):
    	"""
        NOT USED
        Moves particles outside of the horizontal bounds of the grid back
        to the closet cell centre.
        """

        ind = self.UVWinterp.cellind==-1
        if not self.__dict__.has_key('kd'):
            self.kd = spatial.cKDTree(np.vstack((self.xv,self.yv)).T)

        xy = np.vstack((x[ind],y[ind])).T
        dist,cell = self.kd.query(xy)
        x[ind]=self.xv[cell]
        y[ind]=self.yv[cell]

        return x, y

    def checkVerticalBounds(self,x,y,z):
        """
        Checks that particles are not above the surface or below the seabed
        
        (Artificially moves them to the surface or bed if they are).
        """
        SMALL = 0.001
        #zbed = -self.dv
        zbed = -self.z_w[self.Nk-1] # Set the bottom one layer above the seabed
            
            ## find the free surface and seabed at the particle locations
            #if not self.interp_method == 'mesh':
            #    eta_P = self.Hinterp(x,y,z,self.eta)
            #    h_P = self.Hinterp(x,y,z,zbed)
            #else:
            #    ind = self.UVWinterp.cellind
            #    mask=ind==-1
            #    ind[mask]=0.0
            #    eta_P = self.eta[ind]
            #    h_P = zbed[ind]
            #    eta_P[mask]=0.0
            #    h_P[mask]=0.0
            #
        #pdb.set_trace()
        #indtop = np.where(z>eta_P)
        #indbot = np.where(z<h_P)
        #z[indtop[0]] = eta_P[indtop[0]]-SMALL
        #z[indbot[0]] = h_P[indbot[0]]+SMALL

        if not self.interp_method == 'mesh':
            eta_P = self.Hinterp(x,y,z,self.eta)
            h_P = self.Hinterp(x,y,z,zbed)
        else:
            ind = self.UVWinterp.cellind
            eta_P = self.eta[ind]
            h_P = zbed[ind]
            
        #indtop = np.where( operator.and_(z>eta_P, ind!=-1) )
        #indbot = np.where( operator.and_(z<h_P, ind!=-1) )

        #z[indtop[0]] = eta_P[indtop[0]]-SMALL
        #z[indbot[0]] = h_P[indbot[0]]+SMALL
        indtop = operator.and_(z>eta_P, ind!=-1)
        indbot = operator.and_(z<h_P, ind!=-1) 

        #if np.any(indbot):
        #    pdb.set_trace()

        z[indtop] = eta_P[indtop]-SMALL
        z[indbot] = h_P[indbot]+SMALL

        #np.where(z > eta_P, eta_P-SMALL, z)
        #np.where(z < h_P, h_P+SMALL, z)
        
        return z
        
    
    def initCurrents(self):
        """
        Initialise the forward and backward currents and free-surface height
        """
        
        tindex = othertime.findGreater(self.time_track[0],self.time)
        
        self.time_index = tindex
        
        # Check the time index here
        if tindex == None:
            raise Exception, 'start time less than model time: ',self.time[0]
        elif self.time_index==0:
            self.time_index=1
            
        self.uT = np.zeros((self.nActive,2))
        self.vT = np.zeros((self.nActive,2))
        self.wT = np.zeros((self.nActive,2))
        self.etaT = np.zeros((self.Nc,2))
        
        self.uT[:,0], self.vT[:,0], self.wT[:,0], self.etaT[:,0] = self.getUVWh(tindex-1)
        self.uT[:,1], self.vT[:,1], self.wT[:,1], self.etaT[:,1] = self.getUVWh(tindex)
        
        self.timeInterpUVW(self.time_track_sec[0],self.time_index)

        
    def updateCurrents(self,timenow,tsec):
        """
        Checks to see if the currents need updating
        """
        
        tindex = othertime.findGreater(timenow,self.time)
        
        if not tindex == self.time_index:
            if self.verbose:
                print 'Reading SUNTANS currents at time: ',timenow
            self.uT[:,0]=self.uT[:,1]
            self.vT[:,0]=self.vT[:,1]
            self.wT[:,0]=self.wT[:,1]
            self.etaT[:,0]=self.etaT[:,1]
            self.uT[:,1], self.vT[:,1], self.wT[:,1], self.etaT[:,1] = self.getUVWh(tindex)
            
            self.time_index = tindex
        
        # Temporally interpolate onto the model step
        self.timeInterpUVW(tsec,self.time_index) 
        
    def timeInterpUVW(self,tsec,tindex):
        """
        Temporally interpolate the currents  onto the particle time step, tsec.
        
        Linear interpolation used.
        """
        
        t0 = self.time_sec[tindex-1]
        t1 = self.time_sec[tindex]
        dt = t1 - t0
        
        w2 = (tsec-t0)/dt
        w1 = 1.0-w2
        
        #self.u = self.uT[:,0]*w1 + self.uT[:,1]*w2 
        #self.v = self.vT[:,0]*w1 + self.vT[:,1]*w2 
        #self.w = self.wT[:,0]*w1 + self.wT[:,1]*w2 
        #self.eta = self.etaT[:,0]*w1 + self.etaT[:,1]*w2 
        self.u = ne.evaluate("u0*w1 + u1*w2",\
            local_dict={'u0':self.uT[:,0],'u1':self.uT[:,1],'w1':w1,'w2':w2})
        self.v = ne.evaluate("u0*w1 + u1*w2",\
            local_dict={'u0':self.vT[:,0],'u1':self.vT[:,1],'w1':w1,'w2':w2})
        self.w = ne.evaluate("u0*w1 + u1*w2",\
            local_dict={'u0':self.wT[:,0],'u1':self.wT[:,1],'w1':w1,'w2':w2})
        self.eta = ne.evaluate("u0*w1 + u1*w2",\
            local_dict={'u0':self.etaT[:,0],'u1':self.etaT[:,1],'w1':w1,'w2':w2})
        
        
    def timeInterpUVWxyz(self,tsec,x,y,z):
        """
        NOT USED AT THIS STAGE

        Temporally interpolate the currents  onto the particle time step, tsec.
        
        Linear interpolation used.
        """
        tindex=self.time_index
        
        t0 = self.time_sec[tindex-1]
        t1 = self.time_sec[tindex]
        dt = t1 - t0
        
        w2 = (tsec-t0)/dt
        w1 = 1.0-w2
        
        uT0 = self.UVWinterp(x,y,z,self.uT[:,0],update=True)
        vT0 = self.UVWinterp(x,y,z,self.vT[:,0],update=False) # Locations of the particles are not checked for updates
        wT0 = self.UVWinterp(x,y,z,self.wT[:,0],update=False)
        
        uT1 = self.UVWinterp(x,y,z,self.uT[:,1],update=False)
        vT1 = self.UVWinterp(x,y,z,self.vT[:,1],update=False)
        wT1 = self.UVWinterp(x,y,z,self.wT[:,1],update=False)
        
        u = uT0*w1 + uT1*w2 
        v = vT0*w1 + vT1*w2 
        w = wT0*w1 + wT1*w2 
        
        return u,v,w
        
    def getUVWh(self,tstep):
        """
        Load the velocity arrays
        """
        self.tstep = tstep
        
        u = self.loadData(variable='uc')
        v = self.loadData(variable='vc')
        if self.is3D:
            w = self.loadData(variable='w')
            eta = self.loadData(variable='eta')
            return u[self.mask3D], v[self.mask3D], w[self.mask3D], eta    
        else:
            return u, v, u, u   
        
    def getTime(self,timeinfo):
        """
        Get the particle time step info
        """
        self.dt = timeinfo[2]
        
        self.time_track = othertime.TimeVector(timeinfo[0],timeinfo[1],timeinfo[2],timeformat ='%Y%m%d.%H%M%S')
        
        self.time_track_sec = othertime.SecondsSince(self.time_track)
        self.time_sec = othertime.SecondsSince(self.time)
        
        self.time_index = -9999

    def initParticleTime(self,tstart):
    	"""
        Initialise the particle start time
        """
        if tstart==None:
            self.particles['tstart'] = self.time_track_sec[0]*np.ones_like(self.particles['X'])
        else:
            self.particles['tstart'] = tstart

        # Set all particles as inactive to start
        self.particles['isActive'] = np.zeros_like(self.particles['X'])

    def activateParticles(self,tsec):
        """
        Activate the particles that start past the present time

        Note that inactive particles are still advected - their positions
        are simply reset after each time step
        """
        ind = self.particles['tstart'] <= tsec

        self.particles['isActive'][ind]=True
        #print '\t%d Active particles'%(np.sum(self.particles['isActive']))

    def resetInactiveParticles(self):
        """
        Reset the positions of inactive particles to x0. 
        """
        ind = self.particles['isActive']==False
        self.particles['X'][ind]=self.particles['X0'][ind]
        self.particles['Y'][ind]=self.particles['Y0'][ind]
        self.particles['Z'][ind]=self.particles['Z0'][ind]

        
    def init3Dgrid(self):
        """
        Constructs the 3d cell unstructured grid object
        
        Includes only active vertical grid layers
        
        """
        nc = self.Nc
        nz = self.Nkmax+1
        nv = len(self.xp)
        
        self.returnMask3D()
        self.nActive = np.sum(self.mask3D) # Total number of active cells
        
        self.cells3d = np.zeros((self.nActive,6))
        self.xv3d = np.zeros((self.nActive,))
        self.yv3d = np.zeros((self.nActive,))
        self.zv3d = np.zeros((self.nActive,))
        pt1=0
        for k in range(1,nz):
            masklayer = self.mask3D[k-1,:]
            nc = np.sum(masklayer)
            pt2 = pt1+nc            
            self.cells3d[pt1:pt2,0] = self.cells[masklayer,0]+(k-1)*nv
            self.cells3d[pt1:pt2,1] = self.cells[masklayer,1]+(k-1)*nv
            self.cells3d[pt1:pt2,2] = self.cells[masklayer,2]+(k-1)*nv
            self.cells3d[pt1:pt2,3] = self.cells[masklayer,0]+k*nv
            self.cells3d[pt1:pt2,4] = self.cells[masklayer,1]+k*nv
            self.cells3d[pt1:pt2,5] = self.cells[masklayer,2]+k*nv
            
            self.xv3d[pt1:pt2] = self.xv[masklayer]
            self.yv3d[pt1:pt2] = self.yv[masklayer]
            self.zv3d[pt1:pt2] = -self.z_r[k-1]
            
            pt1=pt2
            #print k, nc
            
        self.verts = np.zeros((nv*nz,3))
        pv1 = 0
        for k in range(0,nz):
            self.verts[pv1:pv1+nv,0] = self.xp
            self.verts[pv1:pv1+nv,1] = self.yp
            self.verts[pv1:pv1+nv,2] = -self.z_w[k]
            pv1 += nv

    
    def returnMask3D(self):
        """
        Returns the 3D mask [Nk x Nc] True = Active, False = Ghost
        
        """
        self.mask3D = np.ones((self.Nkmax,self.Nc),dtype=bool)
        
        for i in range(self.Nc):
            if self.Nk[i] == self.Nkmax:
                Nk = self.Nk[i]
            else:
                Nk = self.Nk[i]+1
            self.mask3D[Nk:self.Nkmax,i]=False
            #self.mask3D[self.Nk[i]::,i]=False

    def CalcAge(self):
        """     
        Calculate the age of a particle inside of the age polygon
        """
        #print '\t\tCalculating the particle age...'
        #inpoly = nxutils.points_inside_poly(np.vstack((self.particles['X'],self.particles['Y'])).T,self.agepoly)
        inpoly = inpolygon(np.vstack((self.particles['X'],self.particles['Y'])).T,self.agepoly)

        self.particles['age'][inpoly] = self.particles['age'][inpoly] + self.dt
        self.particles['age'][inpoly==False]=0.0

        # Update the agemax attribute
        self.particles['agemax'] = np.max([self.particles['age'],self.particles['agemax']],axis=0)


    def initParticleNC(self,outfile,Np,age=False):
        """
        Export the grid variables to a netcdf file
        """
        import os

        if self.verbose:
            print '\nInitialising particle netcdf file: %s...\n'%outfile
            
        # Global Attributes
        nc = Dataset(outfile, 'w', format='NETCDF4_CLASSIC')
        nc.Description = 'Particle trajectory file'
        nc.Author = os.getenv('USER')
        nc.Created = datetime.now().isoformat()

        #tseas = self.time_sec[1] - self.time_sec[0]
        #nsteps = np.floor(tseas/self.dt)
        #nc.nsteps = '%f (number of linear interpolation steps in time between model outputs)'%nsteps
        #nc.tseas = '%d (Time step (seconds) between model outputs'%tseas
        #nc.dt = '%f (Particle model time steps [seconds])'%self.dt
        nc.dataset_location = '%s'%self.ncfile

        # Dimensions
        nc.createDimension('ntrac', Np)
        nc.createDimension('nt', 0) # Unlimited
        
        # Create variables
        def create_nc_var( name, dimensions, attdict, dtype='f8'):
            tmp=nc.createVariable(name, dtype, dimensions)
            for aa in attdict.keys():
                tmp.setncattr(aa,attdict[aa])
          
        create_nc_var('tp',('nt'),{'units':'seconds since 1990-01-01 00:00:00','long_name':"time at drifter locations"},dtype='f8')
        create_nc_var('xp',('ntrac','nt'),{'units':'m','long_name':"Easting coordinate of drifter",'time':'tp'},dtype='f8')
        create_nc_var('yp',('ntrac','nt'),{'units':'m','long_name':"Northing coordinate of drifter",'time':'tp'},dtype='f8')
        create_nc_var('zp',('ntrac','nt'),{'units':'m','long_name':"vertical position of drifter (negative is downward from surface)",'time':'tp'},dtype='f8')
	if age:
	    create_nc_var('age',('ntrac','nt'),{'units':'seconds','long_name':"Particle age",'time':'tp'},dtype='f8')
	    create_nc_var('agemax',('ntrac','nt'),{'units':'seconds','long_name':"Maximum particle age",'time':'tp'},dtype='f8')

        nc.close()
    
    def writeParticleNC(self,outfile,x,y,z,t,tstep,age=None,agemax=None):
        """
        Writes the particle locations at the output time step, 'tstep'
        """
        if self.verbose:
            print 'Writing netcdf output at tstep: %d...\n'%tstep
            
        nc = Dataset(outfile, 'a')
        
        nc.variables['tp'][tstep]=t
        nc.variables['xp'][:,tstep]=x
        nc.variables['yp'][:,tstep]=y
        nc.variables['zp'][:,tstep]=z

	if not age==None:
	    nc.variables['age'][:,tstep]=age
	if not agemax==None:
	    nc.variables['agemax'][:,tstep]=agemax

        nc.close()
#################
# Animation
#################
    def animate(self,x,y,z,timeinfo,agepoly=None,agemax=7.0,xlims=None,ylims=None,outfile=None):
        """
        Animate the particles on the fly using matplotlib plotting routines
        """
        import matplotlib.animation as animation
        
        agescale = 1.0/86400.0

        # Set the xy limits
        if xlims==None or ylims==None:
            xlims=self.xlims 
            ylims=self.ylims
            
        self.__call__(x,y,z,timeinfo,agepoly=agepoly,runmodel=False)
        # Plot a map of the bathymetry
        self.fig = plt.figure(figsize=(10,8))
        ax=plt.gca()
        self.contourf(z=-self.dv,clevs=30,titlestr='',xlims=xlims,ylims=ylims,cmap='bone')
	
        
        plotage=self._calcage

        # Plot the particles at the first time step
        if not plotage:
            h1 = plt.plot([],[],'y.',markersize=1.0)
            h1 = h1[0]

        else:
            h1 = plt.scatter(self.particles['X'],self.particles['Y'],s=1.0,c=self.particles['age'],vmin=0,vmax=agemax,edgecolors=None)

	    self.fig.colorbar(h1)
        
        title=ax.set_title("")
        
        def init():
            h1.set_xdata(self.particles['X'])
            h1.set_ydata(self.particles['Y'])
            title=ax.set_title(self.genTitle(0))
            return (h1,title)

        def updateLocation(ii):
            if ii==0:
                # Re-initialise the particle location
                self.particles={'X':x,'Y':y,'Z':z}
            if self._calcage:
                self.particles.update({'age':np.zeros_like(x),'agemax':np.zeros_like(x)})
                
            self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
            if plotage:
                # Update the scatter object
                h1.set_offsets(np.vstack([self.particles['X'],self.particles['Y']]).T)
                h1.set_array(self.particles['age'])*agescale
                h1.set_edgecolors(h1.to_rgba(np.array(self.particles['age'])))    
            else:
                h1.set_xdata(self.particles['X'])
                h1.set_ydata(self.particles['Y'])

            title.set_text(self.genTitle(ii))
            return (h1,title)
        
        self.anim = animation.FuncAnimation(self.fig, updateLocation, frames=len(self.time_track), interval=50, blit=True)
        
        if outfile==None:
            plt.show()
        else:
            self.saveanim(outfile)
    
    def animateNC(self,ncfile,plotage=False,agemax=7.0,xlims=None,ylims=None,outfile=None,**kwargs):
        """
        Animate the particles from a previously generated netcdf file
        """
        import matplotlib.animation as animation
        
        agescale = 1.0/86400.0
        # Set the xy limits
        if xlims==None or ylims==None:
            xlims=self.xlims 
            ylims=self.ylims
            
        # Open the netcdf file
        nc = Dataset(ncfile,'r')
        
        # Read the time data into 
        t = nc.variables['tp']
        self.time_track = num2date(t[:],t.units)
        
        # Plot a map of the bathymetry
        self.fig = plt.figure(figsize=(10,8))
        ax=plt.gca()
        self.contourf(z=-self.dv,clevs=30,titlestr='',xlims=xlims,ylims=ylims,cmap='bone')
        
        # Plot the particles at the first time step
        if not plotage:
#	    h1 = plt.plot([],[],'y.',markersize=1.0)
            h1 = plt.plot([],[],'.',**kwargs)
            h1 = h1[0]

        else:
            h1 = plt.scatter(nc.variables['xp'][0,:],nc.variables['yp'][0,:],s=1.0,c=nc.variables['age'][0,:],vmin=0,vmax=agemax,edgecolors=None)

	    self.fig.delaxes(self.fig.axes[1])
	    self.cb = self.fig.colorbar(h1)
	    #self.cb.on_mappable_changed(h1) # Updates the colobar

        
        title=ax.set_title("")
        
        def updateLocation(ii):
            xp = nc.variables['xp'][:,ii]
            yp = nc.variables['yp'][:,ii]
            if plotage:
                # Update the scatter object
                h1.set_offsets(np.vstack([xp,yp]).T)
                age=nc.variables['age'][:,ii]*agescale
                h1.set_array(age)
                h1.set_edgecolors(h1.to_rgba(np.array(age)))    
            else:
                h1.set_xdata(xp)
                h1.set_ydata(yp)

            title.set_text(self.genTitle(ii))
            return (h1,title)
        
        self.anim = animation.FuncAnimation(self.fig, updateLocation, frames=len(self.time_track), interval=50, blit=True)
        
        if outfile==None:
            plt.show()
        else:
            self.saveanim(outfile) 
        
        nc.close()

    def animate_xz(self,x,y,z,timeinfo,agepoly=None,agemax=86400.0,xlims=None,ylims=None,outfile=None):
        """
        Animate the particles on the fly using matplotlib plotting routines
        """
        import matplotlib.animation as animation
        
           
        self.__call__(x,y,z,timeinfo,agepoly=agepoly,runmodel=False)

	# Set the xy limits
        if xlims==None or ylims==None:
            xlims=self.xlims 
            ylims=[-self.dv.max(),1.0]
         
        self.fig = plt.figure(figsize=(10,8))
        ax=plt.gca()
        ax.set_xlim(xlims)
        ax.set_ylim(ylims)
        
        plotage=self._calcage

        # Plot the particles at the first time step
        if not plotage:
            h1 = plt.plot([],[],'y.',markersize=1.0)
            h1 = h1[0]

        else:
            h1 = plt.scatter(self.particles['X'],self.particles['Z'],s=1.0,c=self.particles['age'],vmin=0,vmax=agemax,edgecolors=None)
            self.fig.colorbar(h1)
            
            title=ax.set_title("")
        
        def init():
            h1.set_xdata(self.particles['X'])
            h1.set_ydata(self.particles['Z'])
            title=ax.set_title(self.genTitle(0))
            return (h1,title)

        def updateLocation(ii):
            if ii==0:
                # Re-initialise the particle location
                self.particles={'X':x,'Y':y,'Z':z}
		if self._calcage:
		    self.particles.update({'age':np.zeros_like(x),'agemax':np.zeros_like(x)})
                
            self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
	    if plotage:
		# Update the scatter object
		h1.set_offsets(np.vstack([self.particles['X'],self.particles['Z']]).T)
		h1.set_array(self.particles['age'])
		h1.set_edgecolors(h1.to_rgba(np.array(self.particles['age'])))    
	    else:
		h1.set_xdata(self.particles['X'])
		h1.set_ydata(self.particles['Z'])

            title.set_text(self.genTitle(ii))
            return (h1,title)
        
        self.anim = animation.FuncAnimation(self.fig, updateLocation, frames=len(self.time_track), interval=50, blit=True)
        
        if outfile==None:
            plt.show()
        else:
            self.saveanim(outfile)
 
    def animate3D(self,x,y,z,timeinfo,outfile=None):
        """
        3D animation of the particles using mayavi
        """
        
        from mayavi import mlab
        from suntvtk import SunTvtk
        
        # Initiate the particle model        
        self.__call__(x,y,z,timeinfo,runmodel=False)
        
        # Initiate the suntans tvtk class
        self.vtk = SunTvtk(self.ncfile)
        
        # Plot the bathymetry
        self.vtk.plotbathy3d(colormap='bone')
        
        # Plot the particles
        self.vtkobj = mlab.points3d(self.particles['X'],self.particles['Y'],self.particles['Z']*self.vtk.zscale,\
            color=(1.0,1.0,0.0),scale_mode='none',scale_factor=100.0,opacity=0.8)
                      
        nt = len(self.time_track)         
    
        @mlab.animate
        def anim():
            ii=-1
            while 1:
                if ii<nt-1:
                    ii+=1
                else:
                    ii=0
                
                # Advect the particles
                self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
                
                # Update the plot object
                self.vtkobj.mlab_source.x = self.particles['X']
                self.vtkobj.mlab_source.y = self.particles['Y']
                self.vtkobj.mlab_source.z = self.particles['Z']*self.vtk.zscale
               
                #titlestr=self._Spatial__genTitle(tt=ii)
                #self.title.text=titlestr
                
                self.vtk.fig.scene.render()
                yield
        
        if outfile==None:
            anim() # Starts the animation.
    
    def saveanim3D(self,outfile,frate=15):
        """
        Saves an animation of the current scene
        """
        from mayavi import mlab
        import os
        # This works for mp4 and mov...
        cmdstring ='ffmpeg -r %d -i ./.tmpanim%%04d.png -y -loglevel quiet -c:v libx264 -crf 23 -pix_fmt yuv420p %s'%(frate,outfile)
        
        self.vtk.fig.scene.anti_aliasing_frames = 0
        self.vtk.fig.scene.disable_render = True
        
        nt = len(self.time_track) 
        png_list=[]
        for ii in range(nt):

            self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
                
            # Update the plot object
            self.vtkobj.mlab_source.x = self.particles['X']
            self.vtkobj.mlab_source.y = self.particles['Y']
            self.vtkobj.mlab_source.z = self.particles['Z']*self.vtk.zscale
            
            self.vtk.fig.scene.render()
            
            # This bit saves each img
            outimg='./.tmpanim%04d.png'%ii
            png_list.append(outimg)
#            self.fig.scene.save_png(outimg)
            mlab.savefig(outimg,figure=self.vtk.fig)

            print 'Saving image %s of %d...'%(outimg,nt)
            
        # Call ffmpeg within python
        os.system(cmdstring)
        
        print '####\n Animation saved to: \n %s\n####' % outfile
        # Delete the images
        print 'Cleaning up temporary images...'
        for ff in png_list:
            os.remove(ff)
        print 'Complete.'
        
    def genTitle(self,ii):
            return 'Particle time step: %s'%datetime.strftime(self.time_track[ii],'%d-%b-%Y %H:%M:%S')
 
    #################
    # Post-processing 
    #################
    def plotTrackNC(self,ncfile,xlims=None,ylims=None,**kwargs):	
        """
        Plots the tracks of all particles from a particle netcdf file
        """
        # Set the xy limits
        if xlims==None or ylims==None:
            xlims=self.xlims 
            ylims=self.ylims
        
        # Load all of the data
        nc = Dataset(ncfile,'r')
        xp = nc.variables['xp'][:]
        yp = nc.variables['yp'][:]
        nc.close()

        # Plot a map of the bathymetry
        self.fig = plt.figure(figsize=(10,8))
        ax=plt.gca()
        self.contourf(z=-self.dv,clevs=30,titlestr='',xlims=xlims,ylims=ylims,cmap='bone')

        # plot the tracks
        plt.plot(xp[:,0],yp[:,0],'o',color='g',markersize=3,label='_nolegend_',alpha=0.4)
        # Plot tracks
        plt.plot(xp.T,yp.T,'-',color='grey',linewidth=.2)

        plt.title('Particle Trajectory\n(file name: %s)'%ncfile)


    def calc_age_max(self,ncfile,dx,dy,xlims=None,ylims=None):
        # Set the xy limits
        if xlims==None or ylims==None:
                xlims=self.xlims 
                ylims=self.ylims

        scalefac = 1/86400.

        xp,yp,agemax = self.readAgeMax(ncfile)
        
        grd = RegGrid(xlims,ylims,dx,dy)

        agegrid = grd.griddata(xp,yp,agemax)*scalefac

        return grd.X,grd.Y,agegrid


        
    def plotAgeMax(self,ncfile,dx,dy,vmax=7,xlims=None,ylims=None,**kwargs):
    	"""
        Filled contour plot of the maximum age of particle based on their initial locations
        """
        # Set the xy limits
        if xlims==None or ylims==None:
                xlims=self.xlims 
                ylims=self.ylims


        xp,yp,agemax = self.readAgeMax(ncfile)
        
        grd = RegGrid(xlims,ylims,dx,dy)

        agegrid = grd.griddata(xp,yp,agemax)*scalefac

        fig=plt.gcf()
        self.contourf(z=-self.dv,clevs=20,titlestr='',xlims=xlims,ylims=ylims,\
            filled=False,colors='k',linestyles='solid',linewidths=0.2)
        plt.pcolor(grd.X,grd.Y,agegrid,vmax=vmax,**kwargs)
        plt.colorbar()
        plt.title('Particle Age [days]\n(file name: %s)'%ncfile)

    def readAgeMax(self,ncfile):
        """
        Reads the maximum age from the last time step in a netcdf file
        """

        # Load all of the data
        nc = Dataset(ncfile,'r')
        xp = nc.variables['xp'][:,0]
        yp = nc.variables['yp'][:,0]
        try:
            # Load the age from the last time step
            agemax = nc.variables['agemax'][:,-1]
        except:
            raise Exception, ' "agemax" variable not present in file: %s'%ncfile
        nc.close()
        
        return xp, yp, agemax


    def calcAgeMaxProb(self,ncfiles,dx,dy,exceedance_thresh,plot=True,xlims=None,ylims=None,**kwargs):
    	"""
        Calculate the probability of the age exceeding a threshold time from
        a series of particle tracking runs. 
        """
        scalefac = 1/86400.
        # Set the xy limits
        if xlims==None or ylims==None:
                xlims=self.xlims 
                ylims=self.ylims

        # Create the probability grid
        grd = RegGrid(xlims,ylims,dx,dy)
        nruns = len(ncfiles)
        prob = np.zeros((grd.ny,grd.nx))

        # Loop through the files and add one to the probability matrix
        # where the age exceeds the threshold
        for ncfile in ncfiles:
            print 'Reading file: %s'%ncfile
            xp,yp,agemax = self.readAgeMax(ncfile)
        
            agegrid = grd.griddata(xp,yp,agemax)

            ind = agegrid >= exceedance_thresh

            prob[ind] = prob[ind]+1

        # Return the probability as a percentage
        prob = prob/nruns*100.0

        if plot:
            fig=plt.gcf()
            self.contourf(z=-self.dv,clevs=20,titlestr='',xlims=xlims,ylims=ylims,\
            filled=False,colors='k',linestyles='solid',linewidths=0.2)
            plt.pcolor(grd.X,grd.Y,prob,vmax=100,cmap=plt.cm.Spectral_r)
            plt.colorbar()
            plt.title('Probability (%%) of particle age exceeding %3.1f days'%(exceedance_thresh*scalefac))
Exemplo n.º 4
0
class SunTrack(Spatial):
    """
    Particle tracking class
    """
    
    verbose = True
    
    # Interpolation method
    interp_method = 'mesh' # 'idw' or 'nearest' or 'mesh'
    # IF interp_method == 'mesh'
    interp_meshmethod = 'nearest' # 'linear' or 'nearest'
    
    advect_method = 'rk2' # 'euler' or 'rk2'

    is3D = True
    
    # 
    
    def __init__(self,ncfile,**kwargs):
        """
        Initialize the 3-D grid, etc
        """
        
        self.__dict__.update(kwargs)

        if self.is3D:
            Spatial.__init__(self,ncfile,klayer=[-99],**kwargs)
            # Initialise the 3-D grid
            self.init3Dgrid()
        else: # surface layer only
            print '%s\nRunning in 2D mode...\n%s'%(24*'#',24*'#')
            Spatial.__init__(self,ncfile,klayer=['surface'],**kwargs)
            self.nActive = self.Nc

        #self.klayer=np.arange(0,self.Nkmax)
            
        # Step 2) Initialise the interpolation function
        if self.is3D:
            if self.interp_method in ('idw','nearest'):
                self.UVWinterp = interp3D(self.xv3d,self.yv3d,self.zv3d,method=self.interp_method)
                # Interpolation function to find free surface and seabed
                self.Hinterp = interp3D(self.xv,self.yv,0*self.xv,method='nearest')
                
            elif self.interp_method == 'mesh':
                if self.interp_meshmethod == 'nearest':
                    self.UVWinterp = \
                        interp3Dmesh(self.xp,self.yp,-self.z_w,self.cells,\
                            self.nfaces,self.mask3D,method='nearest')
                elif self.interp_meshmethod == 'linear':
                        self.UVWinterp =\
                            interp3Dmesh(self.xp,self.yp,-self.z_w,self.cells,self.nfaces,\
                            self.mask3D,method='linear',grdfile=self.ncfile)
        else:
            # Surface layer use nearest point only for now
            self.UVWinterp = interp2Dmesh(self.xp,self.yp,self.cells,\
                    self.nfaces,method='nearest')


    def __call__(self,x,y,z, timeinfo,outfile=None,dtout=3600.0,\
    	tstart=None,agepoly=None,age=None,agemax=None,runmodel=True, **kwargs):
        """
        Run the particle model 
        
        Inputs:
            x, y, z - release locations of particles [n_parts x 3]
            timeinfo - tuple (starttime,endtime,dt) 

	    (optional)
	    tstart - start time of each particle (format seconds since 1990-01-01)
	    	if None defaults to starting all particles from starttime.
	    agepoly - x/y coordinates of a polygon which ages particles
	    age, agemax - vectors of length n_parts containing the initial age and agemax. (leave
	    	as None to set to zero)
        """

        self.__dict__.update(kwargs)
        
        self.getTime(timeinfo)
        
        # Initialise the particle dictionary
        self.particles={'X':x,'Y':y,'Z':z,'X0':x,'Y0':y,'Z0':z}
	
        # Initialise the age calculation
        self._calcage = False
        if not agepoly == None:
            self._calcage = True
            self.agepoly = agepoly
            if age==None:
                age=np.zeros_like(x)
            if agemax==None:
                agemax=np.zeros_like(x)
            
        self.particles.update({'age':age,'agemax':agemax})

        # Set the particle time start and activate if necessary
        self.initParticleTime(tstart)

        # Initialse the outut netcdf file
        if not outfile==None:
            self.initParticleNC(outfile,x.shape[0],age=self._calcage)

        if self.verbose:
            print '#######################################################'
            print 'Running SUNTANS particle tracking\n'
            print 'Releasing %d particles.\n'%self.particles['X'].shape[0]
            print '######################################################'
            
        
        # Initialise the currents
        self.initCurrents()
        
        # Start time stepping
        tctr=dtout
        ctr=0
        if runmodel:
            for ii,time in enumerate(self.time_track):
                tctr+=self.dt
                # Step 1) Advect particles
                self.advectParticles(time,self.time_track_sec[ii])

                # Write output if needed 
                if not outfile==None and tctr>=dtout:
                    self.writeParticleNC(outfile,self.particles['X'],\
                        self.particles['Y'],self.particles['Z'],\
                        self.time_track_sec[ii],ctr,age=self.particles['age'],\
                        agemax=self.particles['agemax'])

                    tctr=tctr//dtout
                    ctr+=1
    
   
    def advectParticles(self,timenow,tsec):
        """
        Advect the particles
        """          
        t0 = clock()
        if self.verbose:
            print '\tTime step: ',timenow
         
        # Activate particles for current time step
        self.activateParticles(tsec)

        # Advection step 
        if self.advect_method=='euler':
            self.euler(timenow,tsec)
            
        elif self.advect_method=='rk2':
            self.rk2(timenow,tsec)
            
        else:
            raise Exception, 'unknown advection scheme: %s. Must be "euler" or "rk2"'%self.advect_method

        # Reset inactive particles
        self.resetInactiveParticles()

        # Call the age calculation
        if self._calcage:
           self.CalcAge()
            
        
        t1 = clock()
        if self.verbose:
            print '\t\tElapsed time: %s seconds.'%(t1-t0)
            
    def euler(self,timenow,tsec):
        """
        euler time integration
        """
        self.updateCurrents(timenow,tsec)
        
        # Interpolate the currents
        u = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.u)
        v = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.v,update=False)
        if self.is3D:
            w = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.w,update=False)
        #u,v,w = self.timeInterpUVWxyz(tsec,self.particles['X'],self.particles['Y'],self.particles['Z'])
        
        self.particles['X'] += u*self.dt
        self.particles['Y'] += v*self.dt
        if self.is3D:
            self.particles['Z'] += w*self.dt
            # Check the vertical bounds of a particle 
            self.particles['Z'] = self.checkVerticalBounds(self.particles['X'],self.particles['Y'],self.particles['Z'])
            
    def rk2(self,timenow,tsec):
        """
        2nd order Runge-Kutta advection scheme
        """
        
        self.updateCurrents(timenow,tsec)
        
        # Interpolate the currents
        u = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.u)
        v = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.v,update=False)
        if self.is3D:
            w = self.UVWinterp(self.particles['X'],self.particles['Y'],self.particles['Z'],self.w,update=False)
        #u,v,w = self.timeInterpUVWxyz(tsec,self.particles['X'],self.particles['Y'],self.particles['Z'])

        x1 = self.particles['X'] + 0.5*self.dt*u
        y1 = self.particles['Y'] + 0.5*self.dt*v
        if self.is3D:
            z1 = self.particles['Z'] + 0.5*self.dt*w
        
            # Check the vertical bounds of a particle 
            z1 = self.checkVerticalBounds(x1,y1,z1)
        else:
            z1 = self.particles['Z']
        
        # Update the currents again
        self.updateCurrents(timenow+timedelta(seconds=self.dt*0.5),tsec+self.dt*0.5)
        
        u = self.UVWinterp(x1,y1,z1,self.u)
        v = self.UVWinterp(x1,y1,z1,self.v,update=False)
        if self.is3D:
            w = self.UVWinterp(x1,y1,z1,self.w,update=False)
        #u,v,w = self.timeInterpUVWxyz(tsec,x1,y1,x1)
        
        self.particles['X'] += u*self.dt
        self.particles['Y'] += v*self.dt
        if self.is3D:
            self.particles['Z'] += w*self.dt
            
            # Check the vertical bounds of a particle again 
            self.particles['Z'] = self.checkVerticalBounds(self.particles['X'],self.particles['Y'],self.particles['Z'])

	# Check the horizontal coordinates
	#    This is done by default in the messh interpolation class
	#self.particles['X'],self.particles['Y'] = self.checkHorizBounds(self.particles['X'],self.particles['Y'])
        
    def checkHorizBounds(self,x,y):
    	"""
        NOT USED
        Moves particles outside of the horizontal bounds of the grid back
        to the closet cell centre.
        """

        ind = self.UVWinterp.cellind==-1
        if not self.__dict__.has_key('kd'):
            self.kd = spatial.cKDTree(np.vstack((self.xv,self.yv)).T)

        xy = np.vstack((x[ind],y[ind])).T
        dist,cell = self.kd.query(xy)
        x[ind]=self.xv[cell]
        y[ind]=self.yv[cell]

        return x, y

    def checkVerticalBounds(self,x,y,z):
        """
        Checks that particles are not above the surface or below the seabed
        
        (Artificially moves them to the surface or bed if they are).
        """
        SMALL = 0.001
        #zbed = -self.dv
        zbed = -self.z_w[self.Nk-1] # Set the bottom one layer above the seabed
            
            ## find the free surface and seabed at the particle locations
            #if not self.interp_method == 'mesh':
            #    eta_P = self.Hinterp(x,y,z,self.eta)
            #    h_P = self.Hinterp(x,y,z,zbed)
            #else:
            #    ind = self.UVWinterp.cellind
            #    mask=ind==-1
            #    ind[mask]=0.0
            #    eta_P = self.eta[ind]
            #    h_P = zbed[ind]
            #    eta_P[mask]=0.0
            #    h_P[mask]=0.0
            #
        #pdb.set_trace()
        #indtop = np.where(z>eta_P)
        #indbot = np.where(z<h_P)
        #z[indtop[0]] = eta_P[indtop[0]]-SMALL
        #z[indbot[0]] = h_P[indbot[0]]+SMALL

        if not self.interp_method == 'mesh':
            eta_P = self.Hinterp(x,y,z,self.eta)
            h_P = self.Hinterp(x,y,z,zbed)
        else:
            ind = self.UVWinterp.cellind
            eta_P = self.eta[ind]
            h_P = zbed[ind]
            
        #indtop = np.where( operator.and_(z>eta_P, ind!=-1) )
        #indbot = np.where( operator.and_(z<h_P, ind!=-1) )

        #z[indtop[0]] = eta_P[indtop[0]]-SMALL
        #z[indbot[0]] = h_P[indbot[0]]+SMALL
        indtop = operator.and_(z>eta_P, ind!=-1)
        indbot = operator.and_(z<h_P, ind!=-1) 

        #if np.any(indbot):
        #    pdb.set_trace()

        z[indtop] = eta_P[indtop]-SMALL
        z[indbot] = h_P[indbot]+SMALL

        #np.where(z > eta_P, eta_P-SMALL, z)
        #np.where(z < h_P, h_P+SMALL, z)
        
        return z
        
    
    def initCurrents(self):
        """
        Initialise the forward and backward currents and free-surface height
        """
        
        tindex = othertime.findGreater(self.time_track[0],self.time)
        
        self.time_index = tindex
        
        # Check the time index here
        if tindex == None:
            raise Exception, 'start time less than model time: ',self.time[0]
        elif self.time_index==0:
            self.time_index=1
            
        self.uT = np.zeros((self.nActive,2))
        self.vT = np.zeros((self.nActive,2))
        self.wT = np.zeros((self.nActive,2))
        self.etaT = np.zeros((self.Nc,2))
        
        self.uT[:,0], self.vT[:,0], self.wT[:,0], self.etaT[:,0] = self.getUVWh(tindex-1)
        self.uT[:,1], self.vT[:,1], self.wT[:,1], self.etaT[:,1] = self.getUVWh(tindex)
        
        self.timeInterpUVW(self.time_track_sec[0],self.time_index)

        
    def updateCurrents(self,timenow,tsec):
        """
        Checks to see if the currents need updating
        """
        
        tindex = othertime.findGreater(timenow,self.time)
        
        if not tindex == self.time_index:
            if self.verbose:
                print 'Reading SUNTANS currents at time: ',timenow
            self.uT[:,0]=self.uT[:,1]
            self.vT[:,0]=self.vT[:,1]
            self.wT[:,0]=self.wT[:,1]
            self.etaT[:,0]=self.etaT[:,1]
            self.uT[:,1], self.vT[:,1], self.wT[:,1], self.etaT[:,1] = self.getUVWh(tindex)
            
            self.time_index = tindex
        
        # Temporally interpolate onto the model step
        self.timeInterpUVW(tsec,self.time_index) 
        
    def timeInterpUVW(self,tsec,tindex):
        """
        Temporally interpolate the currents  onto the particle time step, tsec.
        
        Linear interpolation used.
        """
        
        t0 = self.time_sec[tindex-1]
        t1 = self.time_sec[tindex]
        dt = t1 - t0
        
        w2 = (tsec-t0)/dt
        w1 = 1.0-w2
        
        #self.u = self.uT[:,0]*w1 + self.uT[:,1]*w2 
        #self.v = self.vT[:,0]*w1 + self.vT[:,1]*w2 
        #self.w = self.wT[:,0]*w1 + self.wT[:,1]*w2 
        #self.eta = self.etaT[:,0]*w1 + self.etaT[:,1]*w2 
        self.u = ne.evaluate("u0*w1 + u1*w2",\
            local_dict={'u0':self.uT[:,0],'u1':self.uT[:,1],'w1':w1,'w2':w2})
        self.v = ne.evaluate("u0*w1 + u1*w2",\
            local_dict={'u0':self.vT[:,0],'u1':self.vT[:,1],'w1':w1,'w2':w2})
        self.w = ne.evaluate("u0*w1 + u1*w2",\
            local_dict={'u0':self.wT[:,0],'u1':self.wT[:,1],'w1':w1,'w2':w2})
        self.eta = ne.evaluate("u0*w1 + u1*w2",\
            local_dict={'u0':self.etaT[:,0],'u1':self.etaT[:,1],'w1':w1,'w2':w2})
        
        
    def timeInterpUVWxyz(self,tsec,x,y,z):
        """
        NOT USED AT THIS STAGE

        Temporally interpolate the currents  onto the particle time step, tsec.
        
        Linear interpolation used.
        """
        tindex=self.time_index
        
        t0 = self.time_sec[tindex-1]
        t1 = self.time_sec[tindex]
        dt = t1 - t0
        
        w2 = (tsec-t0)/dt
        w1 = 1.0-w2
        
        uT0 = self.UVWinterp(x,y,z,self.uT[:,0],update=True)
        vT0 = self.UVWinterp(x,y,z,self.vT[:,0],update=False) # Locations of the particles are not checked for updates
        wT0 = self.UVWinterp(x,y,z,self.wT[:,0],update=False)
        
        uT1 = self.UVWinterp(x,y,z,self.uT[:,1],update=False)
        vT1 = self.UVWinterp(x,y,z,self.vT[:,1],update=False)
        wT1 = self.UVWinterp(x,y,z,self.wT[:,1],update=False)
        
        u = uT0*w1 + uT1*w2 
        v = vT0*w1 + vT1*w2 
        w = wT0*w1 + wT1*w2 
        
        return u,v,w
        
    def getUVWh(self,tstep):
        """
        Load the velocity arrays
        """
        self.tstep = tstep
        
        u = self.loadData(variable='uc')
        v = self.loadData(variable='vc')
        if self.is3D:
            w = self.loadData(variable='w')
            eta = self.loadData(variable='eta')
            return u[self.mask3D], v[self.mask3D], w[self.mask3D], eta    
        else:
            return u, v, u, u   
        
    def getTime(self,timeinfo):
        """
        Get the particle time step info
        """
        self.dt = timeinfo[2]
        
        self.time_track = othertime.TimeVector(timeinfo[0],timeinfo[1],timeinfo[2],timeformat ='%Y%m%d.%H%M%S')
        
        self.time_track_sec = othertime.SecondsSince(self.time_track)
        self.time_sec = othertime.SecondsSince(self.time)
        
        self.time_index = -9999

    def initParticleTime(self,tstart):
    	"""
        Initialise the particle start time
        """
        if tstart==None:
            self.particles['tstart'] = self.time_track_sec[0]*np.ones_like(self.particles['X'])
        else:
            self.particles['tstart'] = tstart

        # Set all particles as inactive to start
        self.particles['isActive'] = np.zeros_like(self.particles['X'])

    def activateParticles(self,tsec):
        """
        Activate the particles that start past the present time

        Note that inactive particles are still advected - their positions
        are simply reset after each time step
        """
        ind = self.particles['tstart'] <= tsec

        self.particles['isActive'][ind]=True
        #print '\t%d Active particles'%(np.sum(self.particles['isActive']))

    def resetInactiveParticles(self):
        """
        Reset the positions of inactive particles to x0. 
        """
        ind = self.particles['isActive']==False
        self.particles['X'][ind]=self.particles['X0'][ind]
        self.particles['Y'][ind]=self.particles['Y0'][ind]
        self.particles['Z'][ind]=self.particles['Z0'][ind]

        
    def init3Dgrid(self):
        """
        Constructs the 3d cell unstructured grid object
        
        Includes only active vertical grid layers
        
        """
        nc = self.Nc
        nz = self.Nkmax+1
        nv = len(self.xp)
        
        self.returnMask3D()
        self.nActive = np.sum(self.mask3D) # Total number of active cells
        
        self.cells3d = np.zeros((self.nActive,6))
        self.xv3d = np.zeros((self.nActive,))
        self.yv3d = np.zeros((self.nActive,))
        self.zv3d = np.zeros((self.nActive,))
        pt1=0
        for k in range(1,nz):
            masklayer = self.mask3D[k-1,:]
            nc = np.sum(masklayer)
            pt2 = pt1+nc            
            self.cells3d[pt1:pt2,0] = self.cells[masklayer,0]+(k-1)*nv
            self.cells3d[pt1:pt2,1] = self.cells[masklayer,1]+(k-1)*nv
            self.cells3d[pt1:pt2,2] = self.cells[masklayer,2]+(k-1)*nv
            self.cells3d[pt1:pt2,3] = self.cells[masklayer,0]+k*nv
            self.cells3d[pt1:pt2,4] = self.cells[masklayer,1]+k*nv
            self.cells3d[pt1:pt2,5] = self.cells[masklayer,2]+k*nv
            
            self.xv3d[pt1:pt2] = self.xv[masklayer]
            self.yv3d[pt1:pt2] = self.yv[masklayer]
            self.zv3d[pt1:pt2] = -self.z_r[k-1]
            
            pt1=pt2
            #print k, nc
            
        self.verts = np.zeros((nv*nz,3))
        pv1 = 0
        for k in range(0,nz):
            self.verts[pv1:pv1+nv,0] = self.xp
            self.verts[pv1:pv1+nv,1] = self.yp
            self.verts[pv1:pv1+nv,2] = -self.z_w[k]
            pv1 += nv

    
    def returnMask3D(self):
        """
        Returns the 3D mask [Nk x Nc] True = Active, False = Ghost
        
        """
        self.mask3D = np.ones((self.Nkmax,self.Nc),dtype=bool)
        
        for i in range(self.Nc):
            if self.Nk[i] == self.Nkmax:
                Nk = self.Nk[i]
            else:
                Nk = self.Nk[i]+1
            self.mask3D[Nk:self.Nkmax,i]=False
            #self.mask3D[self.Nk[i]::,i]=False

    def CalcAge(self):
        """     
        Calculate the age of a particle inside of the age polygon
        """
        #print '\t\tCalculating the particle age...'
        #inpoly = nxutils.points_inside_poly(np.vstack((self.particles['X'],self.particles['Y'])).T,self.agepoly)
        inpoly = inpolygon(np.vstack((self.particles['X'],self.particles['Y'])).T,self.agepoly)

        self.particles['age'][inpoly] = self.particles['age'][inpoly] + self.dt
        self.particles['age'][inpoly==False]=0.0

        # Update the agemax attribute
        self.particles['agemax'] = np.max([self.particles['age'],self.particles['agemax']],axis=0)


    def initParticleNC(self,outfile,Np,age=False):
        """
        Export the grid variables to a netcdf file
        """
        import os

        if self.verbose:
            print '\nInitialising particle netcdf file: %s...\n'%outfile
            
        # Global Attributes
        nc = Dataset(outfile, 'w', format='NETCDF4_CLASSIC')
        nc.Description = 'Particle trajectory file'
        nc.Author = os.getenv('USER')
        nc.Created = datetime.now().isoformat()

        #tseas = self.time_sec[1] - self.time_sec[0]
        #nsteps = np.floor(tseas/self.dt)
        #nc.nsteps = '%f (number of linear interpolation steps in time between model outputs)'%nsteps
        #nc.tseas = '%d (Time step (seconds) between model outputs'%tseas
        #nc.dt = '%f (Particle model time steps [seconds])'%self.dt
        nc.dataset_location = '%s'%self.ncfile

        # Dimensions
        nc.createDimension('ntrac', Np)
        nc.createDimension('nt', 0) # Unlimited
        
        # Create variables
        def create_nc_var( name, dimensions, attdict, dtype='f8'):
            tmp=nc.createVariable(name, dtype, dimensions)
            for aa in attdict.keys():
                tmp.setncattr(aa,attdict[aa])
          
        create_nc_var('tp',('nt'),{'units':'seconds since 1990-01-01 00:00:00','long_name':"time at drifter locations"},dtype='f8')
        create_nc_var('xp',('ntrac','nt'),{'units':'m','long_name':"Easting coordinate of drifter",'time':'tp'},dtype='f8')
        create_nc_var('yp',('ntrac','nt'),{'units':'m','long_name':"Northing coordinate of drifter",'time':'tp'},dtype='f8')
        create_nc_var('zp',('ntrac','nt'),{'units':'m','long_name':"vertical position of drifter (negative is downward from surface)",'time':'tp'},dtype='f8')
	if age:
	    create_nc_var('age',('ntrac','nt'),{'units':'seconds','long_name':"Particle age",'time':'tp'},dtype='f8')
	    create_nc_var('agemax',('ntrac','nt'),{'units':'seconds','long_name':"Maximum particle age",'time':'tp'},dtype='f8')

        nc.close()
    
    def writeParticleNC(self,outfile,x,y,z,t,tstep,age=None,agemax=None):
        """
        Writes the particle locations at the output time step, 'tstep'
        """
        if self.verbose:
            print 'Writing netcdf output at tstep: %d...\n'%tstep
            
        nc = Dataset(outfile, 'a')
        
        nc.variables['tp'][tstep]=t
        nc.variables['xp'][:,tstep]=x
        nc.variables['yp'][:,tstep]=y
        nc.variables['zp'][:,tstep]=z

	if not age==None:
	    nc.variables['age'][:,tstep]=age
	if not agemax==None:
	    nc.variables['agemax'][:,tstep]=agemax

        nc.close()
#################
# Animation
#################
    def animate(self,x,y,z,timeinfo,agepoly=None,agemax=7.0,xlims=None,ylims=None,outfile=None):
        """
        Animate the particles on the fly using matplotlib plotting routines
        """
        import matplotlib.animation as animation
        
        agescale = 1.0/86400.0

        # Set the xy limits
        if xlims==None or ylims==None:
            xlims=self.xlims 
            ylims=self.ylims
            
        self.__call__(x,y,z,timeinfo,agepoly=agepoly,runmodel=False)
        # Plot a map of the bathymetry
        self.fig = plt.figure(figsize=(10,8))
        ax=plt.gca()
        self.contourf(z=-self.dv,clevs=30,titlestr='',xlims=xlims,ylims=ylims,cmap='bone')
	
        
        plotage=self._calcage

        # Plot the particles at the first time step
        if not plotage:
            h1 = plt.plot([],[],'y.',markersize=1.0)
            h1 = h1[0]

        else:
            h1 = plt.scatter(self.particles['X'],self.particles['Y'],s=1.0,c=self.particles['age'],vmin=0,vmax=agemax,edgecolors=None)

	    self.fig.colorbar(h1)
        
        title=ax.set_title("")
        
        def init():
            h1.set_xdata(self.particles['X'])
            h1.set_ydata(self.particles['Y'])
            title=ax.set_title(self.genTitle(0))
            return (h1,title)

        def updateLocation(ii):
            if ii==0:
                # Re-initialise the particle location
                self.particles={'X':x,'Y':y,'Z':z}
            if self._calcage:
                self.particles.update({'age':np.zeros_like(x),'agemax':np.zeros_like(x)})
                
            self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
            if plotage:
                # Update the scatter object
                h1.set_offsets(np.vstack([self.particles['X'],self.particles['Y']]).T)
                h1.set_array(self.particles['age'])*agescale
                h1.set_edgecolors(h1.to_rgba(np.array(self.particles['age'])))    
            else:
                h1.set_xdata(self.particles['X'])
                h1.set_ydata(self.particles['Y'])

            title.set_text(self.genTitle(ii))
            return (h1,title)
        
        self.anim = animation.FuncAnimation(self.fig, updateLocation, frames=len(self.time_track), interval=50, blit=True)
        
        if outfile==None:
            plt.show()
        else:
            self.saveanim(outfile)
    
    def animateNC(self,ncfile,plotage=False,agemax=7.0,xlims=None,ylims=None,outfile=None,**kwargs):
        """
        Animate the particles from a previously generated netcdf file
        """
        import matplotlib.animation as animation
        
        agescale = 1.0/86400.0
        # Set the xy limits
        if xlims==None or ylims==None:
            xlims=self.xlims 
            ylims=self.ylims
            
        # Open the netcdf file
        nc = Dataset(ncfile,'r')
        
        # Read the time data into 
        t = nc.variables['tp']
        self.time_track = num2date(t[:],t.units)
        
        # Plot a map of the bathymetry
        self.fig = plt.figure(figsize=(10,8))
        ax=plt.gca()
        self.contourf(z=-self.dv,clevs=30,titlestr='',xlims=xlims,ylims=ylims,cmap='bone')
        
        # Plot the particles at the first time step
        if not plotage:
#	    h1 = plt.plot([],[],'y.',markersize=1.0)
            h1 = plt.plot([],[],'.',**kwargs)
            h1 = h1[0]

        else:
            h1 = plt.scatter(nc.variables['xp'][0,:],nc.variables['yp'][0,:],s=1.0,c=nc.variables['age'][0,:],vmin=0,vmax=agemax,edgecolors=None)

	    self.fig.delaxes(self.fig.axes[1])
	    self.cb = self.fig.colorbar(h1)
	    #self.cb.on_mappable_changed(h1) # Updates the colobar

        
        title=ax.set_title("")
        
        def updateLocation(ii):
            xp = nc.variables['xp'][:,ii]
            yp = nc.variables['yp'][:,ii]
            if plotage:
                # Update the scatter object
                h1.set_offsets(np.vstack([xp,yp]).T)
                age=nc.variables['age'][:,ii]*agescale
                h1.set_array(age)
                h1.set_edgecolors(h1.to_rgba(np.array(age)))    
            else:
                h1.set_xdata(xp)
                h1.set_ydata(yp)

            title.set_text(self.genTitle(ii))
            return (h1,title)
        
        self.anim = animation.FuncAnimation(self.fig, updateLocation, frames=len(self.time_track), interval=50, blit=True)
        
        if outfile==None:
            plt.show()
        else:
            self.saveanim(outfile) 
        
        nc.close()

    def animate_xz(self,x,y,z,timeinfo,agepoly=None,agemax=86400.0,xlims=None,ylims=None,outfile=None):
        """
        Animate the particles on the fly using matplotlib plotting routines
        """
        import matplotlib.animation as animation
        
           
        self.__call__(x,y,z,timeinfo,agepoly=agepoly,runmodel=False)

	# Set the xy limits
        if xlims==None or ylims==None:
            xlims=self.xlims 
            ylims=[-self.dv.max(),1.0]
         
        self.fig = plt.figure(figsize=(10,8))
        ax=plt.gca()
        ax.set_xlim(xlims)
        ax.set_ylim(ylims)
        
        plotage=self._calcage

        # Plot the particles at the first time step
        if not plotage:
            h1 = plt.plot([],[],'y.',markersize=1.0)
            h1 = h1[0]

        else:
            h1 = plt.scatter(self.particles['X'],self.particles['Z'],s=1.0,c=self.particles['age'],vmin=0,vmax=agemax,edgecolors=None)
            self.fig.colorbar(h1)
            
            title=ax.set_title("")
        
        def init():
            h1.set_xdata(self.particles['X'])
            h1.set_ydata(self.particles['Z'])
            title=ax.set_title(self.genTitle(0))
            return (h1,title)

        def updateLocation(ii):
            if ii==0:
                # Re-initialise the particle location
                self.particles={'X':x,'Y':y,'Z':z}
		if self._calcage:
		    self.particles.update({'age':np.zeros_like(x),'agemax':np.zeros_like(x)})
                
            self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
	    if plotage:
		# Update the scatter object
		h1.set_offsets(np.vstack([self.particles['X'],self.particles['Z']]).T)
		h1.set_array(self.particles['age'])
		h1.set_edgecolors(h1.to_rgba(np.array(self.particles['age'])))    
	    else:
		h1.set_xdata(self.particles['X'])
		h1.set_ydata(self.particles['Z'])

            title.set_text(self.genTitle(ii))
            return (h1,title)
        
        self.anim = animation.FuncAnimation(self.fig, updateLocation, frames=len(self.time_track), interval=50, blit=True)
        
        if outfile==None:
            plt.show()
        else:
            self.saveanim(outfile)
 
    def animate3D(self,x,y,z,timeinfo,outfile=None):
        """
        3D animation of the particles using mayavi
        """
        
        from mayavi import mlab
        from suntvtk import SunTvtk
        
        # Initiate the particle model        
        self.__call__(x,y,z,timeinfo,runmodel=False)
        
        # Initiate the suntans tvtk class
        self.vtk = SunTvtk(self.ncfile)
        
        # Plot the bathymetry
        self.vtk.plotbathy3d(colormap='bone')
        
        # Plot the particles
        self.vtkobj = mlab.points3d(self.particles['X'],self.particles['Y'],self.particles['Z']*self.vtk.zscale,\
            color=(1.0,1.0,0.0),scale_mode='none',scale_factor=100.0,opacity=0.8)
                      
        nt = len(self.time_track)         
    
        @mlab.animate
        def anim():
            ii=-1
            while 1:
                if ii<nt-1:
                    ii+=1
                else:
                    ii=0
                
                # Advect the particles
                self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
                
                # Update the plot object
                self.vtkobj.mlab_source.x = self.particles['X']
                self.vtkobj.mlab_source.y = self.particles['Y']
                self.vtkobj.mlab_source.z = self.particles['Z']*self.vtk.zscale
               
                #titlestr=self._Spatial__genTitle(tt=ii)
                #self.title.text=titlestr
                
                self.vtk.fig.scene.render()
                yield
        
        if outfile==None:
            anim() # Starts the animation.
    
    def saveanim3D(self,outfile,frate=15):
        """
        Saves an animation of the current scene
        """
        from mayavi import mlab
        import os
        # This works for mp4 and mov...
        cmdstring ='ffmpeg -r %d -i ./.tmpanim%%04d.png -y -loglevel quiet -c:v libx264 -crf 23 -pix_fmt yuv420p %s'%(frate,outfile)
        
        self.vtk.fig.scene.anti_aliasing_frames = 0
        self.vtk.fig.scene.disable_render = True
        
        nt = len(self.time_track) 
        png_list=[]
        for ii in range(nt):

            self.advectParticles(self.time_track[ii],self.time_track_sec[ii])
                
            # Update the plot object
            self.vtkobj.mlab_source.x = self.particles['X']
            self.vtkobj.mlab_source.y = self.particles['Y']
            self.vtkobj.mlab_source.z = self.particles['Z']*self.vtk.zscale
            
            self.vtk.fig.scene.render()
            
            # This bit saves each img
            outimg='./.tmpanim%04d.png'%ii
            png_list.append(outimg)
#            self.fig.scene.save_png(outimg)
            mlab.savefig(outimg,figure=self.vtk.fig)

            print 'Saving image %s of %d...'%(outimg,nt)
            
        # Call ffmpeg within python
        os.system(cmdstring)
        
        print '####\n Animation saved to: \n %s\n####' % outfile
        # Delete the images
        print 'Cleaning up temporary images...'
        for ff in png_list:
            os.remove(ff)
        print 'Complete.'
        
    def genTitle(self,ii):
            return 'Particle time step: %s'%datetime.strftime(self.time_track[ii],'%d-%b-%Y %H:%M:%S')
 
    #################
    # Post-processing 
    #################
    def plotTrackNC(self,ncfile,xlims=None,ylims=None,**kwargs):	
        """
        Plots the tracks of all particles from a particle netcdf file
        """
        # Set the xy limits
        if xlims==None or ylims==None:
            xlims=self.xlims 
            ylims=self.ylims
        
        # Load all of the data
        nc = Dataset(ncfile,'r')
        xp = nc.variables['xp'][:]
        yp = nc.variables['yp'][:]
        nc.close()

        # Plot a map of the bathymetry
        self.fig = plt.figure(figsize=(10,8))
        ax=plt.gca()
        self.contourf(z=-self.dv,clevs=30,titlestr='',xlims=xlims,ylims=ylims,cmap='bone')

        # plot the tracks
        plt.plot(xp[:,0],yp[:,0],'o',color='g',markersize=3,label='_nolegend_',alpha=0.4)
        # Plot tracks
        plt.plot(xp.T,yp.T,'-',color='grey',linewidth=.2)

        plt.title('Particle Trajectory\n(file name: %s)'%ncfile)


    def calc_age_max(self,ncfile,dx,dy,xlims=None,ylims=None):
        # Set the xy limits
        if xlims==None or ylims==None:
                xlims=self.xlims 
                ylims=self.ylims

        scalefac = 1/86400.

        xp,yp,agemax = self.readAgeMax(ncfile)
        
        grd = RegGrid(xlims,ylims,dx,dy)

        agegrid = grd.griddata(xp,yp,agemax)*scalefac

        return grd.X,grd.Y,agegrid


        
    def plotAgeMax(self,ncfile,dx,dy,vmax=7,xlims=None,ylims=None,**kwargs):
    	"""
        Filled contour plot of the maximum age of particle based on their initial locations
        """
        # Set the xy limits
        if xlims==None or ylims==None:
                xlims=self.xlims 
                ylims=self.ylims


        xp,yp,agemax = self.readAgeMax(ncfile)
        
        grd = RegGrid(xlims,ylims,dx,dy)

        agegrid = grd.griddata(xp,yp,agemax)*scalefac

        fig=plt.gcf()
        self.contourf(z=-self.dv,clevs=20,titlestr='',xlims=xlims,ylims=ylims,\
            filled=False,colors='k',linestyles='solid',linewidths=0.2)
        plt.pcolor(grd.X,grd.Y,agegrid,vmax=vmax,**kwargs)
        plt.colorbar()
        plt.title('Particle Age [days]\n(file name: %s)'%ncfile)

    def readAgeMax(self,ncfile):
        """
        Reads the maximum age from the last time step in a netcdf file
        """

        # Load all of the data
        nc = Dataset(ncfile,'r')
        xp = nc.variables['xp'][:,0]
        yp = nc.variables['yp'][:,0]
        try:
            # Load the age from the last time step
            agemax = nc.variables['agemax'][:,-1]
        except:
            raise Exception, ' "agemax" variable not present in file: %s'%ncfile
        nc.close()
        
        return xp, yp, agemax


    def calcAgeMaxProb(self,ncfiles,dx,dy,exceedance_thresh,plot=True,xlims=None,ylims=None,**kwargs):
    	"""
        Calculate the probability of the age exceeding a threshold time from
        a series of particle tracking runs. 
        """
        scalefac = 1/86400.
        # Set the xy limits
        if xlims==None or ylims==None:
                xlims=self.xlims 
                ylims=self.ylims

        # Create the probability grid
        grd = RegGrid(xlims,ylims,dx,dy)
        nruns = len(ncfiles)
        prob = np.zeros((grd.ny,grd.nx))

        # Loop through the files and add one to the probability matrix
        # where the age exceeds the threshold
        for ncfile in ncfiles:
            print 'Reading file: %s'%ncfile
            xp,yp,agemax = self.readAgeMax(ncfile)
        
            agegrid = grd.griddata(xp,yp,agemax)

            ind = agegrid >= exceedance_thresh

            prob[ind] = prob[ind]+1

        # Return the probability as a percentage
        prob = prob/nruns*100.0

        if plot:
            fig=plt.gcf()
            self.contourf(z=-self.dv,clevs=20,titlestr='',xlims=xlims,ylims=ylims,\
            filled=False,colors='k',linestyles='solid',linewidths=0.2)
            plt.pcolor(grd.X,grd.Y,prob,vmax=100,cmap=plt.cm.Spectral_r)
            plt.colorbar()
            plt.title('Probability (%%) of particle age exceeding %3.1f days'%(exceedance_thresh*scalefac))