dataSet.append([float(lineArr[0]), float(lineArr[1])]) labels.append(float(lineArr[2])) dataSet = mat(dataSet) labels = mat(labels).T train_x = dataSet[0:81, :] train_y = labels[0:81, :] test_x = dataSet[80:101, :] test_y = labels[80:101, :] ## step 2: training print("step 2: training...") C = 0.6 toler = 0.001 maxIter = 50 svmClassifier = svm.trainSVM(train_x, train_y, C, toler, maxIter, kernelOption=('linear', 0)) ## step 3: testing print("step 3: testing...") accuracy = svm.testSVM(svmClassifier, test_x, test_y) ## step 4: show the result print("step 4: show the result...") print('The classify accuracy is: %.3f%%' % (accuracy * 100)) svm.showSVM(svmClassifier)
labels = [] # fileIn = open('../data/testSet.txt') fileIn = open('../data/lr_data') for line in fileIn.readlines(): lineArr = line.strip().split('\t') dataSet.append([float(lineArr[0]), float(lineArr[1])]) labels.append(float(lineArr[2])) dataSet = mat(dataSet) labels = mat(labels).T train_x = dataSet[0:81, :] train_y = labels[0:81, :] test_x = dataSet[80:101, :] test_y = labels[80:101, :] ## step 2: training... print "step 2: training..." C = 0.6 toler = 0.001 maxIter = 50 svmClassifier = svm.trainSVM(train_x, train_y, C, toler, maxIter, kernelOption=('linear', 0)) ## step 3: testing print "step 3: testing..." accuracy = svm.testSVM(svmClassifier, test_x, test_y) ## step 4: show the result print "step 4: show the result..." print 'The classify accuracy is: %.3f%%' % (accuracy * 100) svm.showSVM(svmClassifier)
dataSet = mat(dataSet) labels = mat(labels).T train_x = dataSet[0:81, :] train_y = labels[0:81, :] test_x = dataSet[80:101, :] test_y = labels[80:101, :] ## step 2: training... print("step 2: training...") C = 0.6 toler = 0.001 maxIter = 50 svmClassifier = SVM.trainSVM(train_x, train_y, C, toler, maxIter, kernelOption=('linear', 0)) ## step 3: testing print("step 3: testing...") accuracy = 1 #accuracy = SVM.testSVM(svmClassifier, test_x, test_y) ## step 4: show the result print("step 4: show the result...") print('The classify accuracy is: %.3f' % (accuracy * 100)) SVM.showSVM(svmClassifier)