Exemplo n.º 1
0
    def peakflow(self, catchment):
        filename = str(uuid.uuid4())
        self.write_rain_file(filename, self.getRainVec(), 60 * 6)

        fo = open("/tmp/" + filename + ".inp", 'w')
        self.init_swmm_model(fo,
                             rainfile='/tmp/' + filename + '.dat',
                             start='01/01/2000',
                             stop='01/02/2000',
                             intervall='00:05:00',
                             sub_satchment=catchment)
        fo.close()

        swmm = cdll.LoadLibrary(self.getSWMMLib())
        if swmm.swmm_run("/tmp/" + filename + ".inp", "/tmp/" + filename +
                         ".rep", "/tmp/" + filename + ".out") != 0:
            print "something went wrong"
            return -1

        f = swmmread.open("/tmp/" + filename + ".out")
        natural_peaks = {}
        for c in catchment.keys():
            timeseries = f.get_values('subcatchments', c)
            a = np.array([row[1][4] for row in timeseries])
            natural_peaks[c] = a.max()

        #os.remove("/tmp/" + filename + ".inp")
        #os.remove("/tmp/" + filename + ".rep")
        #os.remove("/tmp/" + filename + ".out")
        #os.remove("/tmp/" + filename + ".dat")

        return natural_peaks
Exemplo n.º 2
0
    def peakflow(self, catchment):
        filename = str(uuid.uuid4())
        self.write_rain_file(filename, self.getRainVec(), 60 * 5)

        fo = open("/tmp/" + filename + ".inp", "w")
        self.init_swmm_model(
            fo,
            rainfile="/tmp/" + filename + ".dat",
            start="01/01/2000",
            stop="01/02/2000",
            intervall="00:05:00",
            sub_satchment=catchment,
        )
        fo.close()

        swmm = cdll.LoadLibrary(self.getSWMMLib())
        if swmm.swmm_run("/tmp/" + filename + ".inp", "/tmp/" + filename + ".rep", "/tmp/" + filename + ".out") != 0:
            print "something went wrong"
            return -1

        f = swmmread.open("/tmp/" + filename + ".out")
        natural_peaks = {}
        for c in catchment.keys():
            timeseries = f.get_values("subcatchments", c)
            a = np.array([row[1][4] for row in timeseries])
            natural_peaks[c] = a.max()

        os.remove("/tmp/" + filename + ".inp")
        os.remove("/tmp/" + filename + ".rep")
        os.remove("/tmp/" + filename + ".out")
        os.remove("/tmp/" + filename + ".dat")

        return natural_peaks
Exemplo n.º 3
0
    def SEI(self, catchment, thresholds):
        filename = str(uuid.uuid4())

        fo = open("/tmp/" + filename + ".inp", 'w')
        intervall = (
            datetime.datetime(2000, 1, 1) +
            datetime.timedelta(seconds=self.time_delta)).strftime('%H:%M:%S')
        dt = datetime.timedelta(seconds=self.time_delta)

        swmm_rain_filename = self.swmm_rain_file
        if self.rain_vector_from_city != "":
            self.city.reset_reading()
            for c in self.city:
                # print "wite",self.rain_vector_from_city
                import ogr
                # print c.GetGeomFieldCount()
                # print c.GetFieldDefnRef().GetType("data")

                #ogr.FieldDefn.GetType("data")
                # print c.GetFieldAsBinary("data")
                # print dm_get_double_list(c, self.rain_vector_from_city)
                self.write_rain_file(
                    filename,
                    dm_get_double_list(c, self.rain_vector_from_city), 60 * 6)
                swmm_rain_filename = "/tmp/" + filename + ".dat"
        self.init_swmm_model(fo,
                             rainfile=swmm_rain_filename,
                             start='01/01/2000',
                             stop='12/30/2009',
                             intervall=intervall,
                             sub_satchment=catchment)
        fo.close()

        swmm = cdll.LoadLibrary(self.getSWMMLib())
        e_code = swmm.swmm_run("/tmp/" + filename + ".inp",
                               "/tmp/" + filename + ".rep",
                               "/tmp/" + filename + ".out")
        if e_code != 0:
            print e_code, "something went wrong"
            return -1
        f = swmmread.open("/tmp/" + filename + ".out")
        SEIs = {}
        for c in catchment.keys():
            timeseries = f.get_values('subcatchments', c)
            sum = 0
            threshold = thresholds[c] / 2.0
            for row in timeseries:
                if row[1][4] > threshold:
                    sum = sum + row[1][4]
            # print c, sum

            SEIs[c] = sum

        os.remove("/tmp/" + filename + ".inp")
        os.remove("/tmp/" + filename + ".rep")
        os.remove("/tmp/" + filename + ".out")
        if self.rain_vector_from_city != "":
            os.remove("/tmp/" + filename + ".dat")
        return SEIs
Exemplo n.º 4
0
    def SEI(self, catchment, thresholds):
        filename = str(uuid.uuid4())

        fo = open("/tmp/" + filename + ".inp", "w")
        intervall = (datetime.datetime(2000, 1, 1) + datetime.timedelta(seconds=self.time_delta)).strftime("%H:%M:%S")
        dt = datetime.timedelta(seconds=self.time_delta)

        swmm_rain_filename = self.swmm_rain_file
        if self.rain_vector_from_city != "":
            self.city.reset_reading()
            for c in self.city:
                # s = str(c.GetFieldAsString(self.rain_vector_from_city))

                self.write_rain_file(filename, dm_get_double_list(c, self.rain_vector_from_city), 60 * 5)
                swmm_rain_filename = "/tmp/" + filename + ".dat"
        self.init_swmm_model(
            fo,
            rainfile=swmm_rain_filename,
            start="01/01/2000",
            stop="12/30/2009",
            intervall=intervall,
            sub_satchment=catchment,
        )
        fo.close()

        swmm = cdll.LoadLibrary(self.getSWMMLib())
        e_code = swmm.swmm_run("/tmp/" + filename + ".inp", "/tmp/" + filename + ".rep", "/tmp/" + filename + ".out")
        if e_code != 0:
            print e_code, "something went wrong"
            return -1
        f = swmmread.open("/tmp/" + filename + ".out")
        SEIs = {}
        for c in catchment.keys():
            timeseries = f.get_values("subcatchments", c)
            sum = 0
            threshold = thresholds[c] / 2.0
            for row in timeseries:
                if row[1][4] > threshold:
                    sum = sum + row[1][4]
            # print c, sum

            SEIs[c] = sum

        os.remove("/tmp/" + filename + ".inp")
        os.remove("/tmp/" + filename + ".rep")
        os.remove("/tmp/" + filename + ".out")
        if self.rain_vector_from_city != "":
            os.remove("/tmp/" + filename + ".dat")
        return SEIs