Exemplo n.º 1
0
    def train_model(self, params):

        model_path = os.path.join(self._results_path, params["name"])

        early_stop = EarlyStopping(
            {"metric": {"name": self._optimize_metric}, "log_to_dir": model_path}
        )
        time_constraint = TimeConstraint({"train_seconds_time_limit": self._time_limit})
        mf = ModelFramework(params, callbacks=[early_stop, time_constraint])

        if self._enough_time_to_train(mf.get_type()):

            logger.info(
                f"Train model #{len(self._models)+1} / Model name: {params['name']}"
            )

            try:
                os.mkdir(model_path)
            except Exception as e:
                raise AutoMLException(f"Cannot create directory {model_path}")

            mf.train()  # {"train": {"X": X, "y": y}})

            mf.save(model_path)
            self._model_paths += [model_path]

            self.keep_model(mf)

        else:
            logger.info(
                f"Cannot check more models of {mf.get_type()} because of time constraint"
            )
Exemplo n.º 2
0
    def train_model(self, params):

        # do we have enough time to train?
        # if not, skip
        if not self._time_ctrl.enough_time(
            params["learner"]["model_type"], self._fit_level
        ):
            logger.info(f"Cannot train {params['name']} because of the time constraint")
            return False

        # let's create directory to log all training artifacts
        model_path = os.path.join(self._results_path, params["name"])
        self.create_dir(model_path)

        # prepare callbacks
        early_stop = EarlyStopping(
            {"metric": {"name": self._optimize_metric}, "log_to_dir": model_path}
        )

        learner_time_constraint = LearnerTimeConstraint(
            {
                "learner_time_limit": self._time_ctrl.learner_time_limit(
                    params["learner"]["model_type"],
                    self._fit_level,
                    self._validation.get("k_folds", 1.0),
                ),
                "min_steps": params["additional"].get("min_steps"),
            }
        )

        total_time_constraint = TotalTimeConstraint(
            {
                "total_time_limit": self._total_time_limit
                if self._model_time_limit is None
                else None,
                "total_time_start": self._start_time,
            }
        )

        # create model framework
        mf = ModelFramework(
            params,
            callbacks=[early_stop, learner_time_constraint, total_time_constraint],
        )

        # start training
        logger.info(
            f"Train model #{len(self._models)+1} / Model name: {params['name']}"
        )
        mf.train(model_path)

        # save the model
        mf.save(model_path)

        # and keep info about the model
        self.keep_model(mf, model_path)
        return True
Exemplo n.º 3
0
    def train_model(self, params):

        model_path = os.path.join(self._results_path, params["name"])
        early_stop = EarlyStopping({
            "metric": {
                "name": self._optimize_metric
            },
            "log_to_dir": model_path
        })

        learner_time_constraint = LearnerTimeConstraint({
            "learner_time_limit":
            self._get_learner_time_limit(
                params["learner"]["model_type"]),  # self._time_limit,
            "min_steps":
            params["additional"].get("min_steps"),
        })

        total_time_constraint = TotalTimeConstraint({
            "total_time_limit":
            self._total_time_limit if self._model_time_limit is None else None,
            "total_time_start":
            self._start_time,
        })

        mf = ModelFramework(
            params,
            callbacks=[
                early_stop, learner_time_constraint, total_time_constraint
            ],
        )

        if self._enough_time_to_train(mf.get_type()):

            # self.verbose_print(params["name"] + " training start ...")
            logger.info(
                f"Train model #{len(self._models)+1} / Model name: {params['name']}"
            )

            try:
                os.mkdir(model_path)
            except Exception as e:
                raise AutoMLException(f"Cannot create directory {model_path}")

            mf.train(model_path)

            mf.save(model_path)
            self._model_paths += [model_path]

            self.keep_model(mf)

            # save the best one in the case the training will be interrupted
            self.select_and_save_best()
        else:
            logger.info(
                f"Cannot train {mf.get_type()} because of time constraint")