Exemplo n.º 1
0
 def testWithGlobalStep(self, dtype):
     with self.cached_session():
         global_step = tf.Variable(0, trainable=False)
         var0 = tf.Variable([1.0, 2.0], dtype=dtype)
         var1 = tf.Variable([3.0, 4.0], dtype=dtype)
         grads0 = tf.constant([0.1, 0.1], dtype=dtype)
         grads1 = tf.constant([0.01, 0.01], dtype=dtype)
         lars_op = utils.LARSOptimizer(3.0).apply_gradients(
             zip([grads0, grads1], [var0, var1]), global_step=global_step)
         tf.global_variables_initializer().run()
         # Fetch params to validate initial values
         self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var0))
         self.assertAllCloseAccordingToType([3.0, 4.0], self.evaluate(var1))
         # Run 1 step of sgd
         lars_op.run()
         # Validate updated params and global_step
         self.assertAllCloseAccordingToType([
             1.0 - 3.0 * (0.001 * (np.sqrt(5.) / np.sqrt(2.))), 2.0 - 3.0 *
             (0.001 * (np.sqrt(5.) / np.sqrt(2.)))
         ], self.evaluate(var0))
         self.assertAllCloseAccordingToType([
             3.0 - 3.0 * (0.001 * (5. / np.sqrt(2.))), 4.0 - 3.0 *
             (0.001 * (5. / np.sqrt(2.)))
         ], self.evaluate(var1))
         self.assertAllCloseAccordingToType(1, self.evaluate(global_step))
Exemplo n.º 2
0
 def testBasic(self, dtype):
     with self.cached_session():
         var0 = tf.Variable([1.0, 2.0], dtype=dtype)
         var1 = tf.Variable([3.0, 4.0], dtype=dtype)
         grads0 = tf.constant([0.1, 0.1], dtype=dtype)
         grads1 = tf.constant([0.01, 0.01], dtype=dtype)
         optimizer = utils.LARSOptimizer(3.0)
         lars_op = optimizer.apply_gradients(
             zip([grads0, grads1], [var0, var1]))
         tf.global_variables_initializer().run()
         # Fetch params to validate initial values
         self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var0))
         self.assertAllCloseAccordingToType([3.0, 4.0], self.evaluate(var1))
         # Run 1 step of sgd
         lars_op.run()
         # Validate updated params
         self.assertAllCloseAccordingToType([
             1.0 - 3.0 * (0.001 * (np.sqrt(5.) / np.sqrt(2.))), 2.0 - 3.0 *
             (0.001 * (np.sqrt(5.) / np.sqrt(2.)))
         ], self.evaluate(var0))
         self.assertAllCloseAccordingToType([
             3.0 - 3.0 * (0.001 * (5. / np.sqrt(2.))), 4.0 - 3.0 *
             (0.001 * (5. / np.sqrt(2.)))
         ], self.evaluate(var1))
         self.assertEmpty(list(optimizer.variables()))
Exemplo n.º 3
0
 def testGradWrtRef(self, dtype):
     with self.cached_session():
         opt = utils.LARSOptimizer(3.0)
         values = [1.0, 3.0]
         vars_ = [tf.Variable([v], dtype=dtype) for v in values]
         grads_and_vars = opt.compute_gradients(vars_[0] + vars_[1], vars_)
         tf.global_variables_initializer().run()
         for grad, _ in grads_and_vars:
             self.assertAllCloseAccordingToType([1.0], self.evaluate(grad))