def test_lie_deriv_covf(self): xx = st.symb_vector('x1:4') st.make_global(xx) # we test this by building the observability matrix with two different but equivalent approaches f = sp.Matrix([x1 + x3 * x2, 7 * exp(x1), cos(x2)]) y = x1**2 + sin(x3) * x2 ydot = st.lie_deriv(y, f, xx) yddot = st.lie_deriv(ydot, f, xx) cvf1 = st.gradient(y, xx) cvf2 = st.gradient(ydot, xx) cvf3 = st.gradient(yddot, xx) # these are the rows of the observability matrix # second approach dh0 = cvf1 dh1 = st.lie_deriv_covf(dh0, f, xx) dh2a = st.lie_deriv_covf(dh1, f, xx) dh2b = st.lie_deriv_covf(dh0, f, xx, order=2) zero = dh0 * 0 self.assertEqual((dh1 - cvf2).expand(), zero) self.assertEqual((dh2a - cvf3).expand(), zero) self.assertEqual((dh2b - cvf3).expand(), zero)
def test_integrate2(self): x1, x2, x3, x4, x5 = self.xx a, b = sp.symbols('a, b', nonzero=True) if 1: # tests for some simplification problem y1 = sp.log(x2) + sp.log(cos(x1)) dx1, dx2, dx3, dx4, dx5 = self.dx dy1 = (-sp.tan(x1)) * dx1 + (1 / x2) * dx2 y1b = dy1.integrate() self.assertEqual(y1, y1b) y1 = sp.log(x2) + sp.log(sin(x1) - 1) / 2 + sp.log(sin(x1) + 1) / 2 dx1, dx2, dx3, dx4, dx5 = self.dx dy1 = (-sp.tan(x1)) * dx1 + (1 / x2) * dx2 y1b = dy1.integrate() difference = y1 - y1b # this is not zero but it does not depend on xx: grad = sp.simplify(st.gradient(difference, self.xx)) self.assertEqual(grad, grad * 0) # another variant y1 = sp.log(x2) + sp.log(sin(x1) - 1) / 2 + sp.log(sin(x1) + 1) / 2 dx1, dx2, dx3, dx4, dx5 = self.dx dy1 = (-sp.sin(x1) / sp.cos(x1)) * dx1 + (1 / x2) * dx2 y1b = dy1.integrate() difference = y1 - y1b # this is not zero but it does not depend on xx: grad = sp.simplify(st.gradient(difference, self.xx)) self.assertEqual(grad, grad * 0) y1 = a * sp.log(cos(b * x1)) dy1 = pc.d(y1, self.xx) y1b = dy1.integrate() self.assertEqual(sp.simplify(y1 - y1b), 0)
def generate_symbolic_model(T, U, tt, F, simplify=True, constraints=None, dissipation_function=0, **kwargs): """ T: kinetic energy U: potential energy tt: sequence of independent deflection variables ("theta") F: external forces simplify: determines whether the equations of motion should be simplified (default=True) constraints: None (default) or sequence of constraints (will introduce lagrange multipliers) dissipation_function: Rayleigh dissipation function. Its Differential w.r.t. tthetadot is added to the systems equation kwargs: optional assumptions like 'real=True' :returns SymbolicModel instance mod. The equations are contained in mod.eqns """ n = len(tt) for theta_i in tt: assert isinstance(theta_i, sp.Symbol) if constraints is None: constraints_flag = False # ensure well define calculations (jacobian of empty matrix would not be possible) constraints = [0] else: constraints_flag = True assert len(constraints) > 0 constraints = sp.Matrix(constraints) assert constraints.shape[1] == 1 nC = constraints.shape[0] jac_constraints = constraints.jacobian(tt) dissipation_function = sp.sympify(dissipation_function) assert isinstance(dissipation_function, sp.Expr) llmd = st.symb_vector("lambda_1:{}".format(nC + 1)) F = sp.Matrix(F) if F.shape[0] == 1: # convert to column vector F = F.T if not F.shape == (n, 1): msg = "Vector of external forces has the wrong length. Should be " + \ str(n) + " but is %i!" % F.shape[0] raise ValueError(msg) # introducing symbols for the derivatives tt = sp.Matrix(tt) ttd = st.time_deriv(tt, tt, **kwargs) ttdd = st.time_deriv(tt, tt, order=2, **kwargs) # Lagrange function L = T - U if not T.atoms().intersection(ttd) == set(ttd): raise ValueError('Not all velocity symbols do occur in T') # partial derivatives of L L_diff_tt = st.jac(L, tt) L_diff_ttd = st.jac(L, ttd) # prov_deriv_symbols = [ttd, ttdd] # time-depended_symbols tds = list(tt) + list(ttd) L_diff_ttd_dt = st.time_deriv(L_diff_ttd, tds, **kwargs) # constraints constraint_terms = list(llmd.T * jac_constraints) # lagrange equation 1st kind (which include 2nd kind as special case if constraints are empty) model_eq = sp.zeros(n, 1) for i in range(n): model_eq[i] = L_diff_ttd_dt[i] - L_diff_tt[i] - F[i] - constraint_terms[i] model_eq += st.gradient(dissipation_function, ttd).T # create object of model mod = SymbolicModel() # model_eq, qs, f, D) mod.eqns = model_eq mod.extforce_list = F reduced_F = sp.Matrix([s for s in F if st.is_symbol(s)]) mod.F = reduced_F mod.tau = reduced_F if constraints_flag: mod.llmd = llmd mod.constraints = constraints else: # omit fake constraint [0] mod.constraints = None mod.llmd = None # coordinates velocities and accelerations mod.tt = tt mod.ttd = ttd mod.ttdd = ttdd mod.qs = tt mod.qds = ttd mod.qdds = ttdd # also store kinetic and potential energy mod.T = T mod.U = U if simplify: mod.eqns.simplify() return mod