Exemplo n.º 1
0
 def test_levels_for_diff_computes_difference(self):
     raw = {}
     raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
     raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
     raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
     raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
     raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
     raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
     raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
     df = pd.DataFrame(raw)
     groups = ['groupA', 'groupB', 'groupC']
     test_viz = viz.PartitionViz(Mock(), {})
     time_op = 'point_diff'
     levels = test_viz.levels_for_diff(time_op, groups, df)
     expected = {
         'metric1': 6,
         'metric2': 60,
         'metric3': 600,
     }
     self.assertEqual(expected, levels[0].to_dict())
     expected = {
         'metric1': {'a1': 2, 'b1': 2, 'c1': 2},
         'metric2': {'a1': 20, 'b1': 20, 'c1': 20},
         'metric3': {'a1': 200, 'b1': 200, 'c1': 200},
     }
     self.assertEqual(expected, levels[1].to_dict())
     self.assertEqual(4, len(levels))
     self.assertEqual(['groupA', 'groupB', 'groupC'], levels[3].index.names)
Exemplo n.º 2
0
    def test_levels_for_time_calls_process_data_and_drops_cols(self):
        raw = {}
        raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
        raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
        raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
        raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
        raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
        raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
        raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
        df = pd.DataFrame(raw)
        groups = ['groupA', 'groupB', 'groupC']
        test_viz = viz.PartitionViz(Mock(), {'groupby': groups})

        def return_args(df_drop, aggregate):
            return df_drop

        test_viz.process_data = Mock(side_effect=return_args)
        levels = test_viz.levels_for_time(groups, df)
        self.assertEqual(4, len(levels))
        cols = [DTTM_ALIAS, 'metric1', 'metric2', 'metric3']
        self.assertEqual(sorted(cols), sorted(levels[0].columns.tolist()))
        cols += ['groupA']
        self.assertEqual(sorted(cols), sorted(levels[1].columns.tolist()))
        cols += ['groupB']
        self.assertEqual(sorted(cols), sorted(levels[2].columns.tolist()))
        cols += ['groupC']
        self.assertEqual(sorted(cols), sorted(levels[3].columns.tolist()))
        self.assertEqual(4, len(test_viz.process_data.mock_calls))
Exemplo n.º 3
0
 def test_nest_procs_returns_hierarchy(self):
     raw = {}
     raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
     raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"]
     raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"]
     raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"]
     raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
     raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
     raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
     df = pd.DataFrame(raw)
     test_viz = viz.PartitionViz(Mock(), {})
     groups = ["groupA", "groupB", "groupC"]
     metrics = ["metric1", "metric2", "metric3"]
     procs = {}
     for i in range(0, 4):
         df_drop = df.drop(groups[i:], 1)
         pivot = df_drop.pivot_table(
             index=DTTM_ALIAS, columns=groups[:i], values=metrics
         )
         procs[i] = pivot
     nest = test_viz.nest_procs(procs)
     self.assertEqual(3, len(nest))
     for i in range(0, 3):
         self.assertEqual("metric" + str(i + 1), nest[i]["name"])
         self.assertEqual(None, nest[i].get("val"))
     self.assertEqual(3, len(nest[0]["children"]))
     self.assertEqual(3, len(nest[0]["children"][0]["children"]))
     self.assertEqual(1, len(nest[0]["children"][0]["children"][0]["children"]))
     self.assertEqual(
         1, len(nest[0]["children"][0]["children"][0]["children"][0]["children"])
     )
Exemplo n.º 4
0
    def test_levels_for_time_calls_process_data_and_drops_cols(self):
        raw = {}
        raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
        raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"]
        raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"]
        raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"]
        raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
        raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
        raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
        df = pd.DataFrame(raw)
        groups = ["groupA", "groupB", "groupC"]
        test_viz = viz.PartitionViz(Mock(), {"groupby": groups})

        def return_args(df_drop, aggregate):
            return df_drop

        test_viz.process_data = Mock(side_effect=return_args)
        levels = test_viz.levels_for_time(groups, df)
        self.assertEqual(4, len(levels))
        cols = [DTTM_ALIAS, "metric1", "metric2", "metric3"]
        self.assertEqual(sorted(cols), sorted(levels[0].columns.tolist()))
        cols += ["groupA"]
        self.assertEqual(sorted(cols), sorted(levels[1].columns.tolist()))
        cols += ["groupB"]
        self.assertEqual(sorted(cols), sorted(levels[2].columns.tolist()))
        cols += ["groupC"]
        self.assertEqual(sorted(cols), sorted(levels[3].columns.tolist()))
        self.assertEqual(4, len(test_viz.process_data.mock_calls))
Exemplo n.º 5
0
 def test_nest_procs_returns_hierarchy(self):
     raw = {}
     raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
     raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
     raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
     raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
     raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
     raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
     raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
     df = pd.DataFrame(raw)
     test_viz = viz.PartitionViz(Mock(), {})
     groups = ['groupA', 'groupB', 'groupC']
     metrics = ['metric1', 'metric2', 'metric3']
     procs = {}
     for i in range(0, 4):
         df_drop = df.drop(groups[i:], 1)
         pivot = df_drop.pivot_table(
             index=DTTM_ALIAS,
             columns=groups[:i],
             values=metrics,
         )
         procs[i] = pivot
     nest = test_viz.nest_procs(procs)
     self.assertEqual(3, len(nest))
     for i in range(0, 3):
         self.assertEqual('metric' + str(i + 1), nest[i]['name'])
         self.assertEqual(None, nest[i].get('val'))
     self.assertEqual(3, len(nest[0]['children']))
     self.assertEqual(3, len(nest[0]['children'][0]['children']))
     self.assertEqual(
         1, len(nest[0]['children'][0]['children'][0]['children']))
     self.assertEqual(
         1,
         len(nest[0]['children'][0]['children'][0]['children'][0]
             ['children']))
Exemplo n.º 6
0
 def test_levels_for_computes_levels(self):
     raw = {}
     raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
     raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
     raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
     raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
     raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
     raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
     raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
     df = pd.DataFrame(raw)
     groups = ['groupA', 'groupB', 'groupC']
     time_op = 'agg_sum'
     test_viz = viz.PartitionViz(Mock(), {})
     levels = test_viz.levels_for(time_op, groups, df)
     self.assertEqual(4, len(levels))
     expected = {
         DTTM_ALIAS: 1800,
         'metric1': 45,
         'metric2': 450,
         'metric3': 4500,
     }
     self.assertEqual(expected, levels[0].to_dict())
     expected = {
         DTTM_ALIAS: {'a1': 600, 'b1': 600, 'c1': 600},
         'metric1': {'a1': 6, 'b1': 15, 'c1': 24},
         'metric2': {'a1': 60, 'b1': 150, 'c1': 240},
         'metric3': {'a1': 600, 'b1': 1500, 'c1': 2400},
     }
     self.assertEqual(expected, levels[1].to_dict())
     self.assertEqual(['groupA', 'groupB'], levels[2].index.names)
     self.assertEqual(
         ['groupA', 'groupB', 'groupC'],
         levels[3].index.names,
     )
     time_op = 'agg_mean'
     levels = test_viz.levels_for(time_op, groups, df)
     self.assertEqual(4, len(levels))
     expected = {
         DTTM_ALIAS: 200.0,
         'metric1': 5.0,
         'metric2': 50.0,
         'metric3': 500.0,
     }
     self.assertEqual(expected, levels[0].to_dict())
     expected = {
         DTTM_ALIAS: {'a1': 200, 'c1': 200, 'b1': 200},
         'metric1': {'a1': 2, 'b1': 5, 'c1': 8},
         'metric2': {'a1': 20, 'b1': 50, 'c1': 80},
         'metric3': {'a1': 200, 'b1': 500, 'c1': 800},
     }
     self.assertEqual(expected, levels[1].to_dict())
     self.assertEqual(['groupA', 'groupB'], levels[2].index.names)
     self.assertEqual(
         ['groupA', 'groupB', 'groupC'],
         levels[3].index.names,
     )
Exemplo n.º 7
0
 def test_query_obj_time_series_option(self, super_query_obj):
     datasource = Mock()
     form_data = {}
     test_viz = viz.PartitionViz(datasource, form_data)
     super_query_obj.return_value = {}
     query_obj = test_viz.query_obj()
     self.assertFalse(query_obj['is_timeseries'])
     test_viz.form_data['time_series_option'] = 'agg_sum'
     query_obj = test_viz.query_obj()
     self.assertTrue(query_obj['is_timeseries'])
Exemplo n.º 8
0
 def test_query_obj_time_series_option(self, super_query_obj):
     datasource = self.get_datasource_mock()
     form_data = {}
     test_viz = viz.PartitionViz(datasource, form_data)
     super_query_obj.return_value = {}
     query_obj = test_viz.query_obj()
     self.assertFalse(query_obj["is_timeseries"])
     test_viz.form_data["time_series_option"] = "agg_sum"
     query_obj = test_viz.query_obj()
     self.assertTrue(query_obj["is_timeseries"])
Exemplo n.º 9
0
 def test_levels_for_computes_levels(self):
     raw = {}
     raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
     raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"]
     raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"]
     raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"]
     raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
     raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
     raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
     df = pd.DataFrame(raw)
     groups = ["groupA", "groupB", "groupC"]
     time_op = "agg_sum"
     test_viz = viz.PartitionViz(Mock(), {})
     levels = test_viz.levels_for(time_op, groups, df)
     self.assertEqual(4, len(levels))
     expected = {DTTM_ALIAS: 1800, "metric1": 45, "metric2": 450, "metric3": 4500}
     self.assertEqual(expected, levels[0].to_dict())
     expected = {
         DTTM_ALIAS: {"a1": 600, "b1": 600, "c1": 600},
         "metric1": {"a1": 6, "b1": 15, "c1": 24},
         "metric2": {"a1": 60, "b1": 150, "c1": 240},
         "metric3": {"a1": 600, "b1": 1500, "c1": 2400},
     }
     self.assertEqual(expected, levels[1].to_dict())
     self.assertEqual(["groupA", "groupB"], levels[2].index.names)
     self.assertEqual(["groupA", "groupB", "groupC"], levels[3].index.names)
     time_op = "agg_mean"
     levels = test_viz.levels_for(time_op, groups, df)
     self.assertEqual(4, len(levels))
     expected = {
         DTTM_ALIAS: 200.0,
         "metric1": 5.0,
         "metric2": 50.0,
         "metric3": 500.0,
     }
     self.assertEqual(expected, levels[0].to_dict())
     expected = {
         DTTM_ALIAS: {"a1": 200, "c1": 200, "b1": 200},
         "metric1": {"a1": 2, "b1": 5, "c1": 8},
         "metric2": {"a1": 20, "b1": 50, "c1": 80},
         "metric3": {"a1": 200, "b1": 500, "c1": 800},
     }
     self.assertEqual(expected, levels[1].to_dict())
     self.assertEqual(["groupA", "groupB"], levels[2].index.names)
     self.assertEqual(["groupA", "groupB", "groupC"], levels[3].index.names)
Exemplo n.º 10
0
 def test_nest_values_returns_hierarchy(self):
     raw = {}
     raw['groupA'] = ['a1', 'a1', 'a1', 'b1', 'b1', 'b1', 'c1', 'c1', 'c1']
     raw['groupB'] = ['a2', 'a2', 'a2', 'b2', 'b2', 'b2', 'c2', 'c2', 'c2']
     raw['groupC'] = ['a3', 'a3', 'a3', 'b3', 'b3', 'b3', 'c3', 'c3', 'c3']
     raw['metric1'] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
     raw['metric2'] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
     raw['metric3'] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
     df = pd.DataFrame(raw)
     test_viz = viz.PartitionViz(Mock(), {})
     groups = ['groupA', 'groupB', 'groupC']
     levels = test_viz.levels_for('agg_sum', groups, df)
     nest = test_viz.nest_values(levels)
     self.assertEqual(3, len(nest))
     for i in range(0, 3):
         self.assertEqual('metric' + str(i + 1), nest[i]['name'])
     self.assertEqual(3, len(nest[0]['children']))
     self.assertEqual(1, len(nest[0]['children'][0]['children']))
     self.assertEqual(1, len(nest[0]['children'][0]['children'][0]['children']))
Exemplo n.º 11
0
 def test_nest_values_returns_hierarchy(self):
     raw = {}
     raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"]
     raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"]
     raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"]
     raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
     raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
     raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
     df = pd.DataFrame(raw)
     test_viz = viz.PartitionViz(Mock(), {})
     groups = ["groupA", "groupB", "groupC"]
     levels = test_viz.levels_for("agg_sum", groups, df)
     nest = test_viz.nest_values(levels)
     self.assertEqual(3, len(nest))
     for i in range(0, 3):
         self.assertEqual("metric" + str(i + 1), nest[i]["name"])
     self.assertEqual(3, len(nest[0]["children"]))
     self.assertEqual(1, len(nest[0]["children"][0]["children"]))
     self.assertEqual(1, len(nest[0]["children"][0]["children"][0]["children"]))
Exemplo n.º 12
0
 def test_get_data_calls_correct_method(self):
     test_viz = viz.PartitionViz(Mock(), {})
     df = Mock()
     with self.assertRaises(ValueError):
         test_viz.get_data(df)
     test_viz.levels_for = Mock(return_value=1)
     test_viz.nest_values = Mock(return_value=1)
     test_viz.form_data['groupby'] = ['groups']
     test_viz.form_data['time_series_option'] = 'not_time'
     test_viz.get_data(df)
     self.assertEqual('agg_sum', test_viz.levels_for.mock_calls[0][1][0])
     test_viz.form_data['time_series_option'] = 'agg_sum'
     test_viz.get_data(df)
     self.assertEqual('agg_sum', test_viz.levels_for.mock_calls[1][1][0])
     test_viz.form_data['time_series_option'] = 'agg_mean'
     test_viz.get_data(df)
     self.assertEqual('agg_mean', test_viz.levels_for.mock_calls[2][1][0])
     test_viz.form_data['time_series_option'] = 'point_diff'
     test_viz.levels_for_diff = Mock(return_value=1)
     test_viz.get_data(df)
     self.assertEqual('point_diff',
                      test_viz.levels_for_diff.mock_calls[0][1][0])
     test_viz.form_data['time_series_option'] = 'point_percent'
     test_viz.get_data(df)
     self.assertEqual('point_percent',
                      test_viz.levels_for_diff.mock_calls[1][1][0])
     test_viz.form_data['time_series_option'] = 'point_factor'
     test_viz.get_data(df)
     self.assertEqual('point_factor',
                      test_viz.levels_for_diff.mock_calls[2][1][0])
     test_viz.levels_for_time = Mock(return_value=1)
     test_viz.nest_procs = Mock(return_value=1)
     test_viz.form_data['time_series_option'] = 'adv_anal'
     test_viz.get_data(df)
     self.assertEqual(1, len(test_viz.levels_for_time.mock_calls))
     self.assertEqual(1, len(test_viz.nest_procs.mock_calls))
     test_viz.form_data['time_series_option'] = 'time_series'
     test_viz.get_data(df)
     self.assertEqual('agg_sum', test_viz.levels_for.mock_calls[3][1][0])
     self.assertEqual(7, len(test_viz.nest_values.mock_calls))
Exemplo n.º 13
0
 def test_get_data_calls_correct_method(self):
     test_viz = viz.PartitionViz(Mock(), {})
     df = Mock()
     with self.assertRaises(ValueError):
         test_viz.get_data(df)
     test_viz.levels_for = Mock(return_value=1)
     test_viz.nest_values = Mock(return_value=1)
     test_viz.form_data["groupby"] = ["groups"]
     test_viz.form_data["time_series_option"] = "not_time"
     test_viz.get_data(df)
     self.assertEqual("agg_sum", test_viz.levels_for.mock_calls[0][1][0])
     test_viz.form_data["time_series_option"] = "agg_sum"
     test_viz.get_data(df)
     self.assertEqual("agg_sum", test_viz.levels_for.mock_calls[1][1][0])
     test_viz.form_data["time_series_option"] = "agg_mean"
     test_viz.get_data(df)
     self.assertEqual("agg_mean", test_viz.levels_for.mock_calls[2][1][0])
     test_viz.form_data["time_series_option"] = "point_diff"
     test_viz.levels_for_diff = Mock(return_value=1)
     test_viz.get_data(df)
     self.assertEqual("point_diff",
                      test_viz.levels_for_diff.mock_calls[0][1][0])
     test_viz.form_data["time_series_option"] = "point_percent"
     test_viz.get_data(df)
     self.assertEqual("point_percent",
                      test_viz.levels_for_diff.mock_calls[1][1][0])
     test_viz.form_data["time_series_option"] = "point_factor"
     test_viz.get_data(df)
     self.assertEqual("point_factor",
                      test_viz.levels_for_diff.mock_calls[2][1][0])
     test_viz.levels_for_time = Mock(return_value=1)
     test_viz.nest_procs = Mock(return_value=1)
     test_viz.form_data["time_series_option"] = "adv_anal"
     test_viz.get_data(df)
     self.assertEqual(1, len(test_viz.levels_for_time.mock_calls))
     self.assertEqual(1, len(test_viz.nest_procs.mock_calls))
     test_viz.form_data["time_series_option"] = "time_series"
     test_viz.get_data(df)
     self.assertEqual("agg_sum", test_viz.levels_for.mock_calls[3][1][0])
     self.assertEqual(7, len(test_viz.nest_values.mock_calls))
Exemplo n.º 14
0
 def test_levels_for_diff_computes_difference(self):
     raw = {}
     raw[DTTM_ALIAS] = [100, 200, 300, 100, 200, 300, 100, 200, 300]
     raw["groupA"] = ["a1", "a1", "a1", "b1", "b1", "b1", "c1", "c1", "c1"]
     raw["groupB"] = ["a2", "a2", "a2", "b2", "b2", "b2", "c2", "c2", "c2"]
     raw["groupC"] = ["a3", "a3", "a3", "b3", "b3", "b3", "c3", "c3", "c3"]
     raw["metric1"] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
     raw["metric2"] = [10, 20, 30, 40, 50, 60, 70, 80, 90]
     raw["metric3"] = [100, 200, 300, 400, 500, 600, 700, 800, 900]
     df = pd.DataFrame(raw)
     groups = ["groupA", "groupB", "groupC"]
     test_viz = viz.PartitionViz(Mock(), {})
     time_op = "point_diff"
     levels = test_viz.levels_for_diff(time_op, groups, df)
     expected = {"metric1": 6, "metric2": 60, "metric3": 600}
     self.assertEqual(expected, levels[0].to_dict())
     expected = {
         "metric1": {"a1": 2, "b1": 2, "c1": 2},
         "metric2": {"a1": 20, "b1": 20, "c1": 20},
         "metric3": {"a1": 200, "b1": 200, "c1": 200},
     }
     self.assertEqual(expected, levels[1].to_dict())
     self.assertEqual(4, len(levels))
     self.assertEqual(["groupA", "groupB", "groupC"], levels[3].index.names)