Exemplo n.º 1
0
def display_coactivation(brain,
                         niftis,
                         colormap=None,
                         reduce_alpha_step=0,
                         **kwargs):
    args = {'thresh': 0.001, 'alpha': 0.85, 'colorbar': False, 'min': 0}
    if kwargs != {}:
        args.update(kwargs)

    if colormap is None:
        colormap = sns.color_palette('Set1', len(niftis))

    for i, image in enumerate(niftis):
        with tempfile.NamedTemporaryFile(suffix='.nii.gz') as f:
            nib.save(image, f.name)

            l_roi_surf = project_volume_data(f.name,
                                             "lh",
                                             subject_id="fsaverage",
                                             smooth_fwhm=2)
            r_roi_surf = project_volume_data(f.name,
                                             "rh",
                                             subject_id="fsaverage",
                                             smooth_fwhm=2)

            args['remove_existing'] = i == 0

            color = sns.light_palette(colormap[i], n_colors=10)[5:]
            if l_roi_surf.sum() > 0:
                brain.add_data(l_roi_surf, hemi='lh', colormap=color, **args)
            if r_roi_surf.sum() > 0:
                brain.add_data(r_roi_surf, hemi='rh', colormap=color, **args)

            args['alpha'] -= reduce_alpha_step
def project_surface(result_file, hemi):
    '''
    VERY helpfully taken from the Pysurfer example gallery
    http://pysurfer.github.io/examples/plot_fmri_activation_volume.html
    
    Parameters
    ----------
    result_file : str
                  3D volume that has continuous values
                  eg: thresh_zstat1.nii.gz
    hemi        : {'lh', 'rh'}
                  string indicating left or right hemisphere
                  
    Returns
    ----------
    zstat       : pysurfer surface
                  Surface projection of result_file to fsaverage
                  brain
    '''
    import os
    from surfer import project_volume_data

    reg_file = os.path.join(os.environ["FREESURFER_HOME"],
                            "average/mni152.register.dat")
    zstat = project_volume_data(result_file, hemi, reg_file)

    return zstat
def project_surface(result_file, hemi):

    '''
    VERY helpfully taken from the Pysurfer example gallery
    http://pysurfer.github.io/examples/plot_fmri_activation_volume.html
    
    Parameters
    ----------
    result_file : str
                  3D volume that has continuous values
                  eg: thresh_zstat1.nii.gz
    hemi        : {'lh', 'rh'}
                  string indicating left or right hemisphere
                  
    Returns
    ----------
    zstat       : pysurfer surface
                  Surface projection of result_file to fsaverage
                  brain
    '''
    import os
    from surfer import project_volume_data

    reg_file = os.path.join(os.environ["FREESURFER_HOME"],
                            "average/mni152.register.dat")
    zstat = project_volume_data(result_file, hemi, reg_file)

    return zstat
Exemplo n.º 4
0
def make_surface_mask(img, thresh=None, hemi='lh', use_nans=True):
    """Convert ROI mask to surface array"""
    surface_data = project_volume_data(img, 'lh', subject_id='fsaverage')

    if use_nans:
        mask = np.where(surface_data > thresh, 1, np.nan)
    else:
        mask = np.where(surface_data > thresh, 1, 0)

    return mask
Exemplo n.º 5
0
def vis_ers_comp(group=None,phase=None,surf=None,cmap=None,split='lh'):
    mri_file = f'/mnt/c/Users/ACH/Desktop/ers_comps/{group}_{phase}/{group}_{phase}_ClusterEffEst.nii.gz' #find the file containing stats
    surf_data_lh = project_volume_data(mri_file, "lh", reg_file, projarg=[0, 1, .01], smooth_fwhm=1) #project to lh

    _max = .55 if phase == 'acquisition' else .3
    for view in ['med','lat']: #lateral and medial views
        brain = Brain('MNI2009c', split, surf, cortex='low_contrast',size=1000,
                        views=view, background='white', foreground=None) #initialize the brain object
        
        brain.add_data(surf_data_lh, 0, _max, center=None, hemi='lh', thresh=None,
             colorbar=False, colormap=cmap, transparent=True) #add lh data
        
        for vert, color in zip([115262,135014],['white','black']): #add focal ROIs
            brain.add_foci(vert,coords_as_verts=True,color=color,alpha=1)

        fname = f'/mnt/c/Users/ACH/Documents/gPPI/paper/pysurfer/{group}_{phase}_{view}.png'
        os.system(f'rm {fname}')
        brain.save_image(fname,antialiased=True)
"""
import os
from surfer import Brain, project_volume_data

print(__doc__)

"""Bring up the visualization"""
brain = Brain("fsaverage", "split", "inflated",
              views=['lat', 'med'], background="white")

"""Project the volume file and return as an array"""
mri_file = "example_data/resting_corr.nii.gz"
reg_file = os.path.join(os.environ["FREESURFER_HOME"],
                        "average/mni152.register.dat")
surf_data_lh = project_volume_data(mri_file, "lh", reg_file)
surf_data_rh = project_volume_data(mri_file, "rh", reg_file)

"""
You can pass this array to the add_overlay method for a typical activation
overlay (with thresholding, etc.).
"""
brain.add_overlay(surf_data_lh, min=.3, max=.7, name="ang_corr_lh", hemi='lh')
brain.add_overlay(surf_data_rh, min=.3, max=.7, name="ang_corr_rh", hemi='rh')

"""
You can also pass it to add_data for more control
over the visualization. Here we'll plot the whole
range of correlations
"""
for overlay in brain.overlays_dict["ang_corr_lh"]:
def project_volume(work_dir, subject, do_bbr=True):
    # first find the session where T1w and T2w files could be
    ref_file = sorted(
        glob.glob(
            os.path.join(work_dir, subject, 'ses-*', 'anat',
                         '*-highres_T1w.nii*')))[-1]
    # session = ref_file.split('/')[-3]
    anat_dir = os.path.dirname(ref_file)

    write_dir = os.path.join(anat_dir, 'analysis')
    if not os.path.exists(write_dir):
        os.mkdir(write_dir)
    os.environ['SUBJECTS_DIR'] = anat_dir
    data = {}
    for modality in ['T1w', 'T2w']:
        if modality == ['T1w']:
            image = ref_file
        else:
            image = sorted(
                glob.glob(
                    os.path.join(work_dir, subject, 'ses-*', 'anat',
                                 '*-highres_T2w.nii*')))[-1]

        image_ = closing(image)

        # --------------------------------------------------------------------
        # run the projection using freesurfer
        print("image", image)
        basename = os.path.basename(image).split('.')[0]

        if modality == 'T1w':
            bbreg = BBRegister(subject_id=subject,
                               source_file=image,
                               init='header',
                               contrast_type='t1')
        else:
            # use BBR registration to finesse the coregistration
            bbreg = BBRegister(subject_id=subject,
                               source_file=image,
                               init='header',
                               contrast_type='t2')

        regheader = os.path.join(anat_dir,
                                 basename + '_bbreg_%s.dat' % subject)
        bbreg.run()

        if 1:
            # output names
            # the .gii files will be put in the same directory as the input
            left_tex = os.path.join(write_dir, basename + '_lh.gii')
            right_tex = os.path.join(write_dir, basename + '_rh.gii')

            # run freesrufer command for projection
            os.system(
                '$FREESURFER_HOME/bin/mri_vol2surf --src %s --o %s '
                '--out_type gii --srcreg %s --hemi lh --projfrac-avg 0 1 0.1' %
                (image_, left_tex, regheader))

            os.system(
                '$FREESURFER_HOME/bin/mri_vol2surf --src %s --o %s '
                '--out_type gii --srcreg %s --hemi rh --projfrac-avg 0 1 0.1' %
                (image_, right_tex, regheader))

            # resample to fsaverage
            left_smooth_tex = os.path.join(write_dir,
                                           basename + '_fsaverage_lh.gii')
            right_smooth_tex = os.path.join(write_dir,
                                            basename + '_fsaverage_rh.gii')

            os.system('$FREESURFER_HOME/bin/mri_surf2surf --srcsubject %s '
                      '--srcsurfval %s --trgsurfval %s --trgsubject ico '
                      '--trgicoorder 7 --hemi lh' %
                      (subject, left_tex, left_smooth_tex))
            os.system('$FREESURFER_HOME/bin/mri_surf2surf --srcsubject %s '
                      '--srcsurfval %s --trgsubject ico --trgicoorder 7 '
                      '--trgsurfval %s --hemi rh' %
                      (subject, right_tex, right_smooth_tex))
            data[modality] = {
                'lh': nib.load(left_smooth_tex).darrays[0].data,
                'rh': nib.load(right_smooth_tex).darrays[0].data
            }
        else:
            from surfer import project_volume_data
            data[modality] = {}
            for hemi in ['lh', 'rh']:
                data_ = project_volume_data(image_,
                                            hemi,
                                            regheader,
                                            projarg=[0, 1., .1],
                                            smooth_fwhm=0)
                data[modality][hemi] = data_

    # reset subject_dir to set fsaverage
    os.environ['SUBJECTS_DIR'] = os.path.join(work_dir, subject, 'ses-00',
                                              'anat')
    for hemi in ['lh', 'rh']:
        ratio = data['T1w'][hemi] / data['T2w'][hemi]
        from nibabel.gifti import write, GiftiImage, GiftiDataArray as gda
        file_ratio = os.path.join(write_dir, 't1_t2_ratio_%s.gii' % hemi)
        write(GiftiImage(darrays=[gda(data=ratio.astype('float32'))]),
              file_ratio)
        """
Exemplo n.º 8
0
#os.environ['SUBJECTS_DIR'] = expanduser('/Volumes/rmasis/MemPal/data/BIDS/derivatives/freesurfer/')

os.environ['FREESURFER_HOME'] = expanduser('/Applications/freesurfer/')

# #reg_file = os.environ['FREESURFER_HOME']

os.environ['SUBJECTS_DIR'] = expanduser('/Applications/freesurfer/subjects')


#mri_file = '/Volumes/norman/rmasis/MemPal/analysis/PythonData/' + 'testMNIpathvideoNii.nii.gz'
mri_file =  '/Volumes/norman/rmasis/MemPal/analysis/PythonData/troubleshoot/' + 'PV1_isc' + '.nii.gz'

reg_file = '/Applications/freesurfer/average/mni152.register.dat'

data = nib.load(mri_file)

brain = Brain(subject_id, hemi, surf, background="white")

minval = 0.0 #np.min(data.get_data())
maxval = np.max(data.get_data()) 

surf_data_lh = project_volume_data(mri_file,"lh", reg_file) #uses freesurfers mri_vol2surf
surf_data_rh = project_volume_data(mri_file,"rh", reg_file)

brain.add_overlay(surf_data_lh,min=minval,max=maxval,name="thirty_sec_lh", hemi='lh',sign="pos")
brain.add_overlay(surf_data_rh,min=minval,max=maxval,name="thirty_sec_rh", hemi='rh',sign="pos")

mlab.show()


                time=str(time), subid=subid))

############################################
# Visualize accuracy (for given subject)
############################################

from surfer import Brain, project_volume_data
tr_shift_test_list = [0, 2, 4, 6, 8, 10,
                      12]  # seconds to shift onset forward by

# for subid in subj_info.subid:
subid = 'ap101'
for time in tr_shift_test_list:
    brain = Brain(subid,
                  "split",
                  "inflated",
                  views=['lat', 'med', 'ven'],
                  background="white")
    volume_file = '/Volumes/group/awagner/sgagnon/AP/analysis/mvpa_raw/searchlight_test/sourcehit_time{time}_acc_{subid}.nii.gz'.format(
        time=str(time), subid=subid)

    for hemi in ['lh', 'rh']:
        zstat = project_volume_data(volume_file,
                                    hemi,
                                    subject_id=subid,
                                    smooth_fwhm=0.5)
        brain.add_overlay(zstat, hemi=hemi, min=.333)
    brain.save_image(
        '/Volumes/group/awagner/sgagnon/AP/analysis/mvpa_raw/searchlight_test/sourcehit_time{time}_acc_{subid}.png'
        .format(time=str(time), subid=subid))
"""
volume_file = "example_data/zstat.nii.gz"

"""
There are two options for specifying the registration between the volume and
the surface you want to plot on. The first is to give a path to a
Freesurfer-style linear transformation matrix that will align the statistical
volume with the Freesurfer anatomy.

Most of the time you will be plotting data that are in MNI152 space on the
fsaverage brain. For this case, Freesurfer actually ships a registration matrix
file to align your data with the surface.
"""
reg_file = os.path.join(os.environ["FREESURFER_HOME"],
                        "average/mni152.register.dat")
zstat = project_volume_data(volume_file, "lh", reg_file)

"""
Note that the contours of the fsaverage surface don't perfectly match the
MNI brain, so this will only approximate the location of your activation
(although it generally does a pretty good job). A more accurate way to
visualize data would be to run the MNI152 brain through the recon-all pipeline.

Alternatively, if your data are already in register with the Freesurfer
anatomy, you can provide project_volume_data with the subject ID, avoiding the
need to specify a registration file.

By default, 3mm of smoothing is applied on the surface to clean up the overlay a
bit, although the extent of smoothing can be controlled.
"""
zstat = project_volume_data(volume_file, "lh",
Exemplo n.º 11
0
    # cb2 = mpl.colorbar.ColorbarBase(ax[1], cmap=mpl.cm.Greens,
    #                                 norm=norm, orientation='horizontal')
    # cb1.set_label('CS+ - CS- reinstatement')
    # fig.show()


"""
This overlay represents resting-state correlations with a
seed in left angular gyrus. Let's plot that seed.
"""
seed_coords = (-45, -67, 36)
brain.add_foci(seed_coords, map_surface="white", hemi='lh')


'''
a priori rois for paper
'''
mri_file = f'{HOME}/Desktop/standard/vmPFC_mask.nii.gz'
surf_data_lh = project_volume_data(mri_file, "lh", reg_file, projarg=[0, 1, .5], smooth_fwhm=1)
surf_data_rh = project_volume_data(mri_file, "rh", reg_file, projarg=[0, 1, .5], smooth_fwhm=1)
minval = np.min([np.min(surf_data_lh[np.nonzero(surf_data_lh)]),np.min(surf_data_rh[np.nonzero(surf_data_rh)])])
    
for view in ['med','lat']:
    brain = Brain('fsaverage', 'split', surf, cortex='low_contrast',size=(400,400),
                    views=view, background='white', foreground=None)
    
    brain.add_data(surf_data_lh, 0, .5, center=None, hemi='lh', thresh=minval, colorbar=False, colormap=cmap)
    brain.add_data(surf_data_rh, 0, .5, center=None, hemi='rh',thresh=minval, colorbar=False, colormap=cmap)
        
    dACC_coords = (1, 21, 27)
    brain.add_foci(dACC_coords, map_surface='pial', hemi='rh',color='orange')
Exemplo n.º 12
0
def display_bilateral(brain,
                      nifti,
                      colormap=None,
                      spatial_mask=None,
                      level_mask=None,
                      discrete=True,
                      **kwargs):
    args = {
        'thresh': 0.001,
        'alpha': 0.33,
        'colorbar': False,
        'remove_existing': True,
        'min': 1
    }
    if kwargs != {}:
        args.update(kwargs)

    if spatial_mask is None:
        args['alpha'] = .8

    if colormap is None:
        n_clusters = int(nifti.get_data().max())
        colormap = sns.color_palette('husl', n_clusters)

    if level_mask is not None:
        nifti = deepcopy(nifti)
        data = nifti.get_data()
        unique = np.unique(data[data.nonzero()])

        for val in unique:
            if not val in level_mask:
                data[data == val] = float(0)

        unique = np.unique(data[data.nonzero()])
        colormap = [v for i, v in enumerate(colormap) if i + 1 in unique]

        compress_values(nifti.get_data())

    with tempfile.NamedTemporaryFile(suffix='.nii.gz') as f:
        nib.save(nifti, f.name)

        l_roi_surf = project_volume_data(f.name,
                                         "lh",
                                         subject_id="fsaverage",
                                         projsum='max',
                                         smooth_fwhm=0)
        r_roi_surf = project_volume_data(f.name,
                                         "rh",
                                         subject_id="fsaverage",
                                         projsum='max',
                                         smooth_fwhm=0)

        if discrete == True:
            l_cols = [colormap[int(c - 1)] for c in np.unique(l_roi_surf)[1:]]
            if len(l_cols) < 2:
                l_cols = l_cols + [(0, 0, 0)]
            r_cols = [colormap[int(c - 1)] for c in np.unique(r_roi_surf)[1:]]
            if len(r_cols) < 2:
                r_cols = r_cols + [(0, 0, 0)]
        else:
            l_cols = colormap
            r_cols = colormap

        brain.add_data(l_roi_surf, hemi='lh', colormap=colormap, **args)
        brain.add_data(r_roi_surf, hemi='rh', colormap=r_cols, **args)

    if spatial_mask is not None:
        spatial_masked_nifti = mask_nifti(nifti, spatial_mask)
        with tempfile.NamedTemporaryFile(suffix='.nii.gz') as f:
            nib.save(spatial_masked_nifti, f.name)

            args['remove_existing'] = False
            args['alpha'] = .7

            l_roi_surf = project_volume_data(f.name,
                                             "lh",
                                             subject_id="fsaverage",
                                             projsum='max',
                                             smooth_fwhm=0)
            r_roi_surf = project_volume_data(f.name,
                                             "rh",
                                             subject_id="fsaverage",
                                             projsum='max',
                                             smooth_fwhm=0)

            l_cols = [colormap[int(c - 1)] for c in np.unique(l_roi_surf)[1:]]
            if len(l_cols) < 2:
                l_cols = l_cols + [(0, 0, 0)]
            r_cols = [colormap[int(c - 1)] for c in np.unique(r_roi_surf)[1:]]
            if len(r_cols) < 2:
                r_cols = r_cols + [(0, 0, 0)]

            brain.add_data(l_roi_surf, hemi='lh', colormap=l_cols, **args)
            brain.add_data(r_roi_surf, hemi='rh', colormap=r_cols, **args)
Exemplo n.º 13
0
# load DMN ROI and plot with pysurfer

import os
from surfer import Brain, project_volume_data

print(__doc__)

brain = Brain("fsaverage", "lh", "inflated")
volume_file = '/Volumes/norman/amennen/prettymouth_fmriprep2/ROI/TOM_large_resampled_maskedbybrain.nii.gz'
reg_file = os.path.join(os.environ["FREESURFER_HOME"],
                        "average/mni152.register.dat")
zstat = project_volume_data(volume_file, "lh", reg_file).astype(bool)
brain.add_data(zstat, min=0, max=1,colormap="bone", alpha=.6, colorbar=False)
brain.show_view("medial")
Exemplo n.º 14
0
from coma.datasets import sample
data_path = sample.data_path()

subjects_dir = op.join(data_path, "subjects")
os.environ['SUBJECTS_DIR'] = subjects_dir

subject_id = "Bend1"
hemi = "lh"
surf = "pial"
bgcolor = 'w'

brain = Brain(subject_id, hemi, surf, config_opts={'background': bgcolor},
    subjects_dir=subjects_dir)
volume_file = op.abspath("example_fspet/corrected_pet_to_t1/_subject_id_Bend1/r_volume_MGRousset_flirt.nii")

pet = project_volume_data(volume_file, hemi,
                          subject_id=subject_id)

brain.add_data(pet, min=250, max=12000,
               colormap="jet", alpha=.6, colorbar=True)

image = brain.save_montage("Example_FDG-PET.png", ['l', 'd', 'm'], orientation='v')

brain.close()

###############################################################################
# View created image
import pylab as pl
fig = pl.figure(figsize=(5, 3), facecolor=bgcolor)
ax = pl.axes(frameon=False)
ax.imshow(image, origin='upper')
pl.draw()
Exemplo n.º 15
0
Get a path to the volume file.
"""
volume_file = "example_data/zstat.nii.gz"
"""
There are two options for specifying the registration between the volume and
the surface you want to plot on. The first is to give a path to a
Freesurfer-style linear transformation matrix that will align the statistical
volume with the Freesurfer anatomy.

Most of the time you will be plotting data that are in MNI152 space on the
fsaverage brain. For this case, Freesurfer actually ships a registration matrix
file to align your data with the surface.
"""
reg_file = os.path.join(os.environ["FREESURFER_HOME"],
                        "average/mni152.register.dat")
zstat = project_volume_data(volume_file, "lh", reg_file)
"""
Note that the contours of the fsaverage surface don't perfectly match the
MNI brain, so this will only approximate the location of your activation
(although it generally does a pretty good job). A more accurate way to
visualize data would be to run the MNI152 brain through the recon-all pipeline.

Alternatively, if your data are already in register with the Freesurfer
anatomy, you can provide project_volume_data with the subject ID, avoiding the
need to specify a registration file.

By default, 3mm of smoothing is applied on the surface to clean up the overlay
a bit, although the extent of smoothing can be controlled.
"""
zstat = project_volume_data(volume_file,
                            "lh",
                  title='Z=' + str(z),
                  cortex='low_contrast',
                  views=['lat', 'med'],
                  background="white")
    """
    Get a path to the overlay file.
    """
    mri_file = '/Users/jamalw/Desktop/PNI/music_event_structures/data/best_k_map_z' + str(
        z) + '.nii.gz'
    reg_file = '/Applications/freesurfer/average/mni152.register.dat'

    data = nib.load(mri_file)
    minval = 0
    maxval = np.max(data.get_data())

    surf_data_lh = project_volume_data(mri_file, "lh", reg_file)
    surf_data_rh = project_volume_data(mri_file, "rh", reg_file)

    brain.add_overlay(surf_data_lh,
                      min=minval,
                      max=maxval,
                      name="thirty_sec_lh",
                      hemi='lh')
    brain.add_overlay(surf_data_rh,
                      min=minval,
                      max=maxval,
                      name="thirty_sec_rh",
                      hemi='rh')

    for overlay in brain.overlays_dict["thirty_sec_lh"]:
        overlay.remove()
Exemplo n.º 17
0
## script to visualizee volume results in surcace, using pysurfer
import os
from surfer import Brain, project_volume_data
import numpy as np

### script to visualize cognitive components
subject_id = "fsaverage"
subjects_dir = os.environ["SUBJECTS_DIR"]

brain = Brain("fsaverage", "lh", "inflated", views=['lat'], background="white")
overlay_file = "/Volumes/neuro/Rest/ROIs/Yeo_12.nii.gz"
reg_file = os.path.join(os.environ["FREESURFER_HOME"], "average/mni152.register.dat")
zstat = project_volume_data(overlay_file, "lh", reg_file)
zstat = project_volume_data(overlay_file, "lh", subject_id="fsaverage", smooth_fwhm=4)
brain.add_data(zstat, min=1, max=5, thresh=1, colormap="hot", colorbar=False)

brain.show_view("medial")
#load data to visualize
#mask_file = "Cortical_CI.nii.gz"

### to visualize ROI's CI assignment
#load coordinates
subject_id = "fsaverage"
subjects_dir = os.environ["SUBJECTS_DIR"]

brain = Brain("fsaverage", "rh", "inflated", views=['lat', 'med'], background="white")
#brain = Brain("fsaverage", "rh", "inflated", background="white")
coords = np.loadtxt('/Volumes/neuro/Rest/ROIs/Gordon_coordinates')
CIs = np.loadtxt('/Volumes/neuro/Rest/ROIs/Gordon_consensus_CI')

colors = {1:'red', 2:'purple', 3:'green', 4:'yellow', 5:'cyan', 6:'blue', 7:'brown', 8:'pink', 9:'teal', 12:'pink'}