Exemplo n.º 1
0
    def __init__(self, settings, args, times_to_use):
        par = Params()
        self.times_to_use = times_to_use
        self.starting_parameters = [2.26E-04, 0.0699, 3.45E-05, 0.05462, 0.0873, 8.92E-03, 5.150E-3, 0.03158, 0.1524]
        # Create symbols for symbolic functions
        p, y, v = CreateSymbols(settings)

        # Choose starting parameters (from J Physiol paper)
        para = [2.26E-04, 0.0699, 3.45E-05, 0.05462, 0.0873, 8.92E-03, 5.150E-3, 0.03158, 0.1524]

        # Create symbols for symbolic functions
        p, y, v = CreateSymbols(par)

        # Define system equations and initial conditions
        k1 = p[0] * se.exp(p[1] * v)
        k2 = p[2] * se.exp(-p[3] * v)
        k3 = p[4] * se.exp(p[5] * v)
        k4 = p[6] * se.exp(-p[7] * v)

        # Write in matrix form taking y = ([C], [O], [I])^T

        A = se.Matrix([[-k1 - k3 - k4, k2 -  k4, -k4], [k1, -k2 - k3, k4], [-k1, k3 - k1, -k2 - k4 - k1]])
        B = se.Matrix([k4, 0, k1])

        rhs = np.array(A * y + B)

        self.funcs = GetSensitivityEquations(par, p, y, v, A, B, para, times_to_use, sine_wave=args.sine_wave)
Exemplo n.º 2
0
def exp(expr):
    """Exponential"""
    if type(expr) == GC:
        return GC(
            se.exp(expr.expr),
            {s: d * se.exp(expr.expr)
             for s, d in expr.gradients.items()})
    return se.exp(expr)
 def hermite(self, x=Symbol('x'), n=1):
     expr1_hermite = Symbol('x')
     expr2_hermite = (-1)**n
     expr3_hermite = exp(0.5 * expr1_hermite**2)
     expr4_hermite = diff(exp(-0.5 * expr1_hermite**2), expr1_hermite, n)
     expr5_hermite = self.simplify(expr2_hermite * expr3_hermite *
                                   expr4_hermite)
     return expr5_hermite.subs([(expr1_hermite, x)])
Exemplo n.º 4
0
 def test_substitute_helpers(self):
     backend = NumbaBackend()
     a = se.Symbol("a")
     b = se.Symbol("b")
     y = se.Symbol("y")
     HELPERS = [(a, se.exp(-12 * y))]
     DERIVATIVES = [-b * a + y, y**2]
     result = backend._substitute_helpers(DERIVATIVES, HELPERS)
     self.assertListEqual(result, [-b * se.exp(-12 * y) + y, y**2])
Exemplo n.º 5
0
 def _radial(self, x, y, z, alphas, cs, rs=None, pre=None):
     """Generates the symbolic radial portion of a basis function.
     Substitutes symbolic (_i) -> (_i - iA) for i in [x, y, z]."""
     if pre is not None:
         return sum((pre * self._expnt ** r * c * exp(-a * self._expnt)
                     for c, a, r in zip(cs, alphas, rs))
                     ).subs({_x: _x - x, _y: _y - y, _z: _z - z})
     return sum((c * exp(-a * self._expnt)
                 for c, a in zip(cs, alphas))
                 ).subs({_x: _x - x, _y: _y - y, _z: _z - z})
def test_sens_limits():
    par = Params()
    p, y, v = CreateSymbols(par)
    reversal_potential = par.Erev
    para = np.array([
        2.07, 7.17E1, 3.44E-2, 6.18E1, 4.18E2, 2.58E1, 4.75E1, 2.51E1, 3.33E1
    ])
    para = para * 1E-3

    # Define system equations and initial conditions
    k1 = p[0] * se.exp(p[1] * v)
    k2 = p[2] * se.exp(-p[3] * v)
    k3 = p[4] * se.exp(p[5] * v)
    k4 = p[6] * se.exp(-p[7] * v)

    current_limit = (p[-1] * (par.holding_potential - reversal_potential) *
                     k1 / (k1 + k2) * k4 / (k3 + k4)).subs(
                         v, par.holding_potential)
    print("{} Current limit computed as {}".format(
        __file__,
        current_limit.subs(p, para).evalf()))

    sens_inf = [
        float(se.diff(current_limit, p[j]).subs(p, para).evalf())
        for j in range(0, par.n_params)
    ]
    print("{} sens_inf calculated as {}".format(__file__, sens_inf))

    k = se.symbols('k1, k2, k3, k4')

    # Notation is consistent between the two papers
    A = se.Matrix([[-k1 - k3 - k4, k2 - k4, -k4], [k1, -k2 - k3, k4],
                   [-k1, k3 - k1, -k2 - k4 - k1]])
    B = se.Matrix([k4, 0, k1])

    # Use results from HH equations
    current_limit = (p[-1] * (par.holding_potential - reversal_potential) *
                     k1 / (k1 + k2) * k4 / (k3 + k4)).subs(
                         v, par.holding_potential)

    funcs = GetSensitivityEquations(par, p, y, v, A, B, para, [0])
    sens_inf = [
        float(se.diff(current_limit, p[j]).subs(p, para).evalf())
        for j in range(0, par.n_params)
    ]

    sens = funcs.SimulateForwardModelSensitivities(para)[1]

    # Check sens = sens_inf
    error = np.abs(sens_inf - sens)

    equal = np.all(error < 1e-10)
    assert (equal)
    return
Exemplo n.º 7
0
def test_exp():
    x = Symbol("x")
    e1 = sympy.exp(sympy.Symbol("x"))
    e2 = exp(x)
    assert sympify(e1) == e2
    assert e1 == e2._sympy_()

    e1 = sympy.exp(sympy.Symbol("x")).diff(sympy.Symbol("x"))
    e2 = exp(x).diff(x)
    assert sympify(e1) == e2
    assert e1 == e2._sympy_()
Exemplo n.º 8
0
def test_exp():
    x = Symbol("x")
    e1 = sympy.exp(sympy.Symbol("x"))
    e2 = exp(x)
    assert sympify(e1) == e2
    assert e1 == e2._sympy_()

    e1 = sympy.exp(sympy.Symbol("x")).diff(sympy.Symbol("x"))
    e2 = exp(x).diff(x)
    assert sympify(e1) == e2
    assert e1 == e2._sympy_()
Exemplo n.º 9
0
    def __init__(self, settings, args, times_to_use):
        par = Params()
        self.times_to_use = times_to_use
        self.starting_parameters = [
            2.26E-04, 0.0699, 3.45E-05, 0.05462, 0.0873, 8.92E-03, 5.150E-3,
            0.03158, 0.1524
        ]
        # Create symbols for symbolic functions
        p, y, v = CreateSymbols(settings)

        # Choose starting parameters (from J Physiol paper)
        para = [
            2.26E-04, 0.0699, 3.45E-05, 0.05462, 0.0873, 8.92E-03, 5.150E-3,
            0.03158, 0.1524
        ]

        # Define system equations and initial conditions
        k1 = p[0] * se.exp(p[1] * v)
        k2 = p[2] * se.exp(-p[3] * v)
        k3 = p[4] * se.exp(p[5] * v)
        k4 = p[6] * se.exp(-p[7] * v)

        # Write in matrix form taking y = ([C], [O], [I])^T

        A = se.Matrix([[-k1 - k3 - k4, k2 - k4, -k4], [k1, -k2 - k3, k4],
                       [-k1, k3 - k1, -k2 - k4 - k1]])
        B = se.Matrix([k4, 0, k1])

        rhs = np.array(A * y + B)
        protocol = pd.read_csv(
            os.path.join(
                os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
                "protocols", "protocol-staircaseramp.csv"))
        times = 10000 * protocol["time"].values
        voltages = protocol["voltage"].values

        staircase_protocol = scipy.interpolate.interp1d(times,
                                                        voltages,
                                                        kind="linear")
        staircase_protocol_safe = lambda t: staircase_protocol(t) if t < times[
            -1] else par.holding_potential

        self.funcs = GetSensitivityEquations(par,
                                             p,
                                             y,
                                             v,
                                             A,
                                             B,
                                             para,
                                             times_to_use,
                                             voltage=staircase_protocol_safe)
Exemplo n.º 10
0
	def test_exp(self):
		f_1 = lambda time: [np.exp(time),0.5*np.exp(2*time)]
		f_2 = [symengine.exp(t),symengine.exp(2*t)/2]
		
		results = []
		for function in (f_1,f_2):
			self.DDE.purge_past()
			self.DDE.past_from_function(function)
			self.DDE.step_on_discontinuities()
			times = np.arange( self.DDE.t, self.DDE.t+1000, 10 )
			result = np.vstack( self.DDE.integrate(time) for time in times )
			results.append(result)
		
		assert_allclose(results[0],results[1],atol=0.01,rtol=1e-5)
Exemplo n.º 11
0
def test_scipy():
    from scipy import integrate
    import numpy as np
    args = t, x = se.symbols('t, x')
    lmb = se.Lambdify(args, [se.exp(-x * t) / t**5], as_scipy=True)
    res = integrate.nquad(lmb, [[1, np.inf], [0, np.inf]])
    assert abs(res[0] - 0.2) < 1e-7
Exemplo n.º 12
0
def evaluate_expr(expr, xs, ys, zs, arr=None, alpha=None):
    """Evaluate symbolic expression on a numerical grid.

    Args:
        expr (symbolic): sympy or symengine expression
        xs (np.ndarray): 1D-array of x values
        ys (np.ndarray): 1D-array of y values
        zs (np.ndarray): 1D-array of z values
        arr (np.ndarray): additional 1D-array to multiply expression by
        alpha (float): multiply expression by gaussian with exponent alpha

    Note:
        See :meth:`exatomic.algorithms.orbital_util.numerical_grid_from_field_params`
        for grid construction details.
    """
    subs = {_x: 'xs', _y: 'ys', _z: 'zs'}
    # Multiply with an additional array (angular term)
    if arr is not None:
        return evaluate('arr * ({})'.format(str(expr.subs(subs))))
    # Multiply by an exponential decay factor
    if alpha is not None:
        expr = str((expr * exp(-alpha * _r**2)).subs(subs))
        return evaluate(expr)
    # Just evaluate the expression numerically
    return evaluate(str(expr.subs(subs)))
Exemplo n.º 13
0
def evaluate_expr(expr, xs, ys, zs, arr=None, alpha=None):
    """Evaluate symbolic expression on a numerical grid.

    Args:
        expr (symbolic): sympy or symengine expression
        xs (np.ndarray): 1D-array of x values
        ys (np.ndarray): 1D-array of y values
        zs (np.ndarray): 1D-array of z values
        arr (np.ndarray): additional 1D-array to multiply expression by
        alpha (float): multiply expression by gaussian with exponent alpha

    Note:
        See :meth:`exatomic.algorithms.orbital_util.numerical_grid_from_field_params`
        for grid construction details.
    """
    subs = {_x: 'xs', _y: 'ys', _z: 'zs'}
    # Multiply with an additional array (angular term)
    if arr is not None:
        return evaluate('arr * ({})'.format(str(expr.subs(subs))))
    # Multiply by an exponential decay factor
    if alpha is not None:
        expr = str((expr * exp(-alpha * _r ** 2)).subs(subs))
        return evaluate(expr)
    # Just evaluate the expression numerically
    return evaluate(str(expr.subs(subs)))
Exemplo n.º 14
0
def _get_array():
    X, Y, Z = inp = array.array('d', [1, 2, 3])
    args = x, y, z = se.symbols('x y z')
    exprs = [x+y+z, se.sin(x)*se.log(y)*se.exp(z)]
    ref = [X+Y+Z, math.sin(X)*math.log(Y)*math.exp(Z)]

    def check(arr):
        assert all([abs(x1-x2) < 1e-13 for x1, x2 in zip(ref, arr)])
    return args, exprs, inp, check
Exemplo n.º 15
0
def _get_array():
    X, Y, Z = inp = array.array('d', [1, 2, 3])
    args = x, y, z = se.symbols('x y z')
    exprs = [x+y+z, se.sin(x)*se.log(y)*se.exp(z)]
    ref = [X+Y+Z, math.sin(X)*math.log(Y)*math.exp(Z)]

    def check(arr):
        assert all([abs(x1-x2) < 1e-13 for x1, x2 in zip(ref, arr)])
    return args, exprs, inp, check
Exemplo n.º 16
0
def _lifted_gaussian(
    t: sym.Symbol,
    center: Union[sym.Symbol, sym.Expr, complex],
    t_zero: Union[sym.Symbol, sym.Expr, complex],
    sigma: Union[sym.Symbol, sym.Expr, complex],
) -> sym.Expr:
    r"""Helper function that returns a lifted Gaussian symbolic equation.

    For :math:`\sigma=` ``sigma`` the symbolic equation will be

    .. math::

        f(x) = \exp\left(-\frac12 \left(\frac{x - \mu}{\sigma}\right)^2 \right),

    with the center :math:`\mu=` ``duration/2``.
    Then, each output sample :math:`y` is modified according to:

    .. math::

        y \mapsto \frac{y-y^*}{1.0-y^*},

    where :math:`y^*` is the value of the un-normalized Gaussian at the endpoints of the pulse.
    This sets the endpoints to :math:`0` while preserving the amplitude at the center,
    i.e. :math:`y` is set to :math:`1.0`.

    Args:
        t: Symbol object representing time.
        center: Symbol or expression representing the middle point of the samples.
        t_zero: The value of t at which the pulse is lowered to 0.
        sigma: Symbol or expression representing Gaussian sigma.

    Returns:
        Symbolic equation.
    """
    # Sympy automatically does expand.
    # This causes expression inconsistency after qpy round-trip serializing through sympy.
    # See issue for details: https://github.com/symengine/symengine.py/issues/409
    t_shifted = (t - center).expand()
    t_offset = (t_zero - center).expand()

    gauss = sym.exp(-((t_shifted / sigma) ** 2) / 2)
    offset = sym.exp(-((t_offset / sigma) ** 2) / 2)

    return (gauss - offset) / (1 - offset)
Exemplo n.º 17
0
 def _radial(self, x, y, z, alphas, cs, rs=None, pre=None):
     """Generates the symbolic radial portion of a basis function.
     Substitutes symbolic (_i) -> (_i - iA) for i in [x, y, z]."""
     if pre is not None:
         return sum((pre * self._expnt**r * c * exp(-a * self._expnt)
                     for c, a, r in zip(cs, alphas, rs))).subs({
                         _x: _x - x,
                         _y: _y - y,
                         _z: _z - z
                     })
     return sum(
         (c * exp(-a * self._expnt) for c, a in zip(cs, alphas))).subs({
             _x:
             _x - x,
             _y:
             _y - y,
             _z:
             _z - z
         })
Exemplo n.º 18
0
def test_symengine(arr, sig3):
    """Test symengine."""
    try:
        import symengine as sge
        x, y, z = sge.var("x y z")
        fn = sge.acos(x)/y + sge.exp(-z)
        func = numbafy(fn, (x, y, z), compiler="vectorize", signatures=sig3)
        result = func(arr, arr, arr)
        check = np.arccos(arr)/arr + np.exp(-arr)
        assert np.allclose(result, check) == True
    except ImportError:
        pass
Exemplo n.º 19
0
def test_symengine(arr, sig3):
    """Test symengine."""
    try:
        import symengine as sge
        x, y, z = sge.var("x y z")
        fn = sge.acos(x) / y + sge.exp(-z)
        func = numbafy(fn, (x, y, z), compiler="vectorize", signatures=sig3)
        result = func(arr, arr, arr)
        check = np.arccos(arr) / arr + np.exp(-arr)
        assert np.allclose(result, check) == True
    except ImportError:
        pass
Exemplo n.º 20
0
def _hermite_gaussians(lmax):
    """Symbolic hermite gaussians up to order lmax.

    Args:
        lmax (int): highest order angular momentum quantum number
    """
    order = 2 * lmax + 1
    hgs = OrderedDict()
    der = exp(-_x**2)
    for t in range(order):
        if t: der = der.diff(_x)
        hgs[t] = (-1)**t * der
    return hgs
Exemplo n.º 21
0
 def projector(self):
     mat = np.zeros((4, 4), dtype=object)
     for n in range(1, self.N + 1):
         Koef = self.Rho_Liste[n - 1] * si.exp(
             -I * self.w_Liste[n - 1] * t[0])
         Term11 = self.TensorProduct(
             self.preMatrixPlus(self.K_Liste[n - 1]),
             self.integralKernelPlus(n))
         Term21 = self.TensorProduct(
             self.preMatrixMinus(self.K_Liste[n - 1]),
             self.integralKernelMinus(n))
         mat += Koef * (Term11 + Term21)
     return mat
Exemplo n.º 22
0
def _hermite_gaussians(lmax):
    """Symbolic hermite gaussians up to order lmax.

    Args:
        lmax (int): highest order angular momentum quantum number
    """
    order = 2 * lmax + 1
    hgs = OrderedDict()
    der = exp(-_x ** 2)
    for t in range(order):
        if t: der = der.diff(_x)
        hgs[t] = (-1) ** t * der
    return hgs
Exemplo n.º 23
0
    def LLF_sym(self, hazard, covariate_data):
        # x = b, b1, b2, b2 = symengine.symbols('b b1 b2 b3')

        x = symengine.symbols(f'x:{self.numSymbols}')
        second = []
        prodlist = []
        for i in range(self.n):
            sum1 = 1
            sum2 = 1
            TempTerm1 = 1
            for j in range(self.numParameters, self.numSymbols):
                TempTerm1 = TempTerm1 * symengine.exp(
                    covariate_data[j - self.numParameters][i] * x[j])
            sum1 = 1 - ((1 -
                         (hazard(i + 1, x[:self.numParameters])))**(TempTerm1))
            for k in range(i):
                TempTerm2 = 1
                for j in range(self.numParameters, self.numSymbols):
                    TempTerm2 = TempTerm2 * symengine.exp(
                        covariate_data[j - self.numParameters][k] * x[j])
                sum2 = sum2 * (
                    (1 - (hazard(i + 1, x[:self.numParameters])))**(TempTerm2))
            second.append(sum2)
            prodlist.append(sum1 * sum2)

        firstTerm = -sum(self.failures)  #Verified
        secondTerm = sum(self.failures) * symengine.log(
            sum(self.failures) / sum(prodlist))
        logTerm = []  #Verified
        for i in range(self.n):
            logTerm.append(self.failures[i] * symengine.log(prodlist[i]))
        thirdTerm = sum(logTerm)
        factTerm = []  #Verified
        for i in range(self.n):
            factTerm.append(symengine.log(math.factorial(self.failures[i])))
        fourthTerm = sum(factTerm)

        f = firstTerm + secondTerm + thirdTerm - fourthTerm
        return f, x
Exemplo n.º 24
0
def _HEXP_(node, S1, S2):
    f = node.children[0].f_expression

    errList1 = [node.f_expression] + \
         [seng.expand(Si*node.f_expression) for Si in S1]
    errList2 = [seng.expand(Si * node.f_expression) for Si in S2]

    ferr = sum([seng.Abs(Si * pow(2, -53))
                for Si in S1 + S2]) + node.f_expression
    herr = sum([
        seng.Abs(Si * Sj * seng.exp(ferr)) for Si in S1 + S2 for Sj in S1 + S2
    ])

    return _solve_(node, errList1, errList2, herr)
Exemplo n.º 25
0
    def setUp(self):
        interval = (-3, 2)
        self.times = np.linspace(*interval, 10)
        t = symengine.Symbol("t")

        self.sin_spline = CubicHermiteSpline(n=1)
        self.sin_spline.from_function(
            [symengine.sin(t)],
            times_of_interest=interval,
            max_anchors=100,
        )
        self.sin_evaluation = self.sin_spline.get_state(self.times)

        self.exp_spline = CubicHermiteSpline(n=1)
        self.exp_spline.from_function(
            [symengine.exp(t)],
            times_of_interest=interval,
            max_anchors=100,
        )
        self.exp_evaluation = self.exp_spline.get_state(self.times)
Exemplo n.º 26
0
def solve_chi_saddlepoint(mu, Sigma):
    """Compute the saddlepoint approximation for the generalized chi square distribution given a mean and a covariance matrix. Currently has two different ways of solving:
        1. If the mean is close to zero, the system can be solved symbolically."""
    P = None
    eigenvalues, eigenvectors = np.linalg.eig(Sigma)
    if (eigenvectors == np.diag(eigenvalues)).all():
        P = np.eye(len(mu))
    else:
        P = eigenvectors.T
    Sigma_12 = np.linalg.cholesky(Sigma)
    b = P @ Sigma_12 @ mu

    x = sym.Symbol("x")
    t = sym.Symbol("t")

    # Cumulant function
    K = 0
    for i, l in enumerate(eigenvalues):
        K += (t * b[i]**2 * l) / (1 - 2 * t * l) - 1 / 2 * sym.log(1 -
                                                                   2 * l * t)

    Kp = sym.diff(K, t).simplify()
    Kpp = sym.diff(K, t, t).simplify()

    roots = sym.lib.symengine_wrapper.solve(sym.Eq(Kp, x), t).args
    if len(roots) > 1:
        for expr in roots:
            trial = Kpp.subs(t, expr).subs(x, np.dot(b, b))
            if trial >= 0.0:
                s_hat = expr
    else:
        s_hat = roots[0]

    f = 1 / sym.sqrt(2 * sym.pi * Kpp.subs(
        t, s_hat)) * sym.exp(K.subs(t, s_hat) - s_hat * x)
    fp = sym.Lambdify(x, f.simplify())

    c = integrate.quad(fp, 0, np.inf)[0]
    return lambda x: 1 / c * fp(x)
Exemplo n.º 27
0
 def E(self, t=Symbol('t', positive=True)):
     expr1_E = self.integrate(self.kappa(self.u), (self.u, 0, t))
     return exp(expr1_E)
Exemplo n.º 28
0
 def _tau_m_h(self, voltage):
     return 20.0 + 1000.0 / (exp(
         (voltage + 71.5) / 14.2) + exp(-(voltage + 89.0) / 11.6))
Exemplo n.º 29
0
 def _m_inf_T(self, voltage):
     return 1.0 / (1.0 + exp(-(voltage + 52.0) / 7.4))
Exemplo n.º 30
0
 def _h_inf_T(self, voltage):
     return 1.0 / (1.0 + exp((voltage + 80.0) / 5.0))
Exemplo n.º 31
0
 def _tau_h_T(self, voltage):
     return (85.0 + 1.0 / (exp(
         (voltage + 48.0) / 4.0) + exp(-(voltage + 407.0) / 50.0))
             ) / 3.7371928
Exemplo n.º 32
0
 def n(self, x=Symbol('x'), Sigma=1):
     return 1 / sqrt(2 * pi * Sigma) * exp(-0.5 * x**2 / Sigma)
Exemplo n.º 33
0
 def _m_inf_h(self, voltage):
     return 1.0 / (1.0 + exp((voltage + 75.0) / 5.5))
Exemplo n.º 34
0
 def _get_firing_rate(self, voltage):
     return self.params["Q_max"] / (
         1.0 + exp(-self.params["C1"] *
                   (voltage - self.params["theta"]) / self.params["sigma"]))
Exemplo n.º 35
0
 def F(self, t=Symbol('t', positive=True)):
     expr1_F = self.integrate(self.r(self.u), (self.u, 0, t))
     return self.s0 * exp(expr1_F)
Exemplo n.º 36
0
 def _tau_h_T(self, voltage):
     return (30.8 + (211.4 + exp((voltage + 115.2) / 5.0)) / (1.0 + exp(
         (voltage + 86.0) / 3.2))) / 3.7371928
Exemplo n.º 37
0
 def _m_inf_T(self, voltage):
     return 1.0 / (1.0 + exp(-(voltage + 59.0) / 6.2))