Exemplo n.º 1
0
def solo_train(x,
               hidden=2,
               width=2,
               activation=nn.ReLU,
               num_epochs=10,
               lr=0.001,
               momentum=0.9,
               corr_len=10):
    net = networks.flat_net(hidden_depth=hidden,
                            width=width,
                            activation=activation)
    optimiser = optim.SGD(net.parameters(), lr=lr, momentum=momentum)

    mse_weight = 1
    loss_func = lambda ypred: second_deriv(ypred, mse_weight=mse_weight)

    for epoch in range(num_epochs):
        mse_weight = min(1 / (epoch + 1), 0.1)
        optimiser.zero_grad()
        ypred = net(x)

        loss = loss_func(ypred)
        log.debug("e: %s, loss: %s", epoch, loss)
        if torch.isnan(loss):
            raise RuntimeError("NaN loss, poorly configured experiment")

        yield ypred, loss

        loss.backward()
        optimiser.step()
Exemplo n.º 2
0
def default_train(x,
                  y,
                  hidden=2,
                  width=2,
                  activation=nn.ReLU,
                  num_epochs=200,
                  lr=0.001,
                  momentum=0.9):
    net = networks.flat_net(hidden_depth=hidden,
                            width=width,
                            activation=activation)
    loss_func = nn.MSELoss()
    optimiser = optim.SGD(net.parameters(), lr=lr, momentum=momentum)

    start_loss = loss_func(net(x), y)
    loss = 0
    for epoch in range(num_epochs):
        optimiser.zero_grad()
        ypred = net(x)

        loss = loss_func(ypred, y)
        log.debug("e: %s, loss: %s", epoch, loss)
        if torch.isnan(loss):
            raise RuntimeError("NaN loss, poorly configured experiment")

        yield ypred, loss

        loss.backward()
        optimiser.step()

    log.debug("First loss %s v final %s", start_loss, loss)
Exemplo n.º 3
0
def bee_trainer(xt, yt, width=2, num_epochs=200):
    net = networks.flat_net(1, width, activation=nn.ReLU)

    optimiser = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
    loss_func = torch.nn.MSELoss()

    for epoch in range(num_epochs):
        optimiser.zero_grad()
        ypred = net(xt)

        loss = loss_func(ypred, yt)
        if torch.isnan(loss):
            raise RuntimeError("NaN loss, poorly configured experiment")

        loss.backward()
        optimiser.step()

        weight, bias, *_ = net.parameters()
        yield ypred, weight.detach().flatten().numpy().copy(), bias.detach(
        ).numpy().copy()
def sin_experiment():
    xt = torch.linspace(-6, 6, 100)
    yt = torch.sin(xt)
    num_epochs = 10

    net = networks.flat_net(2, 2, activations.xTanH)
    optimiser = torch.optim.SGD(net.parameters(), lr=0.002, momentum=0.9)
    loss_func = torch.nn.MSELoss()

    for epoch in range(num_epochs):
        optimiser.zero_grad()
        ypred = net(xt)

        loss = loss_func(ypred, yt)
        if torch.isnan(loss):
            raise RuntimeError("NaN loss, poorly configured experiment")

        yield ypred, loss

        loss.backward()
        optimiser.step()
def test_flat():
    networks.flat_net(2, 3)
def test_flat_forward():
    xt = torch.linspace(-5, 5, 100)
    nw = networks.flat_net(4, 4)
    yt = nw.forward(xt)
    assert yt.size() == (100, )
def test_invalid_flat():
    with pytest.raises(ValueError):
        networks.flat_net(0, 3)