Exemplo n.º 1
0
def run_neuron_rendering(max_n_jobs: Optional[int] = None):
    """
    Render the default views as defined in ``global_params`` [WIP].

    Args:
        max_n_jobs: Number of parallel jobs.

    Notes:
        Requires :func:`~run_create_neuron_ssd`.
    """
    log = initialize_logging('neuron_view_rendering',
                             global_params.config.working_dir + '/logs/')
    ps = [Process(target=_run_neuron_rendering_big_helper, args=(max_n_jobs, )),
          Process(target=_run_neuron_rendering_small_helper, args=(max_n_jobs, ))]
    for p in ps:
        p.start()
        time.sleep(10)
    for p in ps:
        p.join()
    log.info('Finished rendering of all SSVs. Checking completeness.')
    ssd = SuperSegmentationDataset(working_dir=global_params.config.working_dir)
    res = find_incomplete_ssv_views(ssd, woglia=True, n_cores=global_params.NCORES_PER_NODE)
    if len(res) != 0:
        msg = "Not all SVs were predicted! {}/{} missing:\n" \
              "{}".format(len(res), len(ssd.ssv_ids),
                          res[:10])
        log.error(msg)
        raise RuntimeError(msg)
    log.info('Success.')
Exemplo n.º 2
0
def run_morphology_embedding(max_n_jobs=None):
    if max_n_jobs is None:
        max_n_jobs = global_params.NGPU_TOTAL * 2
    log = initialize_logging('morphology_embedding',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    pred_key_appendix = ""

    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    # sort ssv ids according to their number of SVs (descending)
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)
    # add ssd parameters
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir,
                     pred_key_appendix) for ssv_ids in multi_params]
    qu.QSUB_script(multi_params,
                   "generate_morphology_embedding",
                   n_max_co_processes=global_params.NGPU_TOTAL,
                   n_cores=global_params.NCORES_PER_NODE //
                   global_params.NGPUS_PER_NODE,
                   log=log,
                   suffix="",
                   additional_flags="--gres=gpu:1",
                   remove_jobfolder=True)
    log.info('Finished extraction of cell morphology embedding.')
Exemplo n.º 3
0
def run_axoness_mapping(max_n_jobs=None):
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    """Maps axon prediction of rendering locations onto SSV skeletons"""
    log = initialize_logging('axon_mapping',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    pred_key_appendix = ""
    # Working directory has to be changed globally in global_params
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)

    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    # sort ssv ids according to their number of SVs (descending)
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)

    multi_params = [(par, pred_key_appendix) for par in multi_params]
    log.info('Starting axoness mapping.')
    _ = qu.QSUB_script(multi_params,
                       "map_viewaxoness2skel",
                       log=log,
                       n_max_co_processes=global_params.NCORE_TOTAL,
                       suffix="",
                       n_cores=1,
                       remove_jobfolder=True)
    # TODO: perform completeness check
    log.info('Finished axoness mapping.')
Exemplo n.º 4
0
def run_morphology_embedding():
    log = initialize_logging('morphology_embedding',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    pred_key_appendix = ""

    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    # sort ssv ids according to their number of SVs (descending)
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, 2000)
    # add ssd parameters
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir,
                     pred_key_appendix) for ssv_ids in multi_params]
    qu.QSUB_script(multi_params,
                   "generate_morphology_embedding",
                   pe="openmp",
                   queue=None,
                   n_cores=10,
                   suffix="",
                   additional_flags="--gres=gpu:1",
                   resume_job=False)  # removed -V (used with QSUB)
    log.info('Finished extraction of cell morphology embedding.')
Exemplo n.º 5
0
def run_skeleton_generation(max_n_jobs=None):
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    log = initialize_logging('skeleton_generation',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)

    # TODO: think about using create_sso_skeleton_fast if underlying RAG
    #  obeys spatial correctness (> 10x faster)
    # list of SSV IDs and SSD parameters need to be given to a single QSUB job
    multi_params = ssd.ssv_ids
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    ordering = np.argsort(nb_svs_per_ssv)
    multi_params = multi_params[ordering[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)

    # add ssd parameters
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir)
                    for ssv_ids in multi_params]

    # create SSV skeletons, requires SV skeletons!
    log.info('Starting skeleton generation of {} SSVs.'.format(len(
        ssd.ssv_ids)))
    qu.QSUB_script(multi_params,
                   "export_skeletons_new",
                   log=log,
                   n_max_co_processes=global_params.NCORE_TOTAL,
                   remove_jobfolder=True)

    log.info('Finished skeleton generation.')
Exemplo n.º 6
0
def run_matrix_export():
    # cache cell attributes
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    ssd.save_dataset_deep()
    log = initialize_logging('synapse_analysis',
                             global_params.config.working_dir + '/logs/',
                             overwrite=True)
    sd_syn_ssv = SegmentationDataset(
        working_dir=global_params.config.working_dir, obj_type='syn_ssv')

    # as an alternative to the skeletons, use vertex predictions or
    # sample_locations, ~3.5h @ 300 cpus
    # TODO: requires speed-up; one could collect properties only for synapses >
    #  probability threshold
    #     synssv_ids = synssv_ids[syn_prob > .5]
    #     ssv_partners = ssv_partners[syn_prob > .5]
    # One could also re-use the cached synssv IDs (computed during mapping of
    # synssv to SSVs) -> saves finding SSV ID indices in synapse arrays (->
    # slow for many synapses)
    cps.collect_properties_from_ssv_partners(global_params.config.working_dir,
                                             debug=True)
    #
    # collect new object attributes collected above partner axoness, celltypes,
    # synapse probabilities etc, no need to compute size/rep_coord etc. ->
    # recompute=False
    dataset_analysis(sd_syn_ssv, compute_meshprops=False, recompute=False)
    log.info('Synapse property collection from SSVs finished.')

    # export_matrix
    log.info('Exporting connectivity matrix now.')
    dest_folder = global_params.config.working_dir + '/connectivity_matrix/'
    cps.export_matrix(dest_folder=dest_folder)
    log.info('Connectivity matrix was epxorted to "{}".'.format(dest_folder))
Exemplo n.º 7
0
def run_morphology_embedding(max_n_jobs: Optional[int] = None):
    """
    Infer local morphology embeddings for all neuron reconstructions base on
    triplet-loss trained cellular morphology learning network (tCMN).

    Args:
        max_n_jobs: Number of parallel jobs.

    Notes:
        Requires :func:`~run_create_neuron_ssd`, :func:`~run_neuron_rendering` and
        :func:`~syconn.exec.skeleton.run_skeleton_generation`.
    """
    if max_n_jobs is None:
        max_n_jobs = global_params.NGPU_TOTAL * 2
    log = initialize_logging('morphology_embedding', global_params.config.working_dir
                             + '/logs/', overwrite=False)
    ssd = SuperSegmentationDataset(working_dir=global_params.config.working_dir)
    pred_key_appendix = ""

    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    nb_svs_per_ssv = np.array([len(ssd.mapping_dict[ssv_id]) for ssv_id
                               in ssd.ssv_ids])
    # sort ssv ids according to their number of SVs (descending)
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)
    # add ssd parameters
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir,
                     pred_key_appendix) for ssv_ids in multi_params]
    qu.QSUB_script(multi_params, "generate_morphology_embedding",
                   n_max_co_processes=global_params.NGPU_TOTAL,
                   n_cores=global_params.NCORES_PER_NODE // global_params.NGPUS_PER_NODE,
                   log=log, suffix="", additional_flags="--gres=gpu:1",
                   remove_jobfolder=True)
    log.info('Finished extraction of cell morphology embedding.')
Exemplo n.º 8
0
def run_spiness_prediction(max_n_jobs_gpu: Optional[int] = None,
                           max_n_jobs: Optional[int] = None):
    """
    Will store semantic spine labels inside``ssv.label_dict('vertex')['spiness]``.

    Todo:
        * run rendering chunk-wise instead of on-the-fly and then perform
          prediction chunk-wise as well, adopt from spiness step.

    Args:
        max_n_jobs_gpu: Number of parallel GPU jobs. Used for the inference.
        max_n_jobs : Number of parallel CPU jobs. Used for the mapping step.
    """
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    if max_n_jobs_gpu is None:
        max_n_jobs_gpu = global_params.NGPU_TOTAL * 2
    log = initialize_logging('spine_identification', global_params.config.working_dir
                             + '/logs/', overwrite=False)
    ssd = SuperSegmentationDataset(working_dir=global_params.config.working_dir)

    # run semantic spine segmentation on multi views
    sd = ssd.get_segmentationdataset("sv")
    # chunk them
    multi_params = chunkify(sd.so_dir_paths, max_n_jobs_gpu)
    # set model properties
    model_kwargs = dict(src=global_params.config.mpath_spiness,
                        multi_gpu=False)
    so_kwargs = dict(working_dir=global_params.config.working_dir)
    pred_kwargs = dict(pred_key=global_params.semseg2mesh_spines['semseg_key'])
    multi_params = [[par, model_kwargs, so_kwargs, pred_kwargs]
                    for par in multi_params]
    log.info('Starting spine prediction.')
    qu.QSUB_script(multi_params, "predict_spiness_chunked", log=log,
                   n_max_co_processes=global_params.NGPU_TOTAL,
                   n_cores=global_params.NCORES_PER_NODE // global_params.NGPUS_PER_NODE,
                   suffix="",  additional_flags="--gres=gpu:1",
                   remove_jobfolder=True)
    log.info('Finished spine prediction.')
    # map semantic spine segmentation of multi views on SSV mesh
    # TODO: CURRENTLY HIGH MEMORY CONSUMPTION
    if not ssd.mapping_dict_exists:
        raise ValueError('Mapping dict does not exist.')
    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    nb_svs_per_ssv = np.array([len(ssd.mapping_dict[ssv_id]) for ssv_id
                               in ssd.ssv_ids])
    # sort ssv ids according to their number of SVs (descending)
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)
    # add ssd parameters
    kwargs_semseg2mesh = global_params.semseg2mesh_spines
    kwargs_semsegforcoords = global_params.semseg2coords_spines
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir,
                     kwargs_semseg2mesh, kwargs_semsegforcoords) for ssv_ids in multi_params]
    log.info('Starting mapping of spine predictions to neurite surfaces.')
    qu.QSUB_script(multi_params, "map_spiness", n_max_co_processes=global_params.NCORE_TOTAL,
                   n_cores=4, suffix="", additional_flags="", remove_jobfolder=True, log=log)
    log.info('Finished spine mapping.')
Exemplo n.º 9
0
def run_spiness_prediction(max_n_jobs_gpu=None, max_n_jobs=None):
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    if max_n_jobs_gpu is None:
        max_n_jobs_gpu = global_params.NGPU_TOTAL * 2
    log = initialize_logging('spine_identification',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    pred_key = "spiness"

    # run semantic spine segmentation on multi views
    sd = ssd.get_segmentationdataset("sv")
    # chunk them
    multi_params = chunkify(sd.so_dir_paths, max_n_jobs_gpu)
    # set model properties
    model_kwargs = dict(src=global_params.config.mpath_spiness,
                        multi_gpu=False)
    so_kwargs = dict(working_dir=global_params.config.working_dir)
    pred_kwargs = dict(pred_key=pred_key)
    multi_params = [[par, model_kwargs, so_kwargs, pred_kwargs]
                    for par in multi_params]
    log.info('Starting spine prediction.')
    qu.QSUB_script(multi_params,
                   "predict_spiness_chunked",
                   log=log,
                   n_max_co_processes=global_params.NGPU_TOTAL,
                   n_cores=global_params.NCORES_PER_NODE //
                   global_params.NGPUS_PER_NODE,
                   suffix="",
                   additional_flags="--gres=gpu:1",
                   remove_jobfolder=True)
    log.info('Finished spine prediction.')
    # map semantic spine segmentation of multi views on SSV mesh
    # TODO: CURRENTLY HIGH MEMORY CONSUMPTION
    if not ssd.mapping_dict_exists:
        raise ValueError('Mapping dict does not exist.')
    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    # sort ssv ids according to their number of SVs (descending)
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)
    # add ssd parameters
    kwargs_semseg2mesh = dict(semseg_key=pred_key, force_recompute=True)
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir,
                     kwargs_semseg2mesh) for ssv_ids in multi_params]
    log.info('Starting mapping of spine predictions to neurite surfaces.')
    qu.QSUB_script(multi_params,
                   "map_spiness",
                   n_max_co_processes=global_params.NCORE_TOTAL,
                   n_cores=4,
                   suffix="",
                   additional_flags="",
                   remove_jobfolder=True,
                   log=log)
    log.info('Finished spine mapping.')
Exemplo n.º 10
0
def run_create_rag():
    """
    If ``global_params.config.prior_glia_removal==True``:
        stores pruned RAG at ``global_params.config.pruned_rag_path``, required for all glia
        removal steps. :func:`~syconn.exec.exec_multiview.run_glia_splitting`
        will finally store the ``neuron_rag.bz2`` at the currently active working directory.
    else:
        stores pruned RAG at ``global_params.config.working_dir + /glia/neuron_rag.bz2``,
        required by :func:`~syconn.exec.exec_multiview.run_create_neuron_ssd`.
    """
    log = initialize_logging('create_rag',
                             global_params.config.working_dir + '/logs/',
                             overwrite=True)
    # Crop RAG according to cell SVs found during SD generation and apply size threshold
    G = nx.read_edgelist(global_params.config.init_rag_path, nodetype=np.uint)
    if 0 in G.nodes():
        G.remove_node(0)
        log.warning('Found background node 0 in original graph. Removing.')
    all_sv_ids_in_rag = np.array(list(G.nodes()), dtype=np.uint)
    log.info("Found {} SVs in initial RAG.".format(len(all_sv_ids_in_rag)))

    # add single SV connected components to initial graph
    sd = SegmentationDataset(obj_type='sv',
                             working_dir=global_params.config.working_dir)
    sv_ids = sd.ids
    diff = np.array(list(set(sv_ids).difference(set(all_sv_ids_in_rag))))
    log.info(
        'Found {} single-element connected component SVs which were missing'
        ' in initial RAG.'.format(len(diff)))

    for ix in diff:
        G.add_edge(ix, ix)

    log.debug("Found {} SVs in initial RAG after adding size-one connected "
              "components.".format(G.number_of_nodes()))

    # remove small connected components
    sv_size_dict = {}
    bbs = sd.load_cached_data('bounding_box') * sd.scaling
    for ii in range(len(sd.ids)):
        sv_size_dict[sd.ids[ii]] = bbs[ii]
    ccsize_dict = create_ccsize_dict(G, sv_size_dict)
    log.debug("Finished preparation of SSV size dictionary based "
              "on bounding box diagonal of corresponding SVs.")
    before_cnt = len(G.nodes())
    for ix in list(G.nodes()):
        if ccsize_dict[ix] < global_params.config['glia']['min_cc_size_ssv']:
            G.remove_node(ix)
    cc_gs = list(nx.connected_component_subgraphs(G))
    log.info("Removed {} SVs from RAG because of size. Final RAG contains {}"
             " SVs in {} CCs.".format(before_cnt - G.number_of_nodes(),
                                      G.number_of_nodes(), len(cc_gs)))
    nx.write_edgelist(G, global_params.config.pruned_rag_path)

    if not global_params.config.prior_glia_removal:
        os.makedirs(global_params.config.working_dir + '/glia/', exist_ok=True)
        shutil.copy(global_params.config.pruned_rag_path,
                    global_params.config.working_dir + '/glia/neuron_rag.bz2')
Exemplo n.º 11
0
def run_matrix_export():
    """
    Export the matrix as a ``.csv`` file at the ``connectivity_matrix`` folder
    of the currently active working directory.
    Also collects the following synapse properties from prior analysis
    steps:
        * 'partner_axoness': Cell compartment type (axon: 1, dendrite: 0, soma: 2,
            en-passant bouton: 3, terminal bouton: 4) of the partner neurons.
        * 'partner_spiness': Spine compartment predictions of both neurons.
        * 'partner_celltypes': Celltype of the both neurons.
        * 'latent_morph': Local morphology embeddings of the pre- and post-
            synaptic partners.

    Examples:
        See :class:`~syconn.reps.segmentation.SegmentationDataset` for examples.
    """
    # cache cell attributes
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    ssd.save_dataset_deep()
    log = initialize_logging('synapse_analysis',
                             global_params.config.working_dir + '/logs/',
                             overwrite=True)

    sd_syn_ssv = SegmentationDataset(
        working_dir=global_params.config.working_dir, obj_type='syn_ssv')

    # as an alternative to the skeletons, use vertex predictions or
    # sample_locations, ~3.5h @ 300 cpus
    # TODO: requires speed-up; one could collect properties only for synapses >
    #  probability threshold
    #     synssv_ids = synssv_ids[syn_prob > .5]
    #     ssv_partners = ssv_partners[syn_prob > .5]
    # One could also re-use the cached synssv IDs (computed during mapping of
    # synssv to SSVs) -> saves finding SSV ID indices in synapse arrays (->
    # slow for many synapses)
    cps.collect_properties_from_ssv_partners(global_params.config.working_dir,
                                             debug=True)
    #
    # collect new object attributes collected above partner axoness, celltypes,
    # synapse probabilities etc, no need to compute size/rep_coord etc. ->
    # recompute=False
    dataset_analysis(sd_syn_ssv, compute_meshprops=False, recompute=False)
    log.info('Synapse property collection from SSVs finished.')

    # export_matrix
    log.info('Exporting connectivity matrix now.')
    dest_folder = global_params.config.working_dir + '/connectivity_matrix/'
    cps.export_matrix(dest_folder=dest_folder)
    log.info('Connectivity matrix was exported to "{}".'.format(dest_folder))
Exemplo n.º 12
0
def run_celltype_prediction(max_n_jobs_gpu: Optional[int] = None):
    """
    Run the celltype inference based on the ``img2scalar`` CMN.

    Args:
        max_n_jobs_gpu: Number of parallel GPU jobs.

    Notes:
        Requires :func:`~run_create_neuron_ssd` and :func:`~run_neuron_rendering`.
    """
    if max_n_jobs_gpu is None:
        max_n_jobs_gpu = global_params.NGPU_TOTAL * 2
    log = initialize_logging('celltype_prediction', global_params.config.working_dir+ '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(working_dir=global_params.config.working_dir)
    # shuffle SV IDs
    np.random.seed(0)

    log.info('Starting cell type prediction.')
    nb_svs_per_ssv = np.array([len(ssd.mapping_dict[ssv_id])
                               for ssv_id in ssd.ssv_ids])
    multi_params = ssd.ssv_ids
    ordering = np.argsort(nb_svs_per_ssv)
    multi_params = multi_params[ordering[::-1]]
    max_n_jobs_gpu = np.max([max_n_jobs_gpu, len(multi_params) // 200])  # at most 200 SSV per job
    multi_params = chunkify(multi_params, max_n_jobs_gpu)
    # job parameter will be read sequentially, i.e. in order to provide only
    # one list as parameter one needs an additonal axis
    multi_params = [(ixs, ) for ixs in multi_params]

    path_to_out = qu.QSUB_script(multi_params, "predict_cell_type", log=log,
                                 n_max_co_processes=global_params.NNODES_TOTAL,
                                 suffix="", additional_flags="--gres=gpu:1",
                                 n_cores=global_params.NCORES_PER_NODE // global_params.NGPUS_PER_NODE,
                                 remove_jobfolder=True)
    log.info('Finished prediction of {} SSVs. Checking completeness.'
             ''.format(len(ordering)))
    out_files = glob.glob(path_to_out + "*.pkl")
    err = []
    for fp in out_files:
        with open(fp, "rb") as f:
            local_err = pkl.load(f)
        err += list(local_err)
    if len(err) > 0:
        msg = "{} errors occurred for SSVs with ID: " \
              "{}".format(len(err), [el[0] for el in err])
        log.error(msg)
        raise ValueError(msg)
    else:
        log.info('Success.')
Exemplo n.º 13
0
def run_skeleton_generation(max_n_jobs: Optional[int] = None,
                            map_myelin: Optional[bool] = None):
    """
    Generate the cell reconstruction skeletons.

    Args:
        max_n_jobs: Number of parallel jobs.
        map_myelin: Map myelin predictions at every ``skeleton['nodes']`` in
        :py:attr:`~syconn.reps.super_segmentation_object.SuperSegmentationObject.skeleton`.

    """
    if map_myelin is None:
        map_myelin = os.path.isdir(global_params.config.working_dir +
                                   '/knossosdatasets/myelin/')
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    log = initialize_logging('skeleton_generation',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)

    # TODO: think about using create_sso_skeleton_fast if underlying RAG
    #  obeys spatial correctness (> 10x faster)
    # list of SSV IDs and SSD parameters need to be given to a single QSUB job
    multi_params = ssd.ssv_ids
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    ordering = np.argsort(nb_svs_per_ssv)
    multi_params = multi_params[ordering[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)

    # add ssd parameters
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir,
                     map_myelin) for ssv_ids in multi_params]

    # create SSV skeletons, requires SV skeletons!
    log.info('Starting skeleton generation of {} SSVs.'.format(len(
        ssd.ssv_ids)))
    qu.QSUB_script(multi_params,
                   "export_skeletons_new",
                   log=log,
                   n_max_co_processes=global_params.NCORE_TOTAL,
                   remove_jobfolder=True,
                   n_cores=2)

    log.info('Finished skeleton generation.')
Exemplo n.º 14
0
def run_glia_splitting():
    log = initialize_logging('glia_splitting',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    # path to networkx file containing the initial rag, TODO: create alternative formats
    G = nx.Graph()  # TODO: Make this more general
    with open(global_params.config.init_rag_path, 'r') as f:
        for l in f.readlines():
            edges = [int(v) for v in re.findall('(\d+)', l)]
            G.add_edge(edges[0], edges[1])

    all_sv_ids_in_rag = np.array(list(G.nodes()), dtype=np.uint)
    log.info("Found {} SVs in initial RAG.".format(len(all_sv_ids_in_rag)))

    # add single SV connected components to initial graph
    sd = SegmentationDataset(obj_type='sv',
                             working_dir=global_params.config.working_dir)
    sv_ids = sd.ids
    diff = np.array(list(set(sv_ids).difference(set(all_sv_ids_in_rag))))
    log.info('Found {} single connected component SVs which were'
             ' missing in initial RAG.'.format(len(diff)))

    for ix in diff:
        G.add_node(ix)

    all_sv_ids_in_rag = np.array(list(G.nodes()), dtype=np.uint)
    log.info("Found {} SVs in initial RAG after adding size-one connected "
             "components. Writing RAG to pkl.".format(len(all_sv_ids_in_rag)))

    if not os.path.isdir(global_params.config.working_dir + "/glia/"):
        os.makedirs(global_params.config.working_dir + "/glia/")
    transform_rag_edgelist2pkl(G)

    # first perform glia splitting based on multi-view predictions, results are
    # stored at SuperSegmentationDataset ssv_gliaremoval
    qsub_glia_splitting()

    # collect all neuron and glia SVs and store them in numpy array
    collect_glia_sv()

    # # here use reconnected RAG or initial rag
    recon_nx = G
    # create glia / neuron RAGs
    write_glia_rag(recon_nx, global_params.min_cc_size_ssv, suffix=rag_suffix)
    log.info("Finished glia splitting. Resulting RAGs are stored at {}."
             "".format(global_params.config.working_dir + "/glia/"))
Exemplo n.º 15
0
def run_semsegaxoness_mapping(max_n_jobs: Optional[int] = None):
    """
    Map semantic segmentation results of the 2D projections onto the cell
    reconstruction mesh.
    Generates the following attributes by default in
    :py:attr:`~syconn.reps.super_segmentation_object.SuperSegmentationObject.skeleton`:
        * "axoness": Vertex predictions mapped to skeleton (see
          ``global_params.map_properties_semsegax``.
        * "axoness_avg10000": Sliding window average along skeleton (10um traversal length).
        * "axoness_avg10000_comp_maj": Majority vote on connected components after removing the
          soma.

    Args:
        max_n_jobs: Number of parallel jobs.

    Notes:
        Requires :func:`~run_create_neuron_ssd`, :func:`~run_neuron_rendering`,
        :func:`~run_semsegaxoness_prediction` and
        :func:`~syconn.exec.skeleton.run_skeleton_generation`.
    """
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    """Maps axon prediction of rendering locations onto SSV skeletons"""
    log = initialize_logging('axon_mapping', global_params.config.working_dir + '/logs/',
                             overwrite=False)
    pred_key_appendix = ""
    # Working directory has to be changed globally in global_params
    ssd = SuperSegmentationDataset(working_dir=global_params.config.working_dir)

    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    # sort ssv ids according to their number of SVs (descending)
    nb_svs_per_ssv = np.array([len(ssd.mapping_dict[ssv_id]) for ssv_id
                               in ssd.ssv_ids])
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)

    multi_params = [(par, pred_key_appendix) for par in multi_params]
    log.info('Starting axoness mapping.')
    _ = qu.QSUB_script(multi_params, "map_semsegaxoness2skel", log=log,
                       n_max_co_processes=global_params.NCORE_TOTAL,
                       suffix="", n_cores=1, remove_jobfolder=True)
    # TODO: perform completeness check
    log.info('Finished axoness mapping.')
Exemplo n.º 16
0
def run_celltype_prediction(max_n_jobs=100):
    log = initialize_logging('celltype_prediction',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    # shuffle SV IDs
    np.random.seed(0)

    log.info('Starting cell type prediction.')
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    multi_params = ssd.ssv_ids
    ordering = np.argsort(nb_svs_per_ssv)
    multi_params = multi_params[ordering[::-1]]
    max_n_jobs = np.max([max_n_jobs,
                         len(multi_params) // 200])  # at most 200 SSV per job
    multi_params = chunkify(multi_params, max_n_jobs)
    # job parameter will be read sequentially, i.e. in order to provide only
    # one list as parameter one needs an additonal axis
    multi_params = [(ixs, ) for ixs in multi_params]

    # TODO: switch n_max_co_processes to `global_params.NGPUS_TOTAL` as soon as EGL ressource allocation works!
    path_to_out = qu.QSUB_script(multi_params,
                                 "predict_cell_type",
                                 n_max_co_processes=global_params.NNODES_TOTAL,
                                 suffix="",
                                 additional_flags="--gres=gpu:2",
                                 n_cores=global_params.NCORES_PER_NODE)
    log.info('Finished prediction of {} SSVs. Checking completeness.'
             ''.format(len(ordering)))
    out_files = glob.glob(path_to_out + "*.pkl")
    err = []
    for fp in out_files:
        with open(fp, "rb") as f:
            local_err = pkl.load(f)
        err += list(local_err)
    if len(err) > 0:
        log.error("{} errors occurred for SSVs with ID: "
                  "{}".format(len(err), [el[0] for el in err]))
    else:
        log.info('Success.')
Exemplo n.º 17
0
def map_myelin_global(max_n_jobs: Optional[int] = None):
    """
    Stand-alone myelin mapping to cell reconstruction skeletons. See kwarg ``map_myelin``
    in :func:`run_skeleton_generation` for a mapping right after skeleton generation.

    Args:
        max_n_jobs: Number of parallel jobs.

    """
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    log = initialize_logging('myelin_mapping',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)

    # TODO: think about using create_sso_skeleton_fast if underlying RAG
    #  obeys spatial correctness (> 10x faster)
    # list of SSV IDs and SSD parameters need to be given to a single QSUB job
    multi_params = ssd.ssv_ids
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    ordering = np.argsort(nb_svs_per_ssv)
    multi_params = multi_params[ordering[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)

    # add ssd parameters
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir)
                    for ssv_ids in multi_params]

    # create SSV skeletons, requires SV skeletons!
    log.info('Starting myelin mapping of {} SSVs.'.format(len(ssd.ssv_ids)))
    qu.QSUB_script(multi_params,
                   "map_myelin2skel",
                   log=log,
                   n_max_co_processes=global_params.NCORE_TOTAL,
                   remove_jobfolder=True,
                   n_cores=2)

    log.info('Finished myelin mapping.')
Exemplo n.º 18
0
def run_glia_splitting():
    """
    Uses the pruned RAG (stored as edge list .bz2 file) which is computed
     in `init_cell_subcell_sds`.

    Stores neuron RAG at `"{}/glia/neuron_rag{}.bz2".format(global_params.config.working_dir,
    suffix)` which is then used by `run_create_neuron_ssd`

    Returns
    -------

    """
    log = initialize_logging('glia_splitting',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    G = nx.read_edgelist(global_params.config.pruned_rag_path,
                         nodetype=np.uint)
    log.debug('Found {} CCs with a total of {} SVs in inital RAG.'.format(
        nx.number_connected_components(G), G.number_of_nodes()))

    if not os.path.isdir(global_params.config.working_dir + "/glia/"):
        os.makedirs(global_params.config.working_dir + "/glia/")
    transform_rag_edgelist2pkl(G)

    # first perform glia splitting based on multi-view predictions, results are
    # stored at SuperSegmentationDataset ssv_gliaremoval
    qsub_glia_splitting()

    # collect all neuron and glia SVs and store them in numpy array
    collect_glia_sv()

    # # here use reconnected RAG or initial rag
    recon_nx = G
    # create glia / neuron RAGs
    write_glia_rag(recon_nx, global_params.min_cc_size_ssv, suffix=rag_suffix)
    log.info(
        "Finished glia splitting. Resulting neuron and glia RAGs are stored at {}."
        "".format(global_params.config.working_dir + "/glia/"))
Exemplo n.º 19
0
def run_glia_splitting():
    """
    Uses the pruned RAG at ``global_params.config.pruned_rag_path`` (stored as edge list .bz2 file)
    which is  computed in :func:`~syconn.exec.exec_init.init_cell_subcell_sds` to split glia
    fragments from neuron reconstructions and separate those and entire glial cells from
    the neuron supervoxel graph.

    Stores neuron RAG at ``"{}/glia/neuron_rag{}.bz2".format(global_params.config.working_dir,
    suffix)`` which is then used by :func:`~run_create_neuron_ssd`.

    Notes:
        Requires :func:`~syconn.exec_init.init_cell_subcell_sds`,
        :func:`~run_glia_rendering` and :func:`~run_glia_prediction`.
    """
    log = initialize_logging('glia_splitting', global_params.config.working_dir + '/logs/',
                             overwrite=False)
    G = nx.read_edgelist(global_params.config.pruned_rag_path, nodetype=np.uint)
    log.debug('Found {} CCs with a total of {} SVs in inital RAG.'.format(
        nx.number_connected_components(G), G.number_of_nodes()))

    if not os.path.isdir(global_params.config.working_dir + "/glia/"):
        os.makedirs(global_params.config.working_dir + "/glia/")
    transform_rag_edgelist2pkl(G)

    # first perform glia splitting based on multi-view predictions, results are
    # stored at SuperSegmentationDataset ssv_gliaremoval
    qsub_glia_splitting()

    # collect all neuron and glia SVs and store them in numpy array
    collect_glia_sv()

    # # here use reconnected RAG or initial rag
    recon_nx = G
    # create glia / neuron RAGs
    write_glia_rag(recon_nx, global_params.config['glia']['min_cc_size_ssv'])
    log.info("Finished glia splitting. Resulting neuron and glia RAGs are stored at {}."
             "".format(global_params.config.working_dir + "/glia/"))
Exemplo n.º 20
0
def run_axoness_mapping(max_n_jobs: Optional[int] = None):
    """
    Map ``img2scalar`` CMN results of the 2D projections onto the cell
    reconstruction mesh. See :func:`~run_semsegaxoness_mapping` for the
    semantic segmentation approach.

    Args:
        max_n_jobs: Number of parallel jobs.

    Notes:
        Requires :func:`~run_create_neuron_ssd`, :func:`~run_neuron_rendering`,
        :func:`run_axoness_prediction` and
        :func:`~syconn.exec.skeleton.run_skeleton_generation`.
    """
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    """Maps axon prediction of rendering locations onto SSV skeletons"""
    log = initialize_logging('axon_mapping', global_params.config.working_dir + '/logs/',
                             overwrite=False)
    pred_key_appendix = ""
    # Working directory has to be changed globally in global_params
    ssd = SuperSegmentationDataset(working_dir=global_params.config.working_dir)

    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    # sort ssv ids according to their number of SVs (descending)
    nb_svs_per_ssv = np.array([len(ssd.mapping_dict[ssv_id]) for ssv_id
                               in ssd.ssv_ids])
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)

    multi_params = [(par, pred_key_appendix) for par in multi_params]
    log.info('Starting axoness mapping.')
    _ = qu.QSUB_script(multi_params, "map_viewaxoness2skel", log=log,
                       n_max_co_processes=global_params.NCORE_TOTAL,
                       suffix="", n_cores=1, remove_jobfolder=True)
    # TODO: perform completeness check
    log.info('Finished axoness mapping.')
Exemplo n.º 21
0
def run_neuron_rendering(max_n_jobs=None):
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)

    log = initialize_logging('neuron_view_rendering',
                             global_params.config.working_dir + '/logs/')
    ps = [
        Process(target=_run_neuron_rendering_big_helper, args=(max_n_jobs, )),
        Process(target=_run_neuron_rendering_small_helper, args=(max_n_jobs, ))
    ]
    for p in ps:
        p.start()
        time.sleep(10)
    for p in ps:
        p.join()
    log.info('Finished rendering of all SSVs. Checking completeness.')
    res = find_incomplete_ssv_views(ssd,
                                    woglia=True,
                                    n_cores=global_params.NCORES_PER_NODE)
    if len(res) != 0:
        msg = "Not all SSVs were rendered completely! Missing:\n{}".format(res)
        log.error(msg)
        raise RuntimeError(msg)
    log.info('Success.')
Exemplo n.º 22
0
def run_glia_prediction(e3=False):
    log = initialize_logging('glia_prediction',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    # only append to this key if needed (for e.g. different versions, change accordingly in 'axoness_mapping.py')
    pred_key = "glia_probas"

    # Load initial RAG from  Knossos mergelist text file.
    g = nx.read_edgelist(global_params.config.pruned_rag_path,
                         nodetype=np.uint)
    all_sv_ids_in_rag = np.array(list(g.nodes()), dtype=np.uint)

    log.debug('Found {} CCs with a total of {} SVs in inital RAG.'.format(
        nx.number_connected_components(g), g.number_of_nodes()))
    # chunk them
    sd = SegmentationDataset("sv",
                             working_dir=global_params.config.working_dir)
    multi_params = chunkify(sd.so_dir_paths, global_params.NGPU_TOTAL * 2)
    # get model properties
    if e3 == True:
        model_kwargs = 'get_glia_model_e3'
    else:
        m = get_glia_model()
        model_kwargs = dict(model_path=m._path,
                            normalize_data=m.normalize_data,
                            imposed_batch_size=m.imposed_batch_size,
                            nb_labels=m.nb_labels,
                            channels_to_load=m.channels_to_load)
    # all other kwargs like obj_type='sv' and version are the current SV SegmentationDataset by default
    so_kwargs = dict(working_dir=global_params.config.working_dir)
    # for glia views set woglia to False (because glia are included),
    #  raw_only to True
    pred_kwargs = dict(woglia=False,
                       pred_key=pred_key,
                       verbose=False,
                       raw_only=True)

    multi_params = [[par, model_kwargs, so_kwargs, pred_kwargs]
                    for par in multi_params]
    if e3 is True:
        # TODO: using two GPUs on a single node seems to be error-prone
        #  -> wb13 froze when processing example_cube=2
        n_cores = global_params.NCORES_PER_NODE // global_params.NGPUS_PER_NODE
        if 'example_cube' in global_params.config.working_dir:
            n_cores = global_params.NCORES_PER_NODE  # do not run two predictions in parallel
        qu.QSUB_script(multi_params,
                       "predict_sv_views_chunked_e3",
                       log=log,
                       n_max_co_processes=global_params.NGPU_TOTAL,
                       script_folder=None,
                       n_cores=n_cores,
                       suffix="_glia",
                       additional_flags="--gres=gpu:1",
                       remove_jobfolder=True)
    else:
        # randomly assign to gpu 0 or 1
        for par in multi_params:
            mk = par[1]
            # GPUs are made available for every job via slurm,
            # no need for random assignments: np.random.rand(0, 2)
            mk["init_gpu"] = 0
        _ = qu.QSUB_script(multi_params,
                           "predict_sv_views_chunked",
                           log=log,
                           n_max_co_processes=global_params.NGPU_TOTAL,
                           n_cores=global_params.NCORES_PER_NODE //
                           global_params.NGPUS_PER_NODE,
                           suffix="_glia",
                           additional_flags="--gres=gpu:1",
                           remove_jobfolder=True)
    log.info('Finished glia prediction. Checking completeness.')
    res = find_missing_sv_views(sd,
                                woglia=False,
                                n_cores=global_params.NCORES_PER_NODE)
    missing_not_contained_in_rag = []
    missing_contained_in_rag = []
    for el in res:
        if el not in all_sv_ids_in_rag:
            missing_not_contained_in_rag.append(
                el)  # TODO: decide whether to use or not
        else:
            missing_contained_in_rag.append(el)
    if len(missing_contained_in_rag) != 0:
        msg = "Not all SVs were predicted! {}/{} missing:\n" \
              "{}".format(len(missing_contained_in_rag), len(all_sv_ids_in_rag),
                          missing_contained_in_rag[:100])
        log.error(msg)
        raise ValueError(msg)
    else:
        log.info('Success.')
Exemplo n.º 23
0
def run_create_neuron_ssd():
    """
    Creates SuperSegmentationDataset with `version=0`.
    """
    log = initialize_logging('create_neuron_ssd',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    suffix = global_params.rag_suffix
    g_p = "{}/glia/neuron_rag{}.bz2".format(global_params.config.working_dir,
                                            suffix)
    rag_g = nx.read_edgelist(g_p, nodetype=np.uint)
    # e.g. if rag was not created by glia splitting procedure this filtering is required

    ccs = nx.connected_components(rag_g)
    cc_dict = {}
    for cc in ccs:
        cc_arr = np.array(list(cc))
        cc_dict[np.min(cc_arr)] = cc_arr

    cc_dict_inv = {}
    for ssv_id, cc in cc_dict.items():
        for sv_id in cc:
            cc_dict_inv[sv_id] = ssv_id
    log.info('Parsed RAG from {} with {} SSVs and {} SVs.'.format(
        g_p, len(cc_dict), len(cc_dict_inv)))

    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir,
        version='0',
        ssd_type="ssv",
        sv_mapping=cc_dict_inv)
    # create cache-arrays for frequently used attributes
    ssd.save_dataset_deep(n_max_co_processes=global_params.NCORE_TOTAL
                          )  # also executes 'ssd.save_dataset_shallow()'

    exec_skeleton.run_skeleton_generation()

    log.info('Finished SSD initialization. Starting cellular '
             'organelle mapping.')

    # map cellular organelles to SSVs
    # TODO: sort by SSV size (descending)
    ssd_proc.aggregate_segmentation_object_mappings(
        ssd, global_params.existing_cell_organelles)
    ssd_proc.apply_mapping_decisions(ssd,
                                     global_params.existing_cell_organelles)
    log.info('Finished mapping of cellular organelles to SSVs. '
             'Writing individual SSV graphs.')

    # Write SSV RAGs
    pbar = tqdm.tqdm(total=len(ssd.ssv_ids), mininterval=0.5)
    for ssv in ssd.ssvs:
        # get all nodes in CC of this SSV
        if len(cc_dict[
                ssv.id]) > 1:  # CCs with 1 node do not exist in the global RAG
            n_list = nx.node_connected_component(rag_g, ssv.id)
            # get SSV RAG as subgraph
            ssv_rag = nx.subgraph(rag_g, n_list)
        else:
            ssv_rag = nx.Graph()
            # ssv.id is the minimal SV ID, and therefore the only SV in this case
            ssv_rag.add_edge(ssv.id, ssv.id)
        nx.write_edgelist(ssv_rag, ssv.edgelist_path)
        pbar.update(1)
    pbar.close()
    log.info('Finished saving individual SSV RAGs.')
Exemplo n.º 24
0
def _run_neuron_rendering_big_helper(max_n_jobs=None):
    if max_n_jobs is None:
        max_n_jobs = global_params.NNODES_TOTAL * 2
    log = initialize_logging('neuron_view_rendering_big',
                             global_params.config.working_dir + '/logs/')
    # view rendering prior to glia removal, choose SSD accordingly
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)

    #  TODO: use actual size criteria, e.g. number of sampling locations
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])

    # render normal size SSVs
    size_mask = nb_svs_per_ssv <= global_params.RENDERING_MAX_NB_SV
    if 'example' in global_params.config.working_dir and np.sum(
            ~size_mask) == 0:
        # generate at least one (artificial) huge SSV
        size_mask[:1] = False
        size_mask[1:] = True
    # sort ssv ids according to their number of SVs (descending)
    # list of SSV IDs and SSD parameters need to be given to a single QSUB job
    if np.sum(~size_mask) > 0:
        log.info('{} huge SSVs will be rendered on the cluster.'.format(
            np.sum(~size_mask)))
        # identify huge SSVs and process them individually on whole cluster
        big_ssv = ssd.ssv_ids[~size_mask]

        # # TODO: Currently high memory consumption when rendering index views! take into account
        # #  when multiprocessing
        # # TODO: refactor `render_sso_coords_multiprocessing` and then use `QSUB_render_views_egl`
        # #  here!
        # render normal views only
        n_cores = global_params.NCORES_PER_NODE // global_params.NGPUS_PER_NODE
        n_parallel_jobs = global_params.NGPU_TOTAL
        render_kwargs = dict(add_cellobjects=True,
                             woglia=True,
                             overwrite=True,
                             skip_indexviews=True)
        sso_kwargs = dict(working_dir=global_params.config.working_dir,
                          nb_cpus=n_cores,
                          enable_locking_so=False,
                          enable_locking=False)

        # sort ssv ids according to their number of SVs (descending)
        ordering = np.argsort(nb_svs_per_ssv[~size_mask])
        multi_params = big_ssv[ordering[::-1]]
        multi_params = chunkify(multi_params, max_n_jobs)
        # list of SSV IDs and SSD parameters need to be given to a single QSUB job
        multi_params = [(ixs, sso_kwargs, render_kwargs)
                        for ixs in multi_params]
        path_to_out = qu.QSUB_script(multi_params,
                                     "render_views",
                                     n_max_co_processes=n_parallel_jobs,
                                     log=log,
                                     additional_flags="--gres=gpu:1",
                                     n_cores=n_cores,
                                     remove_jobfolder=True)
        # # render index-views only
        for ssv_id in big_ssv:
            ssv = SuperSegmentationObject(
                ssv_id, working_dir=global_params.config.working_dir)
            render_sso_coords_multiprocessing(ssv,
                                              global_params.config.working_dir,
                                              verbose=True,
                                              return_views=False,
                                              disable_batchjob=False,
                                              n_jobs=n_parallel_jobs,
                                              n_cores=n_cores,
                                              render_indexviews=True)
        log.info('Finished rendering of {}/{} SSVs.'.format(
            len(big_ssv), len(nb_svs_per_ssv)))
Exemplo n.º 25
0
def run_syn_generation(chunk_size: Tuple[int, int, int] = (512, 512, 512),
                       n_folders_fs: int = 10000,
                       max_n_jobs: Optional[int] = None,
                       cube_of_interest_bb: Optional[np.ndarray] = None):
    """
    Run the synapse generation. Will create
    :class:`~syconn.reps.segmentation.SegmentationDataset` objects with
    the following versions:
        * 'cs': Contact site objects between supervoxels.
        * 'syn': Objects representing the overlap between 'cs' and the initial
          synaptic junction predictions. Note: These objects effectively represent
          synapse fragments between supervoxels.
        * 'syn_ssv': Agglomerated 'syn' objects based on the supervoxel graph.

    Args:
        chunk_size: The size of processed cubes.
        n_folders_fs: Number of folders used to create the folder structure in
            each :class:`~syconn.reps.segmentation.SegmentationDataset`.
        max_n_jobs: Number of parallel jobs.
        cube_of_interest_bb: Defines the bounding box of the cube to process.
            By default this is set to (np.zoers(3); kd.boundary).
    """
    if max_n_jobs is None:
        max_n_jobs = global_params.config.ncore_total * 2

    log = initialize_logging('synapse_generation',
                             global_params.config.working_dir + '/logs/',
                             overwrite=True)

    kd_seg_path = global_params.config.kd_seg_path
    kd = kd_factory(kd_seg_path)

    if cube_of_interest_bb is None:
        cube_of_interest_bb = [np.zeros(3, dtype=np.int), kd.boundary]

    ces.extract_contact_sites(chunk_size=chunk_size,
                              log=log,
                              max_n_jobs=max_n_jobs,
                              cube_of_interest_bb=cube_of_interest_bb,
                              n_folders_fs=n_folders_fs)
    log.info('SegmentationDataset of type "cs" and "syn" was generated.')

    # # TODO: add check for SSD existence, which is required at this point
    # # This creates an SD of type 'syn_ssv'
    cps.combine_and_split_syn(
        global_params.config.working_dir,
        resume_job=False,
        cs_gap_nm=global_params.config['cell_objects']['cs_gap_nm'],
        log=log,
        n_folders_fs=n_folders_fs)
    log.info('Synapse objects were created.')

    sd_syn_ssv = SegmentationDataset(
        working_dir=global_params.config.working_dir, obj_type='syn_ssv')

    dataset_analysis(sd_syn_ssv, compute_meshprops=True)
    log.info('SegmentationDataset of type "syn_ssv" was generated.')

    cps.map_objects_to_synssv(global_params.config.working_dir, log=log)
    log.info('Cellular organelles were mapped to "syn_ssv".')

    cps.classify_synssv_objects(global_params.config.working_dir, log=log)
    log.info('Synapse prediction finished.')

    log.info('Collecting and writing syn-ssv objects to SSV attribute '
             'dictionary.')
    # This needs to be run after `classify_synssv_objects` and before
    # `map_synssv_objects` if the latter uses thresholding for synaptic objects
    # just collect new data: ``recompute=False``
    dataset_analysis(sd_syn_ssv, compute_meshprops=False, recompute=False)
    # TODO: decide whether this should happen after prob thresholding or not
    map_synssv_objects(log=log)
    log.info('Finished.')
Exemplo n.º 26
0
def run_semsegaxoness_prediction(max_n_jobs_gpu=None):
    """
    Will store semantic axoness labels as `view_properties_semsegax['semseg_key']` inside
     ssv.label_dict('vertex')[semseg_key]
    TODO: run rendering chunk-wise instead of on-the-fly and then perform
     prediction chunk-wise as well, adopt from spiness step

    Parameters
    ----------
    max_n_jobs_gpu : int

    Returns
    -------

    """
    if max_n_jobs_gpu is None:
        max_n_jobs_gpu = global_params.NGPU_TOTAL * 2
    log = initialize_logging('axoness_prediction',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    # shuffle SV IDs
    np.random.seed(0)

    log.info('Starting axoness prediction.')
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    multi_params = ssd.ssv_ids
    ordering = np.argsort(nb_svs_per_ssv)
    multi_params = multi_params[ordering[::-1]]
    max_n_jobs_gpu = np.max([max_n_jobs_gpu,
                             len(multi_params) // 100
                             ])  # at most 100 SSV per job
    multi_params = chunkify(multi_params, max_n_jobs_gpu)
    # job parameter will be read sequentially, i.e. in order to provide only
    # one list as parameter one needs an additonal axis
    multi_params = [(ixs, ) for ixs in multi_params]

    path_to_out = qu.QSUB_script(multi_params,
                                 "predict_axoness_semseg",
                                 log=log,
                                 n_max_co_processes=global_params.NNODES_TOTAL,
                                 suffix="",
                                 additional_flags="--gres=gpu:1",
                                 n_cores=global_params.NCORES_PER_NODE //
                                 global_params.NGPUS_PER_NODE,
                                 remove_jobfolder=True)
    log.info('Finished prediction of {} SSVs. Checking completeness.'
             ''.format(len(ordering)))
    out_files = glob.glob(path_to_out + "*.pkl")
    err = []
    for fp in out_files:
        with open(fp, "rb") as f:
            local_err = pkl.load(f)
        err += list(local_err)
    if len(err) > 0:
        msg = "{} errors occurred for SSVs with ID: " \
              "{}".format(len(err), [el[0] for el in err])
        log.error(msg)
        raise ValueError(msg)
    else:
        log.info('Success.')
Exemplo n.º 27
0
def run_axoness_prediction(max_n_jobs_gpu=None, e3=False):
    log = initialize_logging('axon_prediction',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    if max_n_jobs_gpu is None:
        max_n_jobs_gpu = global_params.NGPU_TOTAL * 2
    # here because all qsub jobs will start a script referring to 'global_params.config.working_dir'
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    sd = ssd.get_segmentationdataset("sv")
    # chunk them
    multi_params = chunkify(sd.so_dir_paths, max_n_jobs_gpu)
    pred_key = "axoness_probas"  # leave this fixed because it is used all over
    # get model properties
    log.info(
        'Performing axon prediction of neuron views. Labels will be stored '
        'on SV level in the attribute dict with key "{}"'.format(pred_key))
    if e3 is True:
        model_kwargs = 'get_axoness_model_e3'
    else:
        m = get_axoness_model()
        model_kwargs = dict(model_path=m._path,
                            normalize_data=m.normalize_data,
                            imposed_batch_size=m.imposed_batch_size,
                            nb_labels=m.nb_labels,
                            channels_to_load=m.channels_to_load)

    #all other kwargs like obj_type='sv' and version are the current SV SegmentationDataset by default
    so_kwargs = dict(working_dir=global_params.config.working_dir)
    # for axoness views set woglia to True (because glia were removed beforehand),
    #  raw_only to False
    pred_kwargs = dict(woglia=True,
                       pred_key=pred_key,
                       verbose=False,
                       raw_only=False)
    multi_params = [[par, model_kwargs, so_kwargs, pred_kwargs]
                    for par in multi_params]

    if e3 is True:
        # TODO: using two GPUs on a single node seems to be error-prone
        #  -> wb13 froze when processing example_cube=2
        n_cores = global_params.NCORES_PER_NODE // global_params.NGPUS_PER_NODE
        if 'example_cube' in global_params.config.working_dir:
            n_cores = global_params.NCORES_PER_NODE  # do not run two predictions in parallel
        _ = qu.QSUB_script(multi_params,
                           "predict_sv_views_chunked_e3",
                           log=log,
                           n_max_co_processes=global_params.NGPU_TOTAL,
                           n_cores=n_cores,
                           suffix="_axoness",
                           additional_flags="--gres=gpu:1",
                           remove_jobfolder=True)
    else:
        for par in multi_params:
            mk = par[1]
            # Single GPUs are made available for every job via slurm, no need for random assignments.
            mk["init_gpu"] = 0  # np.random.rand(0, 2)
        _ = qu.QSUB_script(multi_params,
                           "predict_sv_views_chunked",
                           log=log,
                           n_max_co_processes=global_params.NGPU_TOTAL // 2,
                           n_cores=global_params.NCORES_PER_NODE,
                           suffix="_axoness",
                           additional_flags="--gres=gpu:1",
                           remove_jobfolder=True)
    log.info('Finished axon prediction. Now checking for missing predictions.')
    res = find_missing_sv_attributes_in_ssv(
        ssd, pred_key, n_cores=global_params.NCORES_PER_NODE)
    if len(res) > 0:
        log.error("Attribute '{}' missing for follwing"
                  " SVs:\n{}".format(pred_key, res))
    else:
        log.info('Success.')
Exemplo n.º 28
0
if __name__ == '__main__':
    # pare arguments
    parser = argparse.ArgumentParser(description='SyConn example run')
    parser.add_argument('--working_dir', type=str, default='',
                        help='Working directory of SyConn')
    parser.add_argument('--example_cube', type=str, default='1',
                        help='Used toy data. Either "1" (400 x 400 x 600) '
                             'or "2" (1100, 1100, 600).')
    args = parser.parse_args()
    example_cube_id = args.example_cube
    if args.working_dir == "":  # by default use cube dependent working dir
        args.working_dir = "~/SyConn/example_cube{}/".format(example_cube_id)
    example_wd = os.path.expanduser(args.working_dir) + "/"

    # set up basic parameter, log, working directory and config file
    log = initialize_logging('example_run', log_dir=example_wd + '/logs/')
    experiment_name = 'j0126_example'
    scale = np.array([10, 10, 20])
    prior_glia_removal = True
    key_val_pairs_conf = [
        ('prior_glia_removal', prior_glia_removal),
        ('pyopengl_platform', 'egl'),
        ('batch_proc_system', None),
        ('ncores_per_node', 20),
        ('ngpus_per_node', 1),
        ('nnodes_total', 1),
    ]
    chunk_size = (256, 256, 256)
    n_folders_fs = 1000
    n_folders_fs_sc = 1000
    curr_dir = os.path.dirname(os.path.realpath(__file__)) + '/'
Exemplo n.º 29
0
def run_glia_rendering(max_n_jobs=None):
    """
    Uses the pruned RAG (stored as edge list .bz2 file) which is computed
     in `init_cell_subcell_sds`.

    Parameters
    ----------
    max_n_jobs :

    Returns
    -------

    """
    if max_n_jobs is None:
        max_n_jobs = global_params.NGPU_TOTAL * 4 if global_params.PYOPENGL_PLATFORM == 'egl' \
            else global_params.NCORE_TOTAL * 4
    log = initialize_logging('glia_view_rendering',
                             global_params.config.working_dir + '/logs/',
                             overwrite=True)
    log.info("Preparing RAG.")
    np.random.seed(0)

    # view rendering prior to glia removal, choose SSD accordingly
    # glia removal is based on the initial RAG and does not require explicitly stored SSVs
    # TODO: refactor how splits are stored, currently those are stored at ssv_tmp
    version = "tmp"

    G = nx.read_edgelist(global_params.config.pruned_rag_path,
                         nodetype=np.uint)

    cc_gs = sorted(list(nx.connected_component_subgraphs(G)),
                   key=len,
                   reverse=True)
    all_sv_ids_in_rag = np.array(list(G.nodes()), dtype=np.uint)

    # generate parameter for view rendering of individual SSV
    # TODO: remove SVs below minimum size (-> global_params.min_cc_size_ssv)
    sds = SegmentationDataset("sv",
                              working_dir=global_params.config.working_dir)
    sv_size_dict = {}
    bbs = sds.load_cached_data('bounding_box') * sds.scaling
    for ii in range(len(sds.ids)):
        sv_size_dict[sds.ids[ii]] = bbs[ii]
    ccsize_dict = create_ccsize_dict(cc_gs,
                                     sv_size_dict,
                                     is_connected_components=True)

    multi_params = cc_gs
    big_ssv = []
    small_ssv = []
    for g in multi_params:
        if g.number_of_nodes() > RENDERING_MAX_NB_SV:
            big_ssv.append(g)
        elif ccsize_dict[list(g.nodes())[0]] < global_params.min_cc_size_ssv:
            pass  # ignore this CC
        else:
            small_ssv.append(g)

    log.info("View rendering for glia separation started.")
    # # identify huge SSVs and process them on the entire cluster
    if len(big_ssv) > 0:
        n_threads = 2
        log.info("Processing {} huge SSVs in {} threads on the entire cluster"
                 ".".format(len(big_ssv), n_threads))
        q_in = Queue()
        q_out = Queue()
        for kk, g in enumerate(big_ssv):
            q_in.put((kk, g, version))
        for _ in range(n_threads):
            q_in.put(-1)
        ps = [
            Process(target=_run_huge_ssv_render_worker, args=(q_in, q_out))
            for _ in range(n_threads)
        ]
        for p in ps:
            p.start()
            time.sleep(0.5)
        q_in.close()
        q_in.join_thread()
        for p in ps:
            p.join()
        if q_out.qsize() != len(big_ssv):
            raise ValueError(
                'Not all `_run_huge_ssv_render_worker` jobs completed successfully.'
            )
    # render small SSV without overhead and single cpus on whole cluster
    multi_params = small_ssv
    np.random.shuffle(multi_params)
    multi_params = chunkify(multi_params, max_n_jobs)
    # list of SSV IDs and SSD parameters need to be given to a single QSUB job
    multi_params = [(ixs, global_params.config.working_dir, version)
                    for ixs in multi_params]
    _ = qu.QSUB_script(multi_params,
                       "render_views_glia_removal",
                       log=log,
                       n_max_co_processes=global_params.NGPU_TOTAL,
                       n_cores=global_params.NCORES_PER_NODE //
                       global_params.NGPUS_PER_NODE,
                       additional_flags="--gres=gpu:1",
                       remove_jobfolder=True)

    # check completeness
    log.info(
        'Finished view rendering for glia separation. Checking completeness.')
    sd = SegmentationDataset("sv",
                             working_dir=global_params.config.working_dir)
    res = find_missing_sv_views(sd,
                                woglia=False,
                                n_cores=global_params.NCORES_PER_NODE)
    missing_not_contained_in_rag = []
    missing_contained_in_rag = []
    for el in res:
        if el not in all_sv_ids_in_rag:
            missing_not_contained_in_rag.append(
                el)  # TODO: decide whether to use or not
        else:
            missing_contained_in_rag.append(el)
    if len(missing_contained_in_rag) != 0:
        msg = "Not all SVs were rendered completely! {}/{} missing:\n" \
              "{}".format(len(missing_contained_in_rag), len(all_sv_ids_in_rag),
                          missing_contained_in_rag[:100])
        log.error(msg)
        raise ValueError(msg)
    else:
        log.info('All SVs now contain views required for glia prediction.')
Exemplo n.º 30
0
def _run_neuron_rendering_small_helper(max_n_jobs=None):
    if max_n_jobs is None:
        max_n_jobs = global_params.NGPU_TOTAL * 4 if global_params.PYOPENGL_PLATFORM == 'egl' \
            else global_params.NCORE_TOTAL * 4
    log = initialize_logging('neuron_view_rendering_small',
                             global_params.config.working_dir + '/logs/')
    # view rendering prior to glia removal, choose SSD accordingly
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)

    #  TODO: use actual size criteria, e.g. number of sampling locations
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])

    # render normal size SSVs
    size_mask = nb_svs_per_ssv <= global_params.RENDERING_MAX_NB_SV
    if 'example' in global_params.config.working_dir and np.sum(
            ~size_mask) == 0:
        # generate at least one (artificial) huge SSV
        size_mask[:1] = False
        size_mask[1:] = True

    multi_params = ssd.ssv_ids[size_mask]
    # sort ssv ids according to their number of SVs (descending)
    ordering = np.argsort(nb_svs_per_ssv[size_mask])
    multi_params = multi_params[ordering[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)
    # list of SSV IDs and SSD parameters need to be given to a single QSUB job
    multi_params = [(ixs, global_params.config.working_dir)
                    for ixs in multi_params]
    log.info('Started rendering of {} SSVs. '.format(np.sum(size_mask)))
    # generic
    if global_params.PYOPENGL_PLATFORM == 'osmesa':  # utilize all CPUs
        path_to_out = qu.QSUB_script(
            multi_params,
            "render_views",
            log=log,
            n_max_co_processes=global_params.NCORE_TOTAL,
            remove_jobfolder=False)
    elif global_params.PYOPENGL_PLATFORM == 'egl':  # utilize 1 GPU per task
        # run EGL on single node: 20 parallel jobs
        if global_params.config.working_dir is not None and 'example_cube' in \
                global_params.config.working_dir:
            n_cores = 1
            n_parallel_jobs = global_params.NCORES_PER_NODE
            path_to_out = qu.QSUB_script(multi_params,
                                         "render_views",
                                         n_max_co_processes=n_parallel_jobs,
                                         log=log,
                                         additional_flags="--gres=gpu:2",
                                         n_cores=n_cores,
                                         remove_jobfolder=False)
        # run on whole cluster
        else:
            n_cores = global_params.NCORES_PER_NODE // global_params.NGPUS_PER_NODE
            n_parallel_jobs = global_params.NGPU_TOTAL
            path_to_out = qu.QSUB_script(multi_params,
                                         "render_views_egl",
                                         n_max_co_processes=n_parallel_jobs,
                                         log=log,
                                         additional_flags="--gres=gpu:1",
                                         n_cores=n_cores,
                                         remove_jobfolder=True)
    else:
        raise RuntimeError('Specified OpenGL platform "{}" not supported.'
                           ''.format(global_params.PYOPENGL_PLATFORM))
    log.info('Finished rendering of {}/{} SSVs.'.format(
        len(ordering), len(nb_svs_per_ssv)))