def layer_forward(self, x, hx, cell, batch_sizes, reverse=False):
        hx_0 = hx_i = hx
        hx_n, output = [], []
        steps = reversed(range(len(x))) if reverse else range(len(x))
        if self.training:
            hid_mask = SharedDropout.get_mask(hx_0[0], self.dropout)

        for t in steps:
            last_batch_size, batch_size = len(hx_i[0]), batch_sizes[t]
            if last_batch_size < batch_size:
                hx_i = [
                    torch.cat((h, ih[last_batch_size:batch_size]))
                    for h, ih in zip(hx_i, hx_0)
                ]
            else:
                hx_n.append([h[batch_size:] for h in hx_i])
                hx_i = [h[:batch_size] for h in hx_i]
            hx_i = [h for h in cell(x[t], hx_i)]
            output.append(hx_i[0])
            if self.training:
                hx_i[0] = hx_i[0] * hid_mask[:batch_size]
        if reverse:
            hx_n = hx_i
            output.reverse()
        else:
            hx_n.append(hx_i)
            hx_n = [torch.cat(h) for h in zip(*reversed(hx_n))]
        output = torch.cat(output)

        return output, hx_n
Exemplo n.º 2
0
    def forward(self, sequence, hx=None):
        r"""
        Args:
            sequence (~torch.nn.utils.rnn.PackedSequence):
                A packed variable length sequence.
            hx (~torch.Tensor, ~torch.Tensor):
                A tuple composed of two tensors `h` and `c`.
                `h` of shape ``[num_layers*2, batch_size, hidden_size]`` contains the initial hidden state
                for each element in the batch.
                `c` of shape ``[num_layers*2, batch_size, hidden_size]`` contains the initial cell state
                for each element in the batch.
                If `hx` is not provided, both `h` and `c` default to zero.
                Default: ``None``.

        Returns:
            ~torch.nn.utils.rnn.PackedSequence, (~torch.Tensor, ~torch.Tensor):
                The first is a packed variable length sequence.
                The second is a tuple of tensors `h` and `c`.
                `h` of shape ``[num_layers*2, batch_size, hidden_size]`` contains the hidden state for `t = seq_len`.
                Like output, the layers can be separated using ``h.view(num_layers, 2, batch_size, hidden_size)``
                and similarly for c.
                `c` of shape ``[num_layers*2, batch_size, hidden_size]`` contains the cell state for `t = seq_len`.
        """
        x, batch_sizes = sequence.data, sequence.batch_sizes.tolist()
        batch_size = batch_sizes[0]
        h_n, c_n = [], []

        if hx is None:
            ih = x.new_zeros(self.num_layers * 2, batch_size, self.hidden_size)
            h, c = ih, ih
        else:
            h, c = self.permute_hidden(hx, sequence.sorted_indices)
        h = h.view(self.num_layers, 2, batch_size, self.hidden_size)
        c = c.view(self.num_layers, 2, batch_size, self.hidden_size)

        for i in range(self.num_layers):
            x = torch.split(x, batch_sizes)
            if self.training:
                mask = SharedDropout.get_mask(x[0], self.dropout)
                x = [i * mask[:len(i)] for i in x]
            x_f, (h_f, c_f) = self.layer_forward(x=x,
                                                 hx=(h[i, 0], c[i, 0]),
                                                 cell=self.f_cells[i],
                                                 batch_sizes=batch_sizes)
            x_b, (h_b, c_b) = self.layer_forward(x=x,
                                                 hx=(h[i, 1], c[i, 1]),
                                                 cell=self.b_cells[i],
                                                 batch_sizes=batch_sizes,
                                                 reverse=True)
            x = torch.cat((x_f, x_b), -1)
            h_n.append(torch.stack((h_f, h_b)))
            c_n.append(torch.stack((c_f, c_b)))
        x = PackedSequence(x, sequence.batch_sizes, sequence.sorted_indices,
                           sequence.unsorted_indices)
        hx = torch.cat(h_n, 0), torch.cat(c_n, 0)
        hx = self.permute_hidden(hx, sequence.unsorted_indices)

        return x, hx
    def forward(self, sequence, hx=None):
        """
        Args:
            sequence (PackedSequence):
                A packed variable length sequence.
            hx (tuple[torch.Tensor, torch.Tensor]):
                h (``[num_layers * 2, batch_size, hidden_size]``) contains the initial hidden state
                for each element in the batch.
                c (``[num_layers * 2, batch_size, hidden_size]``) contains the initial cell state
                for each element in the batch.
                If (h, x) is not provided, both h and c default to zero.
                Default: None.

        Returns:
            x (PackedSequence):
                A packed variable length sequence.
            hx (tuple[torch.Tensor, torch.Tensor]):
                h (``[num_layers * 2, batch_size, hidden_size]``) contains the hidden state for ``t = seq_len``.
                Like output, the layers can be separated using ``h.view(num_layers, 2, batch_size, hidden_size)``
                and similarly for c.
                c (``[num_layers * 2, batch_size, hidden_size]``) contains the cell state for ``t = seq_len``.
        """
        x, batch_sizes = sequence.data, sequence.batch_sizes.tolist()
        batch_size = batch_sizes[0]
        h_n, c_n = [], []

        if hx is None:
            ih = x.new_zeros(self.num_layers * 2, batch_size, self.hidden_size)
            h, c = ih, ih
        else:
            h, c = self.permute_hidden(hx, sequence.sorted_indices)
        h = h.view(self.num_layers, 2, batch_size, self.hidden_size)
        c = c.view(self.num_layers, 2, batch_size, self.hidden_size)

        for i in range(self.num_layers):
            x = torch.split(x, batch_sizes)
            if self.training:
                mask = SharedDropout.get_mask(x[0], self.dropout)
                x = [i * mask[:len(i)] for i in x]
            x_f, (h_f, c_f) = self.layer_forward(x=x,
                                                 hx=(h[i, 0], c[i, 0]),
                                                 cell=self.f_cells[i],
                                                 batch_sizes=batch_sizes)
            x_b, (h_b, c_b) = self.layer_forward(x=x,
                                                 hx=(h[i, 1], c[i, 1]),
                                                 cell=self.b_cells[i],
                                                 batch_sizes=batch_sizes,
                                                 reverse=True)
            x = torch.cat((x_f, x_b), -1)
            h_n.append(torch.stack((h_f, h_b)))
            c_n.append(torch.stack((c_f, c_b)))
        x = PackedSequence(x, sequence.batch_sizes, sequence.sorted_indices,
                           sequence.unsorted_indices)
        hx = torch.cat(h_n, 0), torch.cat(c_n, 0)
        hx = self.permute_hidden(hx, sequence.unsorted_indices)

        return x, hx