Exemplo n.º 1
0
def algo_tester(data_object):
    '''
  Produces a dataframe displaying all the different RMSE's, test & train times of the different surprise algorithms

  ---Parameters---
  data_object(variable) created from the read_data_surprise function

  ---Returns---
  returns a dataframe where you can compare the performance of different algorithms
  '''
    benchmark = []
    algos = [
        sp.SVDpp(),
        sp.SVD(),
        sp.SlopeOne(),
        sp.NMF(),
        sp.NormalPredictor(),
        sp.KNNBaseline(),
        sp.KNNBasic(),
        sp.KNNWithMeans(),
        sp.KNNWithZScore(),
        sp.BaselineOnly(),
        sp.CoClustering()
    ]

    # Iterate over all algorithms
    for algorithm in algos:
        # Perform cross validation
        results = cross_validate(algorithm,
                                 data_object,
                                 measures=['RMSE'],
                                 cv=3,
                                 verbose=False)

        # Get results & append algorithm name
        tmp = pd.DataFrame.from_dict(results).mean(axis=0)
        tmp = tmp.append(
            pd.Series([str(algorithm).split(' ')[0].split('.')[-1]],
                      index=['Algorithm']))
        benchmark.append(tmp)

    benchmark = pd.DataFrame(benchmark).set_index('Algorithm').sort_values(
        'test_rmse')
    return benchmark
    def model_fit(self):
        '''
        Train model using surprise.SVD algorithm. 
        '''
        self.build_trainset()
        algo = self._algo_choise
        if algo == 'SVD':
            self.algorithm = surprise.SVD()
        elif algo == 'Baseline':
            self.algorithm = surprise.BaselineOnly()
        elif algo == 'SlopeOne':
            self.algorithm = surprise.SlopeOne()
        elif algo == 'CoClustering':
            self.algorithm = surprise.CoClustering()
        else:
            self.algorithm = surprise.KNNBasic()

        print('Training Recommender System using %s...' % algo)

        self.algorithm.fit(self.trainset)
        self.ratings_changed = False
        print('Done')
          epochs=2,
          validation_split=0.1,
          shuffle=True)

y_pred = model.predict([df_hybrid_test['User'], df_hybrid_test['Movie'], test_tfidf])
y_true = df_hybrid_test['Rating'].values

rmse = np.sqrt(mean_squared_error(y_pred=y_pred, y_true=y_true))
print('\n\nTesting Result With Keras Hybrid Deep Learning: {:.4f} RMSE'.format(rmse))

# Load dataset into surprise specific data-structure
data = sp.Dataset.load_from_df(df_filterd[['User', 'Movie', 'Rating']].sample(20000), sp.Reader())

benchmark = []
# Iterate over all algorithms
for algorithm in [sp.SVD(), sp.SVDpp(), sp.SlopeOne(), sp.NMF(), sp.NormalPredictor(), sp.KNNBaseline(), sp.KNNBasic(), sp.KNNWithMeans(), sp.KNNWithZScore(), sp.BaselineOnly(), sp.CoClustering()]:
    # Perform cross validation
    results = cross_validate(algorithm, data, measures=['RMSE', 'MAE'], cv=3, verbose=False)
    
    # Get results & append algorithm name
    tmp = pd.DataFrame.from_dict(results).mean(axis=0)
    tmp = tmp.append(pd.Series([str(algorithm).split(' ')[0].split('.')[-1]], index=['Algorithm']))
    
    # Store data
    benchmark.append(tmp)
    
    # Store results
surprise_results = pd.DataFrame(benchmark).set_index('Algorithm').sort_values('test_rmse', ascending=False)

# Get data
data = surprise_results[['test_rmse', 'test_mae']]
Exemplo n.º 4
0
def main(train_df, target_df, cache_name="test", force_recompute=[]):
    """Train multiple models on train_df and predicts target_df

    Predictions are cached. If the indices don't match the indices of
    target_df, the cache is discarded.

    By default, if a method was already computed it is not recomputed again
    (except if the method name is listed in force_recompute). cache_name
    is the name to use to read and write the cache.

    Arguments:
        train_df {dataframe} -- Training dataframe
        target_df {dataframe} -- Testing dataframe

    Keyword Arguments:
        cache_name {str} -- Name to use for caching (default: {"test"})
        force_recompute {list} -- Name(s) of methods to recompute, whether or
        not it was already computed. Useful to only recompute single methods
        without discarding the rest. (default: {[]})

    Returns:
        Dataframe -- Dataframe with predictions for each methods as columns,
        IDs as indices
    """
    global algo_in_use
    CACHED_DF_FILENAME = os.path.dirname(
        os.path.abspath(__file__)) +\
        "/cache/cached_predictions_{}.pkl".format(cache_name)
    train_df = preprocess_df(train_df)
    trainset = pandas_to_data(train_df)
    ids_to_predict = target_df["Id"].to_list()

    # try to retrieve backup dataframe
    try:
        print("Retrieving cached predictions")
        all_algos_preds_df = pd.read_pickle(CACHED_DF_FILENAME)
        print("Ensuring cached IDs match given IDs")
        assert sorted(ids_to_predict) == sorted(
            all_algos_preds_df.index.values)
        print("Indices match, continuing")
    except (FileNotFoundError, AssertionError):
        print("No valid cached predictions found")
        all_algos_preds_df = pd.DataFrame(ids_to_predict, columns=["Id"])
        all_algos_preds_df.set_index("Id", inplace=True)

    all_algos = {
        "SVD": spr.SVD(n_factors=200, n_epochs=100),
        "Baseline": spr.BaselineOnly(),
        "NMF": spr.NMF(n_factors=30, n_epochs=100),
        "Slope One": spr.SlopeOne(),
        "KNN Basic": spr.KNNBasic(k=60),
        "KNN Means": spr.KNNWithMeans(k=60),
        "KNN Baseline": spr.KNNBaseline(),
        "KNN Zscore": spr.KNNWithZScore(k=60),
        "SVD ++": spr.SVDpp(n_factors=40, n_epochs=100),
        "Co Clustering": spr.CoClustering()
    }

    for name in all_algos:
        print("##### {} ####".format(name))
        if name in force_recompute and name in all_algos_preds_df.columns:
            all_algos_preds_df.drop(name, axis=1, inplace=True)
        if name in all_algos_preds_df.columns:
            print("Already computed {}, skipping".format(name))
            continue
        algo = all_algos[name]
        time.sleep(1)
        algo.fit(trainset)
        time.sleep(1)
        algo_in_use = algo
        print("Generating predictions...")
        predictions = parallelize_predictions(ids_to_predict, 80)
        print("Done. Merging with previous results")
        this_algo_preds_df = pd.DataFrame(predictions, columns=["Id", name])
        this_algo_preds_df.set_index("Id", inplace=True)
        all_algos_preds_df = pd.merge(all_algos_preds_df,
                                      this_algo_preds_df,
                                      left_index=True,
                                      right_index=True)
        all_algos_preds_df.to_pickle(CACHED_DF_FILENAME)
    print("DONE computing surprize")
    return all_algos_preds_df
Exemplo n.º 5
0
 def build_network(self):
     self.model = surprise.CoClustering()
dfs_path = os.path.join(root_dir, 'Data/datasets/')
ratings_df = pd.read_csv(os.path.join(dfs_path, 'ratings_expl.csv'),
                         sep=';',
                         encoding='latin-1',
                         low_memory=False)
# 加载数据
reader = surprise.Reader(rating_scale=(1, 10))
data = surprise.Dataset.load_from_df(ratings_df[['user_id', 'isbn', 'rating']],
                                     reader)
kf = KFold(n_splits=5)
# data = Dataset.load_builtin('jester')
# Kfold
algo1 = SVD()
algo2 = surprise.BaselineOnly()
algo3 = surprise.KNNBasic()
algo4 = surprise.CoClustering()
for trainset, testset in kf.split(data):
    # SVD
    algo1.fit(trainset)
    pSVD = algo1.test(testset)
    # 计算并打印RMSE
    print("SVD-")
    accuracy.rmse(pSVD, verbose=True)
    #Baseline
    algo2.fit(trainset)
    pBase = algo2.test(testset)
    print("BaseLine-")
    accuracy.rmse(pBase)
    #Baseline
    algo3.fit(trainset)
    pknn = algo3.test(testset)
Exemplo n.º 7
0
# identifier_df_test = X_test[['user_id', 'business_id']]

# A reader is needed but only the rating_scale param is requiered.
reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(train_df, reader)

sim_options = {'user_based': [False]}

results = []

# Iterate over all algorithms
for algorithm in [
        SVD(),
        surprise.NMF(),
        surprise.SlopeOne(),
        surprise.CoClustering(),
        surprise.KNNBasic(sim_options=sim_options),
        surprise.KNNWithMeans(sim_options=sim_options),
        surprise.KNNWithZScore(sim_options=sim_options),
        surprise.KNNBaseline(sim_options=sim_options),
        surprise.NormalPredictor(),
        surprise.BaselineOnly()
]:

    # Get string of algname for naming a pickle file a useful name
    alg_name = str(algorithm)
    alg_name = alg_name[alg_name.find('.') + 1:]
    alg_name = alg_name[alg_name.find('.') + 1:]
    alg_name = alg_name[alg_name.find('.') + 1:]
    alg_name = alg_name[:alg_name.find('object') - 1]
Exemplo n.º 8
0
# defining the number of folds = 5
print("Performing splits...")
kf = sp.model_selection.KFold(n_splits=5, random_state=0)
print("Done.")

###
### PART 1.1
###
'''
application of all algorithms for recommendation made available by 
“Surprise” libraries, according to their default configuration.
'''
algorithms = [sp.NormalPredictor(), sp.BaselineOnly(), sp.KNNBasic(),\
              sp.KNNWithMeans(), sp.KNNWithZScore(), sp.KNNBaseline(),\
              sp.SVD(), sp.SVDpp(), sp.NMF(), sp.SlopeOne(), sp.CoClustering()]
for elem in algorithms:
    start_time = time.time()
    algo = elem
    sp.model_selection.cross_validate(algo, data, measures=['RMSE'], \
                                      cv=kf, n_jobs = 2, verbose=True)
    print("--- %s seconds ---" % (time.time() - start_time))
    print()

###
### PART 1.2
###
'''
Improvement of the quality of both KNNBaseline and SVD methods, 
by performing hyper-parameters tuning over 5-folds
Random-Search-Cross-Validation - KNN
Exemplo n.º 9
0
def SurpriseBased(table, relation_name, parameters, verbose=False):
    """

    """

    report = {}

    # Initial checks
    param_keys = [k for k, v in parameters.items()]
    if ('max_scale' not in param_keys) or ('min_scale' not in param_keys):
        raise ValueError(
            'max_scale and min_scale must be specified in parameters for explicit RS.'
        )
    if 'model_size' not in param_keys:
        raise ValueError(
            'model_size must be specified in parameters for SURPRISE-based RS.'
        )
    if 'topK_predictions' not in param_keys:
        raise ValueError(
            'A size (K) must be given for the recommended list size (topK).')

    # Retrieving names
    start_group = table.start_group.iloc[0]
    end_group = table.end_group.iloc[0]
    timestamp = pd.Timestamp('')

    # Retrieving the table of the bipartite graph in SURPRISE format
    table = table[['start_object', 'end_object', 'value']]
    reader = surprise.Reader(rating_scale=(parameters['min_scale'],
                                           parameters['max_scale']))
    data = surprise.Dataset.load_from_df(table, reader)

    # Selecting the method from the SURPRISE module
    if parameters['method'] == 'UBCF':
        method = surprise.KNNBasic(k=parameters['model_size'], verbose=verbose)
    elif parameters['method'] == 'Z-UBCF':
        method = surprise.KNNWithZScore(k=parameters['model_size'])
    elif parameters['method'] == 'IBCF':
        method = surprise.KNNBasic(k=parameters['model_size'],
                                   sim_options={'user_based': False})
    elif parameters['method'] == 'SVD':
        method = surprise.SVD(n_factors=parameters['model_size'])
    elif parameters['method'] == 'NMF':
        method = surprise.NMF(n_factors=parameters['model_size'])
    elif parameters['method'] == 'CClustering':
        method = surprise.CoClustering(n_cltr_u=parameters['model_size'],
                                       n_cltr_i=parameters['model_size'])
    else:
        raise ValueError('Unrecognized SURPRISE-based RS method named %s' %
                         parameters['method'])

    # Computing utility metrics if so specified
    if 'RMSE' in param_keys:
        if parameters['RMSE']:
            results = surprise.model_selection.validation.cross_validate(
                method, data, measures=['rmse'], cv=5, verbose=verbose)
            rmse = results['test_rmse'].mean()
            report['RMSE'] = rmse

    # Training the prediction method
    trainset = data.build_full_trainset()
    del data
    method.fit(trainset)

    # Retrieving unobserved pairs
    t = TCounter()
    VerboseMessage(verbose, 'Producing unobserved links...')
    unobserved_links = trainset.build_anti_testset()
    VerboseMessage(
        verbose,
        'Unobserved links produced in %s.' % (ETSec2ETTime(TCounter() - t)))

    # Making the predictions
    t = TCounter()
    VerboseMessage(verbose, 'Making predictions for unobserved links...')
    predictions = method.test(unobserved_links)
    VerboseMessage(
        verbose, 'Predictions for Unobserved links produced in %s.' %
        (ETSec2ETTime(TCounter() - t)))

    # Prefiltering predictions with lower scores
    if 'prefilter_score' in param_keys:
        t = TCounter()
        VerboseMessage(
            verbose, 'Prefiltering %d predictions scores lower than %0.1f...' %
            (len(predictions), parameters['prefilter_threshold']))
        predictions = [
            p for p in predictions if p[3] > parameters['prefilter_threshold']
        ]
        VerboseMessage(
            verbose, 'Predictions prefiltered in %s, %d remaining.' %
            (ETSec2ETTime(TCounter() - t), len(predictions)))

    # Selecting only top K predictions
    t = TCounter()
    VerboseMessage(
        verbose,
        'Selecting top %d predictions...' % (parameters['topK_predictions']))
    top_recs = defaultdict(list)
    for uid, iid, true_r, est, _ in predictions:
        top_recs[uid].append((iid, est))
    for uid, user_ratings in top_recs.items():
        user_ratings.sort(key=lambda x: x[1], reverse=True)
        top_recs[uid] = user_ratings[:parameters['topK_predictions']]
    VerboseMessage(
        verbose,
        'Predictions selected in %s.' % (ETSec2ETTime(TCounter() - t)))

    # Putting the predictions in a DataFrame
    predictions_table = pd.DataFrame(columns=[
        'relation', 'start_group', 'start_object', 'end_group', 'end_object',
        'value', 'timestamp'
    ])
    counter = 0
    t = TCounter()
    VerboseMessage(verbose, 'Arranging predictions into a DataFrame table...')
    for k, v in top_recs.items():
        for r in v:
            predictions_table.loc[counter] = [
                relation_name, start_group, k, end_group, r[0], r[1], timestamp
            ]
            counter += 1

    VerboseMessage(
        verbose, 'Predictions arranged into a table in %s.' %
        (ETSec2ETTime(TCounter() - t)))

    return predictions_table, report
Exemplo n.º 10
0
    elif args.model == 'KNNBasic':
        model = surprise.KNNBasic()
    elif args.model == 'KNNWithMeans':
        model = surprise.KNNWithMeans()
    elif args.model == 'KNNWithZScore':
        model = surprise.KNNWithZScore()
    elif args.model == 'KNNBaseline':
        model = surprise.KNNBaseline()
    elif args.model == 'SVD':
        model = surprise.SVD()
    elif args.model == 'SVDpp':
        model = surprise.SVDpp(verbose=True)
    elif args.model == 'NMF':
        model = surprise.NMF()
    elif args.model == 'SlopeOne':
        model = surprise.SlopeOne()
    elif args.model == 'CoClustering':
        model = surprise.CoClustering()

    # cross_validate(model, trainset, cv=5, verbose=True)
    model.fit(trainset)

    lines = []
    test_path = path + '/Data/test_format.txt'
    for line in tqdm(open(test_path, 'r').readlines()):
        user_id, item_id, timestamp, *tags = line.strip().split(',')
        rating = model.predict(user_id, item_id).est
        lines.append("{:.5}\n".format(float(rating)))

    open(path + '/Data/submit.txt', 'w').writelines(lines)