Exemplo n.º 1
0
    def conduits(self):
        """
        collect all useful and available data related model conduits and
        organize in one dataframe.
        """

        # check if this has been done already and return that data accordingly
        if self._conduits_df is not None:
            return self._conduits_df

        # parse out the main objects of this model
        inp = self.inp
        rpt = self.rpt

        # create dataframes of relevant sections from the INP
        conduits_df = dataframe_from_inp(inp.path, "CONDUITS")
        xsections_df = dataframe_from_inp(inp.path, "XSECTIONS")
        conduits_df = conduits_df.join(xsections_df)

        if rpt:
            # create a dictionary holding data from an rpt file, if provided
            link_flow_df = dataframe_from_rpt(rpt.path, "Link Flow Summary")
            conduits_df = conduits_df.join(link_flow_df)

        # add conduit coordinates
        xys = conduits_df.apply(lambda r: get_link_coords(
            r, self.inp.coordinates, self.inp.vertices),
                                axis=1)
        df = conduits_df.assign(coords=xys.map(lambda x: x[0]))

        # add conduit up/down inverts and calculate slope
        elevs = self.nodes()[['InvertElev']]
        df = pd.merge(df,
                      elevs,
                      left_on='InletNode',
                      right_index=True,
                      how='left')
        df = df.rename(index=str, columns={"InvertElev": "InletNodeInvert"})
        df = pd.merge(df,
                      elevs,
                      left_on='OutletNode',
                      right_index=True,
                      how='left')
        df = df.rename(index=str, columns={"InvertElev": "OutletNodeInvert"})
        df['UpstreamInvert'] = df.InletNodeInvert + df.InOffset
        df['DownstreamInvert'] = df.OutletNodeInvert + df.OutOffset
        df['SlopeFtPerFt'] = (df.UpstreamInvert -
                              df.DownstreamInvert) / df.Length

        df.InletNode = df.InletNode.astype(str)
        df.OutletNode = df.OutletNode.astype(str)

        self._conduits_df = df

        return df
Exemplo n.º 2
0
    def junctions(self):
        """
        Get/set junctions section of the INP file.

        :return: junctions section of the INP file
        :rtype: pandas.DataFrame

        Examples:

        >>> import swmmio
        >>> from swmmio.tests.data import MODEL_FULL_FEATURES__NET_PATH
        >>> model = swmmio.Model(MODEL_FULL_FEATURES__NET_PATH)
        >>> model.inp.junctions
              InvertElev  MaxDepth  InitDepth  SurchargeDepth  PondedArea
        Name
        J3         6.547        15          0               0           0
        1         17.000         0          0               0           0
        2         17.000         0          0               0           0
        3         16.500         0          0               0           0
        4         16.000         0          0               0           0
        5         15.000         0          0               0           0
        J2        13.000        15          0               0           0
        """
        if self._junctions_df is None:
            self._junctions_df = dataframe_from_inp(self.path, "JUNCTIONS")
        return self._junctions_df
Exemplo n.º 3
0
 def weirs(self):
     """
     Get/set weirs section of the INP file.
     """
     if self._weirs_df is None:
         self._weirs_df = dataframe_from_inp(self.path, "[WEIRS]")
     return self._weirs_df
Exemplo n.º 4
0
 def orifices(self):
     """
     Get/set orifices section of the INP file.
     """
     if self._orifices_df is None:
         self._orifices_df = dataframe_from_inp(self.path, "[ORIFICES]")
     return self._orifices_df
Exemplo n.º 5
0
 def pumps(self):
     """
     Get/set pumps section of the INP file.
     """
     if self._pumps_df is None:
         self._pumps_df = dataframe_from_inp(self.path, "[PUMPS]")
     return self._pumps_df
Exemplo n.º 6
0
 def xsections(self):
     """
     Get/set pumps section of the INP file.
     """
     if self._xsections_df is None:
         self._xsections_df = dataframe_from_inp(self.path, "[XSECTIONS]")
     return self._xsections_df
Exemplo n.º 7
0
    def conduits(self):
        """
        Get/set conduits section of the INP file.

        :return: Conduits section of the INP file
        :rtype: pandas.DataFrame

        Examples:

        >>> import swmmio
        >>> from swmmio.tests.data import MODEL_FULL_FEATURES__NET_PATH
        >>> model = swmmio.Model(MODEL_FULL_FEATURES__NET_PATH)
        >>> model.inp.conduits[['InletNode', 'OutletNode', 'Length', 'ManningN']]
              InletNode OutletNode  Length  ManningN
        Name
        C1:C2        J1         J2  244.63      0.01
        C2.1         J2         J3  666.00      0.01
        1             1          4  400.00      0.01
        2             4          5  400.00      0.01
        3             5         J1  400.00      0.01
        4             3          4  400.00      0.01
        5             2          5  400.00      0.01
        """
        if self._conduits_df is None:
            self._conduits_df = dataframe_from_inp(self.path, "[CONDUITS]")
        return self._conduits_df
Exemplo n.º 8
0
def test_modify_model():
    from swmmio.utils.modify_model import replace_inp_section
    from swmmio import Model
    import pandas as pd

    # initialize a baseline model object
    baseline = Model(MODEL_FULL_FEATURES_XY)
    of_test = pd.read_csv(OUTFALLS_MODIFIED, index_col=0)
    rise = 10.0  # set the starting sea level rise condition

    # create a dataframe of the model's outfalls
    outfalls = dataframe_from_inp(baseline.inp.path, '[OUTFALLS]')

    # add the current rise to the outfalls' stage elevation
    outfalls['OutfallType'] = 'FIXED'
    outfalls.loc[:, 'InvertElev'] = pd.to_numeric(
        outfalls.loc[:, 'InvertElev']) + rise
    of_test.loc[:, 'InvertElev'] = pd.to_numeric(of_test.loc[:, 'InvertElev'])

    with tempfile.TemporaryDirectory() as tempdir:
        # copy the base model into a new directory
        newdir = os.path.join(tempdir, str(rise))
        makedirs(newdir)
        newfilepath = os.path.join(
            newdir, baseline.inp.name + "_" + str(rise) + '_SLR.inp')
        shutil.copyfile(baseline.inp.path, newfilepath)

        # Overwrite the OUTFALLS section of the new model with the adjusted data
        replace_inp_section(newfilepath, '[OUTFALLS]', outfalls)

        m2 = Model(newfilepath)
        of2 = m2.inp.outfalls
        assert (of2.loc['J4', 'InvertElev'].round(1) == of_test.loc[
            'J4', 'InvertElev'].round(1))
Exemplo n.º 9
0
def search_for_duplicates(inp_path, verbose=False):
    """
    scan an inp file and determine if any element IDs are duplicated in
    any section. Method: count the uniques and compare to total length
    """
    headers = swmmio.utils.text.get_inp_sections_details(inp_path)['headers']
    dups_found = False
    for header, cols, in headers.items():
        if cols != 'blob':

            df = dataframe_from_inp(inp_path, section=header)
            elements = df.index
            n_unique = len(elements.unique())  #number of unique elements
            n_total = len(elements)  #total number of elements
            if verbose:
                print('{} -> (uniques, total) -> ({}, {})'.format(
                    header, n_unique, n_total))

            if n_unique != n_total:
                dups = ', '.join(
                    df[df.index.duplicated()].index.unique().tolist())
                print('duplicate found in {}\nsection: {}\n{}'.format(
                    inp_path, header, dups))
                dups_found = True

    return dups_found
Exemplo n.º 10
0
 def subareas(self):
     """
     Get/set subareas section of the INP file.
     """
     if self._subareas_df is None:
         self._subareas_df = dataframe_from_inp(self.path, "[SUBAREAS]")
     return self._subareas_df
Exemplo n.º 11
0
def test_inflow_dwf_dataframe():
    m = swmmio.Model(MODEL_XSECTION_ALT_03)
    dwf = dataframe_from_inp(m.inp.path, 'dwf')
    assert (dwf.loc['dummy_node2',
                    'AverageValue'] == pytest.approx(0.000275, 0.0001))

    inf = m.inp.inflows
    assert (inf.loc['dummy_node2', 'Time Series'] == 'my_time_series')
    assert (pd.isna(inf.loc['dummy_node6', 'Time Series']))
Exemplo n.º 12
0
 def polygons(self):
     """
     get/set polygons section of model
     :return: dataframe of model coordinates
     """
     if self._polygons_df is not None:
         return self._polygons_df
     self._polygons_df = dataframe_from_inp(self.path, '[Polygons]')
     return self._polygons_df
Exemplo n.º 13
0
 def vertices(self):
     """
     get/set vertices section of model
     :return: dataframe of model coordinates
     """
     if self._vertices_df is not None:
         return self._vertices_df
     self._vertices_df = dataframe_from_inp(self.path, 'VERTICES')
     return self._vertices_df
Exemplo n.º 14
0
 def coordinates(self):
     """
     Get/set coordinates section of model
     :return: dataframe of model coordinates
     """
     if self._coordinates_df is not None:
         return self._coordinates_df
     self._coordinates_df = dataframe_from_inp(self.path, "COORDINATES")
     return self._coordinates_df
Exemplo n.º 15
0
 def inflows(self):
     """
     get/set inflows section of model
     :return: dataframe of model coordinates
     """
     if self._inflows_df is not None:
         return self._inflows_df
     inf = dataframe_from_inp(self.path, 'INFLOWS', quote_replace='_!!!!_')
     self._inflows_df = inf.replace('_!!!!_', pd.np.nan)
     return self._inflows_df
Exemplo n.º 16
0
def drop_invalid_model_elements(inp):
    """
    Identify references to elements in the model that are undefined and remove them from the
    model. These should coincide with warnings/errors produced by SWMM5 when undefined elements
    are referenced in links, subcatchments, and controls.
    :param model: swmmio.Model
    :return:
    >>> import swmmio
    >>> from swmmio.tests.data import MODEL_FULL_FEATURES_INVALID
    >>> m = swmmio.Model(MODEL_FULL_FEATURES_INVALID)
    >>> drop_invalid_model_elements(m.inp)
    ['InvalidLink2', 'InvalidLink1']
    >>> m.inp
    Index(['C1:C2', 'C2.1', '1', '2', '4', '5'], dtype='object', name='Name')
    """

    juncs = dataframe_from_inp(inp.path, "[JUNCTIONS]").index.tolist()
    outfs = dataframe_from_inp(inp.path, "[OUTFALLS]").index.tolist()
    stors = dataframe_from_inp(inp.path, "[STORAGE]").index.tolist()
    nids = juncs + outfs + stors

    # drop links with bad refs to inlet/outlet nodes
    from swmmio.utils.functions import find_invalid_links
    inv_conds = find_invalid_links(inp, nids, 'conduits', drop=True)
    inv_pumps = find_invalid_links(inp, nids, 'pumps', drop=True)
    inv_orifs = find_invalid_links(inp, nids, 'orifices', drop=True)
    inv_weirs = find_invalid_links(inp, nids, 'weirs', drop=True)

    # drop other parts of bad links
    invalid_links = inv_conds + inv_pumps + inv_orifs + inv_weirs
    inp.xsections = inp.xsections.loc[~inp.xsections.index.isin(invalid_links)]

    # drop invalid subcats and their related components
    invalid_subcats = inp.subcatchments.index[~inp.subcatchments['Outlet'].
                                              isin(nids)]
    inp.subcatchments = inp.subcatchments.loc[~inp.subcatchments.index.
                                              isin(invalid_subcats)]
    inp.subareas = inp.subareas.loc[~inp.subareas.index.isin(invalid_subcats)]
    inp.infiltration = inp.infiltration.loc[~inp.infiltration.index.
                                            isin(invalid_subcats)]

    return invalid_links + invalid_subcats
Exemplo n.º 17
0
    def subcatchments(self):
        """
        Get/set subcatchments section of the INP file.

        :return: subcatchments section of the INP file
        :rtype: pandas.DataFrame

        Examples:
        """
        if self._subcatchments_df is None:
            self._subcatchments_df = dataframe_from_inp(self.path, "[SUBCATCHMENTS]")
        return self._subcatchments_df
Exemplo n.º 18
0
    def files(self):
        """
        Get/set files section of the INP file.

        :return: files section of the INP file
        :rtype: pandas.DataFrame

        Examples:
        """
        if self._files_df is None:
            self._files_df = dataframe_from_inp(self.path, "[FILES]")
        return self._files_df.reset_index()
Exemplo n.º 19
0
    def storage(self):
        """
        Get/set storage section of the INP file.

        :return: storage section of the INP file
        :rtype: pandas.DataFrame

        Examples:
        """
        if self._storage_df is None:
            self._storage_df = dataframe_from_inp(self.path, "[STORAGE]")
        return self._storage_df
Exemplo n.º 20
0
    def infiltration(self):
        """
        Get/set infiltration section of the INP file.

        >>> import swmmio
        >>> from swmmio.tests.data import MODEL_FULL_FEATURES__NET_PATH
        >>> m = swmmio.Model(MODEL_FULL_FEATURES__NET_PATH)
        >>> m.inp.infiltration
                      MaxRate  MinRate  Decay  DryTime  MaxInfil
        Subcatchment
        S1                3.0      0.5      4        7         0
        S2                3.0      0.5      4        7         0
        S3                3.0      0.5      4        7         0
        S4                3.0      0.5      4        7         0
        """
        if self._infiltration_df is None:
            self._infiltration_df = dataframe_from_inp(self.path, "infiltration")
        return self._infiltration_df
Exemplo n.º 21
0
    def outfalls(self):
        """
        Get/set outfalls section of the INP file.

        :return: outfalls section of the INP file
        :rtype: pandas.DataFrame

        Examples:

        >>> import swmmio
        >>> from swmmio.tests.data import MODEL_FULL_FEATURES__NET_PATH
        >>> model = swmmio.Model(MODEL_FULL_FEATURES__NET_PATH)
        >>> model.inp.outfalls
              InvertElev OutfallType StageOrTimeseries  TideGate
        Name
        J4             0        FREE                NO       NaN
        """
        if self._outfalls_df is None:
            self._outfalls_df = dataframe_from_inp(self.path, "[OUTFALLS]")
        return self._outfalls_df
Exemplo n.º 22
0
    def __call__(self):
        """
        collect all useful and available data related to the conduits and
        organize in one dataframe.
        >>> model = swmmio.Model(MODEL_FULL_FEATURES__NET_PATH)
        >>> conduits_section = ModelSection(model, 'conduits')
        >>> conduits_section()
        """

        # concat inp sections with unique element IDs
        headers = get_inp_sections_details(self.inp.path)
        dfs = [
            dataframe_from_inp(self.inp.path, sect)
            for sect in self.inp_sections if sect.upper() in headers
        ]

        # return empty df if no inp sections found
        if len(dfs) == 0:
            return pd.DataFrame()

        df = pd.concat(dfs, axis=0, sort=False)

        # join to this any sections with matching IDs (e.g. XSECTIONS)
        for sect in self.join_sections:
            rsuffix = f"_{sect.replace(' ', '_')}"
            df = df.join(dataframe_from_inp(self.inp.path, sect),
                         rsuffix=rsuffix)

        if df.empty:
            return df

        # if there is an RPT available, grab relevant sections
        if self.rpt:
            for rpt_sect in self.rpt_sections:
                df = df.join(dataframe_from_rpt(self.rpt.path, rpt_sect))

        # add coordinates
        if self.geomtype == 'point':
            df = df.join(self.inp.coordinates[['X', 'Y']])
            xys = df.apply(lambda r: nodexy(r), axis=1)
            df = df.assign(coords=xys)

        elif self.geomtype == 'linestring':
            # add conduit coordinates
            xys = df.apply(lambda r: get_link_coords(r, self.inp.coordinates,
                                                     self.inp.vertices),
                           axis=1)
            df = df.assign(coords=xys.map(lambda x: x[0]))

            # make inlet/outlet node IDs string type
            df.InletNode = df.InletNode.astype(str)
            df.OutletNode = df.OutletNode.astype(str)

        elif self.geomtype == 'polygon':
            p = self.inp.polygons

            # take stacked coordinates and orient in list of tuples,
            xys = p.groupby(by=p.index).apply(
                lambda r: [(xy['X'], xy['Y']) for ix, xy in r.iterrows()])
            # copy the first point to the last position
            xys = xys.apply(lambda r: r + [r[0]])
            df = df.assign(coords=xys)

        # confirm index name is string
        df = df.rename(index=str)

        # trim to desired columns
        if self.columns is not None:
            df = df[[c for c in self.columns if c in df.columns]]

        self._df = df
        return df
Exemplo n.º 23
0
def merge_models(inp1, inp2, target='merged_model.inp'):
    """
    Merge two separate swmm models into one model. This creates a diff, ignores
    removed sections, and uses inp1 settings where conflicts exist (altered sections in diff)
    :param inp1: swmmio.Model.inp object to be combined with inp2
    :param inp2: swmmio.Model.inp object to be combined with inp1
    :param target: path of new model
    :return: path to target
    """
    # model object to store resulting merged model
    m3 = swmmio.Model(inp1)

    inp_diff = INPDiff(inp1, inp2)
    with open(target, 'w') as newf:
        for section, _ in inp_diff.all_inp_objects.items():
            # don't consider the "removed" parts of the diff
            # print('{}: {}'.format(section,inp_diff.all_inp_objects[section]['columns']))
            # check if the section is not in problem_sections and there are changes
            # in self.instructions and commit changes to it from baseline accordingly
            col_order = []
            if (section not in problem_sections and
                    inp_diff.all_inp_objects[section]['columns'] != ['blob']
                    and section in inp_diff.diffs):

                # df of baseline model section
                basedf = dataframe_from_inp(
                    m3.inp.path,
                    section,
                    additional_cols=[';', 'Comment', 'Origin'])
                basedf[';'] = ';'
                col_order = basedf.columns
                # grab the changes to
                changes = inp_diff.diffs[section]

                # remove elements that have alterations keep ones tagged for removal
                # (unchanged, but not present in m2)
                remove_ids = changes.altered.index
                new_section = basedf.drop(remove_ids)

                # add elements
                new_section = pd.concat(
                    [new_section, changes.altered, changes.added],
                    axis=0,
                    sort=False)
            else:
                # section is not well understood or is problematic, just blindly copy
                new_section = dataframe_from_inp(
                    m3.inp.path,
                    section,
                    additional_cols=[';', 'Comment', 'Origin'])
                new_section[';'] = ';'
                # print ('dealing with confusing section: {}\n{}'.format(section, new_section))

            # print(new_section.head())
            # write the section
            new_section = new_section[col_order]
            new_section[';'] = ';'
            vc_utils.write_inp_section(newf,
                                       inp_diff.all_inp_objects,
                                       section,
                                       new_section,
                                       pad_top=True)

    return target
Exemplo n.º 24
0
    def __init__(self,
                 model1=None,
                 model2=None,
                 section='JUNCTIONS',
                 build_instr_file=None):
        self.model1 = model1 if model1 else ""
        self.model2 = model2 if model2 else ""

        if model1 and model2:
            df1 = dataframe_from_inp(model1.inp.path, section)
            df2 = dataframe_from_inp(model2.inp.path, section)
            df1[';'] = ';'
            df2[';'] = ';'
            col_order = list(df2.columns) + ['Comment', 'Origin']
            m2_origin_string = os.path.basename(model2.inp.path).replace(
                ' ', '-')

            # BUG -> this fails if a df1 or df2 is None i.e. if a section doesn't exist in one model
            added_ids = df2.index.difference(df1.index)
            removed_ids = df1.index.difference(df2.index)

            # find where elements were changed (but kept with same ID)
            common_ids = df1.index.difference(
                removed_ids)  # original - removed = in common
            # both dfs concatenated, with matched indices for each element
            full_set = pd.concat([df1.loc[common_ids], df2.loc[common_ids]],
                                 sort=False)
            # remove whitespace
            full_set = full_set.apply(lambda x: x.astype(str).str.strip()
                                      if x.dtype == "object" else x)
            # drop dupes on the set, all things that did not changed should have 1 row
            changes_with_dupes = full_set.drop_duplicates()
            # duplicate indicies are rows that have changes, isolate these
            # idx[idx.duplicated()].unique()
            changed_ids = changes_with_dupes.index[
                changes_with_dupes.index.duplicated()].unique(
                )  # .get_duplicates()
            added = df2.loc[added_ids].copy()

            added[
                'Comment'] = 'Added'  # from model {}'.format(model2.inp.path)
            added['Origin'] = m2_origin_string

            altered = df2.loc[changed_ids].copy()
            altered[
                'Comment'] = 'Altered'  # in model {}'.format(model2.inp.path)
            altered['Origin'] = m2_origin_string

            removed = df1.loc[removed_ids].copy()
            removed[
                'Comment'] = 'Removed'  # in model {}'.format(model2.inp.path)
            removed['Origin'] = m2_origin_string
            # removed = removed[col_order]

            self.old = df1
            self.new = df2
            self.added = added
            self.removed = removed
            self.altered = altered

        if build_instr_file:
            # if generating from a build instructions file, do this (more efficient)
            df = dataframe_from_bi(build_instr_file, section=section)
            self.added = df.loc[df['Comment'] == 'Added']
            self.removed = df.loc[df['Comment'] == 'Removed']
            self.altered = df.loc[df['Comment'] == 'Altered']