Exemplo n.º 1
0
def test_equation_2d_5():
    domain = Square()
    x, y = domain.coordinates

    f0 = Matrix([
        2 * pi**2 * sin(pi * x) * sin(pi * y),
        2 * pi**2 * sin(pi * x) * sin(pi * y)
    ])

    f1 = cos(pi * x) * cos(pi * y)

    W = VectorFunctionSpace('W', domain)
    V = ScalarFunctionSpace('V', domain)
    X = ProductSpace(W, V)

    F = element_of(W, name='F')
    G = element_of(V, name='G')

    u, v = [element_of(W, name=i) for i in ['u', 'v']]
    p, q = [element_of(V, name=i) for i in ['p', 'q']]

    int_0 = lambda expr: integral(domain, expr)

    a0 = BilinearForm((v, u), int_0(inner(grad(v), grad(u))))
    print('     a0 done.')
    a1 = BilinearForm((q, p), int_0(p * q))
    print('     a1 done.')
    a = BilinearForm(((v, q), (u, p)), a0(v, u) + a1(q, p))
    print('     a  done.')

    l0 = LinearForm(v, int_0(dot(f0, v)))
    l1 = LinearForm(q, int_0(f1 * q))
    l = LinearForm((v, q), l0(v) + l1(q))

    print('****************************')
    bc = EssentialBC(u, 0, domain.boundary)
    equation = Equation(a, l, tests=[v, q], trials=[u, p], bc=bc)

    # ...
    print('=======')
    print(equation.lhs.expr)
    print('')
    # ...

    # ...
    print('=======')
    print(equation.rhs.expr)
    print('')
Exemplo n.º 2
0
def test_evaluation_2d_2():
    domain = Square()
    x, y = domain.coordinates

    f0 = Tuple(2 * pi**2 * sin(pi * x) * sin(pi * y),
               2 * pi**2 * sin(pi * x) * sin(pi * y))

    f1 = cos(pi * x) * cos(pi * y)

    W = VectorFunctionSpace('W', domain)
    V = FunctionSpace('V', domain)
    X = ProductSpace(W, V)

    # TODO improve: naming are not given the same way
    F = VectorField(W, name='F')
    G = Field('G', V)

    u, v = [VectorTestFunction(W, name=i) for i in ['u', 'v']]
    p, q = [TestFunction(V, name=i) for i in ['p', 'q']]

    a0 = BilinearForm((v, u), inner(grad(v), grad(u)))
    a1 = BilinearForm((q, p), p * q)
    a = BilinearForm(((v, q), (u, p)), a0(v, u) + a1(q, p))

    l0 = LinearForm(v, dot(f0, v))
    l1 = LinearForm(q, f1 * q)
    l = LinearForm((v, q), l0(v) + l1(q))

    # ...
    print(a)
    print(evaluate(a))
    print('')
    # ...

    # ...
    print(l)
    print(evaluate(l))
    print('')
Exemplo n.º 3
0
def test_calculus_3d_3():
    domain = Domain('Omega', dim=3)

    H1 = ScalarFunctionSpace('V0', domain, kind='H1')
    Hcurl = VectorFunctionSpace('V1', domain, kind='Hcurl')
    Hdiv = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2 = ScalarFunctionSpace('V3', domain, kind='L2')
    V = ScalarFunctionSpace('V', domain, kind=None)
    W = VectorFunctionSpace('W', domain, kind=None)

    X = ProductSpace(H1, Hcurl, Hdiv, L2)
    v0, v1, v2, v3 = element_of(X, ['v0', 'v1', 'v2', 'v3'])

    v = element_of(V, 'v')
    w = element_of(W, 'w')

    # ... consistency of grad operator
    # we can apply grad on an undefined space type or H1
    expr = grad(v0)
    expr = grad(v)
    expr = grad(w)

    # wa cannot apply grad to a function in Hcurl
    with pytest.raises(ArgumentTypeError):
        expr = grad(v1)

    # wa cannot apply grad to a function in Hdiv
    with pytest.raises(ArgumentTypeError):
        expr = grad(v2)

    # wa cannot apply grad to a function in L2
    with pytest.raises(ArgumentTypeError):
        expr = grad(v3)
    # ...

    # ... consistency of curl operator
    # we can apply curl on an undefined space type, H1 or Hcurl
    expr = curl(v0)
    expr = curl(v1)
    expr = curl(v)
    expr = curl(w)

    # wa cannot apply curl to a function in Hdiv
    with pytest.raises(ArgumentTypeError):
        expr = curl(v2)

    # wa cannot apply curl to a function in L2
    with pytest.raises(ArgumentTypeError):
        expr = curl(v3)
    # ...

    # ... consistency of div operator
    # we can apply div on an undefined space type, H1 or Hdiv
    expr = div(v0)
    expr = div(v2)
    expr = div(v)
    expr = div(w)

    # wa cannot apply div to a function in Hcurl
    with pytest.raises(ArgumentTypeError):
        expr = div(v1)

    # wa cannot apply div to a function in L2
    with pytest.raises(ArgumentTypeError):
        expr = div(v3)
Exemplo n.º 4
0
def test_linearity_2d_2():
    domain = Domain('Omega', dim=DIM)

    V1 = FunctionSpace('V1', domain)
    V2 = FunctionSpace('V2', domain)
    U1 = FunctionSpace('U1', domain)
    U2 = FunctionSpace('U2', domain)
    W1 = VectorFunctionSpace('W1', domain)
    W2 = VectorFunctionSpace('W2', domain)
    T1 = VectorFunctionSpace('T1', domain)
    T2 = VectorFunctionSpace('T2', domain)

    v1 = TestFunction(V1, name='v1')
    v2 = TestFunction(V2, name='v2')
    u1 = TestFunction(U1, name='u1')
    u2 = TestFunction(U2, name='u2')
    w1 = VectorTestFunction(W1, name='w1')
    w2 = VectorTestFunction(W2, name='w2')
    t1 = VectorTestFunction(T1, name='t1')
    t2 = VectorTestFunction(T2, name='t2')

    V = ProductSpace(V1, V2)
    U = ProductSpace(U1, U2)

    x, y = V1.coordinates

    alpha = Constant('alpha')

    F = Field('F', space=V1)

    # ...
    l1 = LinearForm(v1, x * y * v1, check=True)

    l = LinearForm(v2, l1(v2), check=True)
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, check=True)
    l2 = LinearForm(v2, cos(x + y) * v2, check=True)

    l = LinearForm((u1, u2), l1(u1) + l2(u2), check=True)
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, check=True)
    l2 = LinearForm(v2, cos(x + y) * v2, check=True)

    l = LinearForm((u1, u2), l1(u1) + alpha * l2(u2), check=True)
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, check=True)
    l2 = LinearForm(w1, div(w1), check=True)

    l = LinearForm((v2, w2), l1(v2) + l2(w2), check=True)
    # ...

    ################################
    #    non bilinear forms
    ################################
    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        l = LinearForm(v1, x * y * v1**2, check=True)
    # ...

    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        l = LinearForm(v1, x * y, check=True)
Exemplo n.º 5
0
def test_calls_2d():
    domain = Domain('Omega', dim=DIM)

    V1 = FunctionSpace('V1', domain)
    V2 = FunctionSpace('V2', domain)
    U1 = FunctionSpace('U1', domain)
    U2 = FunctionSpace('U2', domain)
    W1 = VectorFunctionSpace('W1', domain)
    W2 = VectorFunctionSpace('W2', domain)
    T1 = VectorFunctionSpace('T1', domain)
    T2 = VectorFunctionSpace('T2', domain)

    v1 = TestFunction(V1, name='v1')
    v2 = TestFunction(V2, name='v2')
    u1 = TestFunction(U1, name='u1')
    u2 = TestFunction(U2, name='u2')
    w1 = VectorTestFunction(W1, name='w1')
    w2 = VectorTestFunction(W2, name='w2')
    t1 = VectorTestFunction(T1, name='t1')
    t2 = VectorTestFunction(T2, name='t2')

    V = ProductSpace(V1, V2)
    U = ProductSpace(U1, U2)

    x, y = V1.coordinates

    alpha = Constant('alpha')

    F = Field('F', space=V1)

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    print(a1)
    print(atomize(a1))
    print(evaluate(a1))
    print('')

    expr = a1(v2, u2)
    a = BilinearForm((v2, u2), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), name='a')

    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), name='a1')

    expr = a1(v2, u2)
    a = BilinearForm((v2, u2), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2')

    expr = a1(v2, u2) + a2(v2, u2)
    a = BilinearForm((v2, u2), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2')

    expr = a1(v1, u2)
    print('> before = ', expr)
    expr = expr.subs(u2, u1)
    print('> after  = ', expr)
    print('')

    expr = a1(v1, u2) + a1(v2, u2)
    print('> before = ', expr)
    expr = expr.subs(u2, u1)
    print('> after  = ', expr)
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2')

    expr = a1(v1, u2) + a2(v2, u1)
    a = BilinearForm(((v1, v2), (u1, u2)), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    print('')
    # ...

    # ...
    a = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, name='a1')
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2')
    a3 = BilinearForm((w1, t1),
                      rot(w1) * rot(t1) + div(w1) * div(t1),
                      name='a3')
    a4 = BilinearForm((w1, u1), div(w1) * u1, name='a4')

    expr = a3(w2, t2) + a2(v2, u2) + a4(w2, u2)
    a = BilinearForm(((w2, v2), (t2, u2)), expr, name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
    # ...

    # ...
    a1 = BilinearForm((v1, u1), laplace(u1) * laplace(v1), name='a1')
    print(a1)
    print(atomize(a1))
    print(evaluate(a1))
    print('')
    # ...

    # ...
    a1 = BilinearForm((v1, u1), inner(hessian(u1), hessian(v1)), name='a1')
    print('================================')
    print(a1)
    print(atomize(a1))
    print(evaluate(a1))
    print('')
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, name='11')

    expr = l1(v2)
    l = LinearForm(v2, expr, name='1')
    print(l)
    print(atomize(l))
    print(evaluate(l))
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, name='l1')
    l2 = LinearForm(v2, cos(x + y) * v2, name='l2')

    expr = l1(u1) + l2(u2)
    l = LinearForm((u1, u2), expr, name='1')
    print(l)
    print(atomize(l))
    print(evaluate(l))
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, name='l1')
    l2 = LinearForm(v2, cos(x + y) * v2, name='l2')

    expr = l1(u1) + alpha * l2(u2)
    l = LinearForm((u1, u2), expr, name='1')
    print(l)
    print(atomize(l))
    print(evaluate(l))
    # ...

    # ...
    l1 = LinearForm(v1, x * y * v1, name='l1')
    l2 = LinearForm(w1, div(w1), name='l2')

    expr = l1(v2) + l2(w2)
    l = LinearForm((v2, w2), expr, name='1')
    print(l)
    print(atomize(l))
    print(evaluate(l))
    # ...

    # ...
    I1 = Integral(x * y, domain, name='I1')

    print(I1)
    print(atomize(I1))
    print(evaluate(I1))
    # ...

    # ...
    expr = F - cos(2 * pi * x) * cos(3 * pi * y)
    expr = dot(grad(expr), grad(expr))
    I2 = Integral(expr, domain, name='I2')

    print(I2)
    print(atomize(I2))
    print(evaluate(I2))
    # ...

    # ...
    expr = F - cos(2 * pi * x) * cos(3 * pi * y)
    expr = dot(grad(expr), grad(expr))
    I2 = Integral(expr, domain, name='I2')

    print(I2)
    print(atomize(I2))
    print(evaluate(I2))
    # ...

    # ... stokes
    V = VectorFunctionSpace('V', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(V, name='v')
    u = VectorTestFunction(V, name='u')
    p = TestFunction(W, name='p')
    q = TestFunction(W, name='q')

    a = BilinearForm((v, u), inner(grad(v), grad(u)), name='a')
    b = BilinearForm((v, p), div(v) * p, name='b')
    A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), name='A')

    print(A)
    print(atomize(A))
    print(evaluate(A))
Exemplo n.º 6
0
def test_bilinearity_2d_2():
    domain = Domain('Omega', dim=DIM)

    V1 = FunctionSpace('V1', domain)
    V2 = FunctionSpace('V2', domain)
    U1 = FunctionSpace('U1', domain)
    U2 = FunctionSpace('U2', domain)
    W1 = VectorFunctionSpace('W1', domain)
    W2 = VectorFunctionSpace('W2', domain)
    T1 = VectorFunctionSpace('T1', domain)
    T2 = VectorFunctionSpace('T2', domain)

    v1 = TestFunction(V1, name='v1')
    v2 = TestFunction(V2, name='v2')
    u1 = TestFunction(U1, name='u1')
    u2 = TestFunction(U2, name='u2')
    w1 = VectorTestFunction(W1, name='w1')
    w2 = VectorTestFunction(W2, name='w2')
    t1 = VectorTestFunction(T1, name='t1')
    t2 = VectorTestFunction(T2, name='t2')

    V = ProductSpace(V1, V2)
    U = ProductSpace(U1, U2)

    x, y = V1.coordinates

    alpha = Constant('alpha')

    F = Field('F', space=V1)

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, check=True)
    a = BilinearForm((v2, u2), a1(v2, u2), check=True)
    # ...

    # ...
    a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), check=True)
    a = BilinearForm((v2, u2), a1(v2, u2), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1)
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True)
    a = BilinearForm((v2, u2), a1(v2, u2) + a2(v2, u2), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, check=True)
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, check=True)
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True)
    a = BilinearForm(((v1, v2), (u1, u2)), a1(v1, u2) + a2(v2, u1), check=True)
    # ...

    # ...
    a = BilinearForm((w1, t1),
                     rot(w1) * rot(t1) + div(w1) * div(t1),
                     check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), u1 * v1, check=True)
    a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True)
    a3 = BilinearForm((w1, t1),
                      rot(w1) * rot(t1) + div(w1) * div(t1),
                      check=True)
    a4 = BilinearForm((w1, u1), div(w1) * u1, check=True)

    a = BilinearForm(((w2, v2), (t2, u2)),
                     a3(w2, t2) + a2(v2, u2) + a4(w2, u2),
                     check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), laplace(u1) * laplace(v1), check=True)
    # ...

    # ...
    a1 = BilinearForm((v1, u1), inner(hessian(u1), hessian(v1)), check=True)
    # ...

    # ... stokes
    V = VectorFunctionSpace('V', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(V, name='v')
    u = VectorTestFunction(V, name='u')
    p = TestFunction(W, name='p')
    q = TestFunction(W, name='q')

    a = BilinearForm((v, u), inner(grad(v), grad(u)), check=True)
    b = BilinearForm((v, p), div(v) * p, check=True)
    A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), check=True)
    # ...

    ################################
    #    non bilinear forms
    ################################
    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)) + v1, check=True)
    # ...

    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        a = BilinearForm((v1, u1), v1**2 * u1, check=True)
    # ...

    # ...
    with pytest.raises(UnconsistentLinearExpressionError):
        a = BilinearForm((v1, u1), dot(grad(v1), grad(v1)), check=True)