Exemplo n.º 1
0
    def _convert_kg2_edge_to_swagger_edge(self, neo4j_edge):
        swagger_edge = Edge()
        swagger_edge.type = neo4j_edge.get('simplified_edge_label')
        swagger_edge.source_id = neo4j_edge.get('subject')
        swagger_edge.target_id = neo4j_edge.get('object')
        swagger_edge.id = self._create_edge_id(swagger_edge)
        swagger_edge.relation = neo4j_edge.get('relation')
        swagger_edge.publications = ast.literal_eval(
            neo4j_edge.get('publications'))
        swagger_edge.provided_by = self._convert_strange_provided_by_field_to_list(
            neo4j_edge.get('provided_by')
        )  # Temporary hack until provided_by is fixed in KG2
        swagger_edge.negated = ast.literal_eval(neo4j_edge.get('negated'))
        swagger_edge.is_defined_by = "ARAX/KG2"
        swagger_edge.edge_attributes = []

        # Add additional properties on KG2 edges as swagger EdgeAttribute objects
        # TODO: fix issues coming from strange characters in 'publications_info'! (EOF error)
        additional_kg2_edge_properties = [
            'relation_curie', 'simplified_relation_curie',
            'simplified_relation', 'edge_label'
        ]
        edge_attributes = self._create_swagger_attributes(
            "edge", additional_kg2_edge_properties, neo4j_edge)
        swagger_edge.edge_attributes += edge_attributes

        return swagger_edge
Exemplo n.º 2
0
    def _convert_kg1_edge_to_swagger_edge(self, neo4j_edge: Dict[str, any], node_uuid_to_curie_dict: Dict[str, str]) -> Edge:
        swagger_edge = Edge()
        swagger_edge.type = neo4j_edge.get("predicate")
        swagger_edge.source_id = node_uuid_to_curie_dict[neo4j_edge.get("source_node_uuid")]
        swagger_edge.target_id = node_uuid_to_curie_dict[neo4j_edge.get("target_node_uuid")]
        swagger_edge.id = f"KG1:{neo4j_edge.get('id')}"
        swagger_edge.relation = neo4j_edge.get("relation")
        swagger_edge.provided_by = neo4j_edge.get("provided_by")
        swagger_edge.is_defined_by = "ARAX/KG1"

        if neo4j_edge.get("probability"):
            swagger_edge.edge_attributes = self._create_swagger_attributes("edge", ["probability"], neo4j_edge)
        return swagger_edge
Exemplo n.º 3
0
    def _add_answers_to_kg(self, answer_kg, reasoner_std_response, input_qnode_id, output_qnode_id, qedge_id):
        kg_to_qg_ids_dict = self._build_kg_to_qg_id_dict(reasoner_std_response['results'])
        if reasoner_std_response['knowledge_graph']['edges']:
            remapped_node_ids = dict()
            self.response.debug(f"Got results back from BTE for this query "
                                f"({len(reasoner_std_response['knowledge_graph']['edges'])} edges)")
            for node in reasoner_std_response['knowledge_graph']['nodes']:
                swagger_node = Node()
                bte_node_id = node.get('id')
                swagger_node.name = node.get('name')
                swagger_node.type = eu.convert_string_to_snake_case(node.get('type'))

                # Map the returned BTE qg_ids back to the original qnode_ids in our query graph
                bte_qg_id = kg_to_qg_ids_dict['nodes'].get(bte_node_id)
                if bte_qg_id == "n0":
                    qnode_id = input_qnode_id
                elif bte_qg_id == "n1":
                    qnode_id = output_qnode_id
                else:
                    self.response.error("Could not map BTE qg_id to ARAX qnode_id", error_code="UnknownQGID")
                    return answer_kg

                # Find and use the preferred equivalent identifier for this node (if it's an 'output' node)
                if qnode_id == output_qnode_id:
                    if bte_node_id in remapped_node_ids:
                        swagger_node.id = remapped_node_ids.get(bte_node_id)
                    else:
                        equivalent_curies = [f"{prefix}:{eu.get_curie_local_id(local_id)}" for prefix, local_ids in
                                             node.get('equivalent_identifiers').items() for local_id in local_ids]
                        swagger_node.id = eu.get_best_equivalent_curie(equivalent_curies, swagger_node.type)
                        remapped_node_ids[bte_node_id] = swagger_node.id
                else:
                    swagger_node.id = bte_node_id

                eu.add_node_to_kg(answer_kg, swagger_node, qnode_id)

            for edge in reasoner_std_response['knowledge_graph']['edges']:
                swagger_edge = Edge()
                swagger_edge.id = edge.get("id")
                swagger_edge.type = edge.get('type')
                swagger_edge.source_id = remapped_node_ids.get(edge.get('source_id'), edge.get('source_id'))
                swagger_edge.target_id = remapped_node_ids.get(edge.get('target_id'), edge.get('target_id'))
                swagger_edge.is_defined_by = "BTE"
                swagger_edge.provided_by = edge.get('edge_source')
                # Map the returned BTE qg_id back to the original qedge_id in our query graph
                bte_qg_id = kg_to_qg_ids_dict['edges'].get(swagger_edge.id)
                if bte_qg_id != "e1":
                    self.response.error("Could not map BTE qg_id to ARAX qedge_id", error_code="UnknownQGID")
                    return answer_kg
                eu.add_edge_to_kg(answer_kg, swagger_edge, qedge_id)
        return answer_kg
Exemplo n.º 4
0
 def _create_ngd_edge(self, ngd_value: float, source_id: str,
                      target_id: str) -> Edge:
     ngd_edge = Edge()
     ngd_edge.type = self.ngd_edge_type
     ngd_edge.source_id = source_id
     ngd_edge.target_id = target_id
     ngd_edge.id = f"NGD:{source_id}--{ngd_edge.type}--{target_id}"
     ngd_edge.provided_by = "ARAX"
     ngd_edge.is_defined_by = "ARAX"
     ngd_edge.edge_attributes = [
         EdgeAttribute(name=self.ngd_edge_attribute_name,
                       type=self.ngd_edge_attribute_type,
                       value=ngd_value,
                       url=self.ngd_edge_attribute_url)
     ]
     return ngd_edge
Exemplo n.º 5
0
    def _convert_kg1_edge_to_swagger_edge(self, neo4j_edge,
                                          node_uuid_to_curie_dict):
        swagger_edge = Edge()
        swagger_edge.type = neo4j_edge.get('predicate')
        swagger_edge.source_id = node_uuid_to_curie_dict[neo4j_edge.get(
            'source_node_uuid')]
        swagger_edge.target_id = node_uuid_to_curie_dict[neo4j_edge.get(
            'target_node_uuid')]
        swagger_edge.id = self._create_edge_id(swagger_edge)
        swagger_edge.relation = neo4j_edge.get('relation')
        swagger_edge.provided_by = neo4j_edge.get('provided_by')
        swagger_edge.is_defined_by = "ARAX/KG1"

        if neo4j_edge.get('probability'):
            swagger_edge.edge_attributes = self._create_swagger_attributes(
                "edge", ['probability'], neo4j_edge)
        return swagger_edge
Exemplo n.º 6
0
    def _convert_kg2_edge_to_swagger_edge(self, neo4j_edge: Dict[str, any]) -> Edge:
        swagger_edge = Edge()
        swagger_edge.id = f"KG2:{neo4j_edge.get('id')}"
        swagger_edge.type = neo4j_edge.get("simplified_edge_label")
        swagger_edge.source_id = neo4j_edge.get("subject")
        swagger_edge.target_id = neo4j_edge.get("object")
        swagger_edge.relation = neo4j_edge.get("relation")
        swagger_edge.publications = ast.literal_eval(neo4j_edge.get("publications"))
        swagger_edge.provided_by = self._convert_strange_provided_by_field_to_list(neo4j_edge.get("provided_by"))  # Temporary hack until provided_by is fixed in KG2
        swagger_edge.negated = ast.literal_eval(neo4j_edge.get("negated"))
        swagger_edge.is_defined_by = "ARAX/KG2"
        swagger_edge.edge_attributes = []

        # Add additional properties on KG2 edges as swagger EdgeAttribute objects
        # TODO: fix issues coming from strange characters in 'publications_info'! (EOF error)
        additional_kg2_edge_properties = ["relation_curie", "simplified_relation_curie", "simplified_relation",
                                          "edge_label"]
        edge_attributes = self._create_swagger_attributes("edge", additional_kg2_edge_properties, neo4j_edge)
        swagger_edge.edge_attributes += edge_attributes

        return swagger_edge
Exemplo n.º 7
0
    def add_subgraph(self,
                     nodes,
                     edges,
                     plain_text,
                     confidence,
                     return_result=False):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            if 'description' in data['properties']:
                node_descriptions[u] = data['properties']['description']
            else:
                node_descriptions[u] = "None"
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['uri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['uri']
            curie_id = data['properties']['id']
            if curie_id.split(':')[0].upper() == "CHEMBL":
                curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1]
            node_uuids2curie[data['properties']['UUID']] = curie_id
            node_curies[
                u] = curie_id  # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address)

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['provided_by']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = node_labels[node_key]
            node.name = node_names[node_key]
            node.uri = node_iris[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            #edge.origin_list = []
            #edge.origin_list.append(edge_source_db[(u, v)])  # TODO: check with eric if this really should be a list and if it should contain the source DB('s)
            edge_objects.append(edge)
            #edge.attribute_list
            #edge.confidence
            #edge.evidence_type
            edge.is_defined_by = "RTX"
            #edge.provided_by = node_iris_to_node_object[edge_source_iri[(u, v)]].uri
            edge.provided_by = edge_source_db[(u, v)]
            #edge.publications
            #edge.qualifiers
            #edge.relation
            #edge.source_id
            #edge.target_id
            #edge.type

        # Create the result (potential answer)
        result1 = Result()
        result1.text = plain_text
        result1.confidence = confidence

        # Create a ResultGraph object and put the list of nodes and edges into it
        result_graph = ResultGraph()
        result_graph.node_list = node_objects
        result_graph.edge_list = edge_objects

        # Put the ResultGraph into the first result (potential answer)
        result1.result_graph = result_graph

        # Put the first result (potential answer) into the response
        self._result_list.append(result1)
        self.response.result_list = self._result_list
        # Increment the number of results
        self._num_results += 1
        if self._num_results == 1:
            self.response.message = "%s result found" % self._num_results
        else:
            self.response.message = "%s results found" % self._num_results
        if return_result:
            return result1
        else:
            pass
Exemplo n.º 8
0
    def add_neighborhood_graph(self, nodes, edges, confidence=None):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            if 'description' in data['properties']:
                node_descriptions[u] = data['properties']['description']
            else:
                node_descriptions[u] = "None"
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['uri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['uri']
            curie_id = data['properties']['id']
            if curie_id.split(':')[0].upper() == "CHEMBL":
                curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1]
            node_uuids2curie[data['properties']['UUID']] = curie_id
            node_curies[
                u] = curie_id  # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address)

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['provided_by']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = node_labels[node_key]
            node.name = node_names[node_key]
            node.uri = node_iris[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            #edge.origin_list = []
            #edge.origin_list.append(edge_source_db[(u, v)])  # TODO: check with eric if this really should be a list and if it should contain the source DB('s)
            edge.provided_by = edge_source_db[(u, v)]
            edge.is_defined_by = "RTX"
            edge_objects.append(edge)

        # Create the result (potential answer)
        result1 = Result()
        text = "This is a subgraph extracted from the full RTX knowledge graph, including nodes and edges relevant to the query." \
            " This is not an answer to the query per se, but rather an opportunity to examine a small region of the RTX knowledge graph for further study. " \
            "Formal answers to the query are below."
        result1.text = text
        result1.confidence = confidence
        result1.result_type = "neighborhood graph"

        # Create a ResultGraph object and put the list of nodes and edges into it
        result_graph = ResultGraph()
        result_graph.node_list = node_objects
        result_graph.edge_list = edge_objects

        # Put the ResultGraph into the first result (potential answer)
        result1.result_graph = result_graph

        # Put the first result (potential answer) into the response
        self._result_list.append(result1)
        self.response.result_list = self._result_list
Exemplo n.º 9
0
    def add_subgraph(self,
                     nodes,
                     edges,
                     description,
                     confidence,
                     return_result=False,
                     suppress_bindings=False):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            if 'description' in data['properties']:
                node_descriptions[u] = data['properties']['description']
            else:
                node_descriptions[u] = "None"
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['uri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['uri']
            curie_id = data['properties']['id']
            if curie_id.split(':')[0].upper() == "CHEMBL":
                curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1]
            node_uuids2curie[data['properties']['UUID']] = curie_id
            node_curies[
                u] = curie_id  # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address)

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        edge_ids = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['provided_by']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]
            edge_ids[(u, v)] = data['properties']['provided_by']  # FIXME

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = [node_labels[node_key]]
            node.name = node_names[node_key]
            node.uri = node_iris[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

            #### Add this node to the master knowledge graph
            if node.id not in self._node_ids:
                self.message.knowledge_graph.nodes.append(node)
                self._node_ids[node.id] = node.type[
                    0]  # Just take the first of potentially several FIXME

        #### Create the bindings lists
        node_bindings = list()
        edge_bindings = list()

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            #edge.id is set below when building the bindings
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            edge_objects.append(edge)
            #edge.attribute_list
            #edge.confidence
            #edge.evidence_type
            edge.is_defined_by = "RTX"
            edge.provided_by = edge_source_db[(u, v)]
            #edge.publications
            #edge.qualifiers
            #edge.relation
            #edge.source_id
            #edge.target_id
            #edge.type

            #### Add this edge to the master knowledge graph
            edge_str = "%s -%s- %s" % (edge.source_id, edge.type,
                                       edge.target_id)
            if edge_str not in self._edge_ids:
                self.message.knowledge_graph.edges.append(edge)
                edge.id = "%d" % self._edge_counter
                self._edge_ids[edge_str] = edge.id
                self._edge_counter += 1
            else:
                edge.id = self._edge_ids[edge_str]

            #### Try to figure out how the source fits into the query_graph for the bindings
            source_type = self._node_ids[edge.source_id]
            if edge.source_id in self._type_map:
                source_knowledge_map_key = self._type_map[edge.source_id]
            else:
                source_knowledge_map_key = self._type_map[source_type]
            if not source_knowledge_map_key:
                eprint(
                    "Expected to find '%s' in the response._type_map, but did not"
                    % source_type)
                raise Exception(
                    "Expected to find '%s' in the response._type_map, but did not"
                    % source_type)

            node_bindings.append(
                NodeBinding(qg_id=source_knowledge_map_key,
                            kg_id=edge.source_id))
            #			if source_knowledge_map_key not in node_bindings:
            #				node_bindings[source_knowledge_map_key] = list()
            #				node_bindings_dict[source_knowledge_map_key] = dict()
            #			if edge.source_id not in node_bindings_dict[source_knowledge_map_key]:
            #				node_bindings[source_knowledge_map_key].append(edge.source_id)
            #				node_bindings_dict[source_knowledge_map_key][edge.source_id] = 1

            #### Try to figure out how the target fits into the query_graph for the knowledge map
            target_type = self._node_ids[edge.target_id]
            if edge.target_id in self._type_map:
                target_knowledge_map_key = self._type_map[edge.target_id]
            else:
                target_knowledge_map_key = self._type_map[target_type]
            if not target_knowledge_map_key:
                eprint(
                    "ERROR: Expected to find '%s' in the response._type_map, but did not"
                    % target_type)
                raise Exception(
                    "Expected to find '%s' in the response._type_map, but did not"
                    % target_type)

            node_bindings.append(
                NodeBinding(qg_id=target_knowledge_map_key,
                            kg_id=edge.target_id))
            #			if target_knowledge_map_key not in node_bindings:
            #				node_bindings[target_knowledge_map_key] = list()
            #				node_bindings_dict[target_knowledge_map_key] = dict()
            #			if edge.target_id not in node_bindings_dict[target_knowledge_map_key]:
            #				node_bindings[target_knowledge_map_key].append(edge.target_id)
            #				node_bindings_dict[target_knowledge_map_key][edge.target_id] = 1

            #### Try to figure out how the edge fits into the query_graph for the knowledge map
            source_target_key = "e" + source_knowledge_map_key + "-" + target_knowledge_map_key
            target_source_key = "e" + target_knowledge_map_key + "-" + source_knowledge_map_key
            if edge.type in self._type_map:
                knowledge_map_key = self._type_map[edge.type]
            elif source_target_key in self._type_map:
                knowledge_map_key = source_target_key
            elif target_source_key in self._type_map:
                knowledge_map_key = target_source_key
            else:
                eprint(
                    "ERROR: Expected to find '%s' or '%s' or '%s' in the response._type_map, but did not"
                    % (edge.type, source_target_key, target_source_key))
                knowledge_map_key = "ERROR"

            edge_bindings.append(
                EdgeBinding(qg_id=knowledge_map_key, kg_id=edge.id))


#			if knowledge_map_key not in edge_bindings:
#				edge_bindings[knowledge_map_key] = list()
#				edge_bindings_dict[knowledge_map_key] = dict()
#			if edge.id not in edge_bindings_dict[knowledge_map_key]:
#				edge_bindings[knowledge_map_key].append(edge.id)
#				edge_bindings_dict[knowledge_map_key][edge.id] = 1

# Create the result (potential answer)
        result1 = Result()
        result1.reasoner_id = "RTX"
        result1.description = description
        result1.confidence = confidence
        if suppress_bindings is False:
            result1.node_bindings = node_bindings
            result1.edge_bindings = edge_bindings

        # Create a KnowledgeGraph object and put the list of nodes and edges into it
        #### This is still legal, then is redundant with the knowledge map, so leave it out maybe
        knowledge_graph = KnowledgeGraph()
        knowledge_graph.nodes = node_objects
        knowledge_graph.edges = edge_objects
        if suppress_bindings is True:
            result1.result_graph = knowledge_graph

        # Put the first result (potential answer) into the message
        self._results.append(result1)
        self.message.results = self._results

        # Increment the number of results
        self._num_results += 1
        if self._num_results == 1:
            self.message.code_description = "%s result found" % self._num_results
        else:
            self.message.code_description = "%s results found" % self._num_results

        #### Finish and return the result if requested
        if return_result:
            return result1
        else:
            pass
Exemplo n.º 10
0
    def add_subgraph(self, nodes, edges, plain_text, confidence):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            node_descriptions[u] = data['properties']['description']
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['iri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['iri']
            node_curies[u] = data['properties']['curie_id']
            node_uuids2curie[data['properties']
                             ['UUID']] = data['properties']['curie_id']

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['sourcedb']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = node_labels[node_key]
            node.name = node_names[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            edge.origin_list = []
            edge.origin_list.append(
                edge_source_db[(u, v)]
            )  # TODO: check with eric if this really should be a list and if it should contain the source DB('s)
            edge_objects.append(edge)

        # Create the result (potential answer)
        result1 = Result()
        #result1.id = "http://rtx.ncats.io/api/v1/response/1234/result/2345"
        #result1.id = "-1"
        result1.text = plain_text
        result1.confidence = confidence

        # Create a ResultGraph object and put the list of nodes and edges into it
        result_graph = ResultGraph()
        result_graph.node_list = node_objects
        result_graph.edge_list = edge_objects

        # Put the ResultGraph into the first result (potential answer)
        result1.result_graph = result_graph

        # Put the first result (potential answer) into the response
        self._result_list.append(result1)
        self.response.result_list = self._result_list
        # Increment the number of results
        self._num_results += 1
        if self._num_results == 1:
            self.response.message = "%s result found" % self._num_results
        else:
            self.response.message = "%s results found" % self._num_results
Exemplo n.º 11
0
    def test1(self):

        #### Create the response object and fill it with attributes about the response
        response = Response()
        response.context = "http://translator.ncats.io"
        response.id = "http://rtx.ncats.io/api/v1/response/1234"
        response.type = "medical_translator_query_response"
        response.tool_version = "RTX 0.4"
        response.schema_version = "0.5"
        response.datetime = datetime.datetime.now().strftime(
            "%Y-%m-%d %H:%M:%S")
        response.original_question_text = "what proteins are affected by sickle cell anemia"
        response.restated_question_text = "Which proteins are affected by sickle cell anemia?"
        response.result_code = "OK"
        response.message = "1 result found"

        #### Create a disease node
        node1 = Node()
        node1.id = "http://omim.org/entry/603903"
        node1.type = "disease"
        node1.name = "sickle cell anemia"
        node1.accession = "OMIM:603903"
        node1.description = "A disease characterized by chronic hemolytic anemia..."

        #### Create a protein node
        node2 = Node()
        node2.id = "https://www.uniprot.org/uniprot/P00738"
        node2.type = "protein"
        node2.name = "Haptoglobin"
        node2.symbol = "HP"
        node2.accession = "UNIPROT:P00738"
        node2.description = "Haptoglobin captures, and combines with free plasma hemoglobin..."

        #### Create a node attribute
        node2attribute1 = NodeAttribute()
        node2attribute1.type = "comment"
        node2attribute1.name = "Complex_description"
        node2attribute1.value = "The Hemoglobin/haptoglobin complex is composed of a haptoglobin dimer bound to two hemoglobin alpha-beta dimers"
        node2.node_attributes = [node2attribute1]

        #### Create an edge between these 2 nodes
        edge1 = Edge()
        edge1.type = "is_caused_by_a_defect_in"
        edge1.source_id = node1.id
        edge1.target_id = node2.id
        edge1.confidence = 1.0

        #### Add an origin and property for the edge
        origin1 = Origin()
        origin1.id = "https://api.monarchinitiative.org/api/bioentity/disease/OMIM:603903/genes/"
        origin1.type = "Monarch_BioLink_API_Relationship"

        #### Add an attribute
        attribute1 = EdgeAttribute()
        attribute1.type = "PubMed_article"
        attribute1.name = "Orthopaedic Manifestations of Sickle Cell Disease"
        attribute1.value = None
        attribute1.url = "https://www.ncbi.nlm.nih.gov/pubmed/29309293"
        origin1.attribute_list = [attribute1]
        edge1.origin_list = [origin1]

        #### Create the first result (potential answer)
        result1 = Result()
        result1.id = "http://rtx.ncats.io/api/v1/response/1234/result/2345"
        result1.text = "A free text description of this result"
        result1.confidence = 0.932

        #### Create a ResultGraph object and put the list of nodes and edges into it
        result_graph = ResultGraph()
        result_graph.node_list = [node1, node2]
        result_graph.edge_list = [edge1]

        #### Put the ResultGraph into the first result (potential answer)
        result1.result_graph = result_graph

        #### Put the first result (potential answer) into the response
        result_list = [result1]
        response.result_list = result_list

        print(response)