Exemplo n.º 1
0
    def test_fit_predict(self):
        metric = Metric({"name": "logloss"})
        params = {"ml_task": "binary_classification"}
        rf = RandomForestAlgorithm(params)

        rf.fit(self.X, self.y)
        y_predicted = rf.predict(self.X)
        self.assertTrue(metric(self.y, y_predicted) < 1.0)
Exemplo n.º 2
0
    def test_fit_predict(self):
        metric = Metric({"name": "logloss"})
        params = {"trees_in_step": 50}
        rf = RandomForestAlgorithm(params)

        rf.fit(self.X, self.y)
        y_predicted = rf.predict(self.X)
        self.assertTrue(metric(self.y, y_predicted) < 0.6)
Exemplo n.º 3
0
 def test_reproduce_fit(self):
     metric = Metric({"name": "logloss"})
     params = {"trees_in_step": 1, "seed": 1, "ml_task": "binary_classification"}
     prev_loss = None
     for _ in range(3):
         model = RandomForestAlgorithm(params)
         model.fit(self.X, self.y)
         y_predicted = model.predict(self.X)
         loss = metric(self.y, y_predicted)
         if prev_loss is not None:
             assert_almost_equal(prev_loss, loss)
         prev_loss = loss
Exemplo n.º 4
0
    def test_copy(self):
        metric = Metric({"name": "logloss"})
        rf = RandomForestAlgorithm({"ml_task": "binary_classification"})
        rf.fit(self.X, self.y)
        y_predicted = rf.predict(self.X)
        loss = metric(self.y, y_predicted)

        rf2 = RandomForestAlgorithm({"ml_task": "binary_classification"})
        rf2 = rf.copy()
        self.assertEqual(type(rf), type(rf2))
        y_predicted = rf2.predict(self.X)
        loss2 = metric(self.y, y_predicted)
        assert_almost_equal(loss, loss2)
Exemplo n.º 5
0
    def test_save_and_load(self):
        metric = Metric({"name": "logloss"})
        rf = RandomForestAlgorithm({"ml_task": "binary_classification"})
        rf.fit(self.X, self.y)
        y_predicted = rf.predict(self.X)
        loss = metric(self.y, y_predicted)

        with tempfile.NamedTemporaryFile() as tmp:

            rf.save(tmp.name)
            rf2 = RandomForestAlgorithm({"ml_task": "binary_classification"})
            rf2.load(tmp.name)

            y_predicted = rf2.predict(self.X)
            loss2 = metric(self.y, y_predicted)
            assert_almost_equal(loss, loss2)
    def test_save_and_load(self):
        metric = Metric({"name": "logloss"})
        rf = RandomForestAlgorithm({"ml_task": "binary_classification"})
        rf.fit(self.X, self.y)
        y_predicted = rf.predict(self.X)
        loss = metric(self.y, y_predicted)

        filename = os.path.join(tempfile.gettempdir(), os.urandom(12).hex())

        rf.save(filename)
        rf2 = RandomForestAlgorithm({"ml_task": "binary_classification"})
        rf2.load(filename)
        #Finished with the file, delete it
        os.remove(filename)

        y_predicted = rf2.predict(self.X)
        loss2 = metric(self.y, y_predicted)
        assert_almost_equal(loss, loss2)
 def test_is_fitted(self):
     model = RandomForestAlgorithm({"ml_task": "binary_classification"})
     self.assertFalse(model.is_fitted())
     model.fit(self.X, self.y)
     self.assertTrue(model.is_fitted())