Exemplo n.º 1
0
def test_logical_expr_3d_5():

    dim = 3
    domain = Domain('Omega', dim=dim)
    M = Mapping('M', dim=dim)

    mapped_domain = M(domain)

    V = VectorFunctionSpace('V', domain, kind='hcurl')
    VM = VectorFunctionSpace('VM', mapped_domain, kind='hcurl')

    J = M.jacobian
    u, v = elements_of(V, names='u,v')
    um, vm = elements_of(VM, names='u,v')

    int_md = lambda expr: integral(mapped_domain, expr)
    int_ld = lambda expr: integral(domain, expr)

    am = BilinearForm((um, vm), int_md(dot(curl(vm), curl(um))))
    a = LogicalExpr(am)

    assert a == BilinearForm(
        (u, v),
        int_ld(
            sqrt((J.T * J).det()) *
            dot(J / J.det() * curl(u), J / J.det() * curl(v))))
Exemplo n.º 2
0
def test_zero_derivative():

    assert grad(1) == 0  # native int
    assert grad(2.3) == 0  # native float
    assert grad(4 + 5j) == 0  # native complex
    assert grad(Integer(1)) == 0  # sympy Integer
    assert grad(Float(2.3)) == 0  # sympy Float
    assert grad(Rational(6, 7)) == 0  # sympy Rational
    assert grad(Constant('a')) == 0  # sympde Constant

    assert laplace(1) == 0  # native int
    assert laplace(2.3) == 0  # native float
    assert laplace(4 + 5j) == 0  # native complex
    assert laplace(Integer(1)) == 0  # sympy Integer
    assert laplace(Float(2.3)) == 0  # sympy Float
    assert laplace(Rational(6, 7)) == 0  # sympy Rational
    assert laplace(Constant('a')) == 0  # sympde Constant

    assert hessian(1) == 0  # native int
    assert hessian(2.3) == 0  # native float
    assert hessian(4 + 5j) == 0  # native complex
    assert hessian(Integer(1)) == 0  # sympy Integer
    assert hessian(Float(2.3)) == 0  # sympy Float
    assert hessian(Rational(6, 7)) == 0  # sympy Rational
    assert hessian(Constant('a')) == 0  # sympde Constant

    # 2D convection of constant scalar field
    domain = Domain('Omega', dim=2)
    W = VectorFunctionSpace('W', domain)
    F = element_of(W, name='F')

    assert convect(F, 1) == 0  # native int
    assert convect(F, 2.3) == 0  # native float
    assert convect(F, 4 + 5j) == 0  # native complex
    assert convect(F, Integer(1)) == 0  # sympy Integer
    assert convect(F, Float(2.3)) == 0  # sympy Float
    assert convect(F, Rational(6, 7)) == 0  # sympy Rational
    assert convect(F, Constant('a')) == 0  # sympde Constant

    # 3D convection of constant scalar field
    domain = Domain('Omega', dim=3)
    Z = VectorFunctionSpace('Z', domain)
    G = element_of(Z, name='G')

    assert convect(G, 1) == 0  # native int
    assert convect(G, 2.3) == 0  # native float
    assert convect(G, 4 + 5j) == 0  # native complex
    assert convect(G, Integer(1)) == 0  # sympy Integer
    assert convect(G, Float(2.3)) == 0  # sympy Float
    assert convect(G, Rational(6, 7)) == 0  # sympy Rational
    assert convect(G, Constant('a')) == 0  # sympde Constant
Exemplo n.º 3
0
def test_tensorize_2d():
    domain = Domain('Omega', dim=DIM)

    V = FunctionSpace('V', domain)
    U = FunctionSpace('U', domain)
    W1 = VectorFunctionSpace('W1', domain)
    T1 = VectorFunctionSpace('T1', domain)

    v = TestFunction(V, name='v')
    u = TestFunction(U, name='u')
    w1 = VectorTestFunction(W1, name='w1')
    t1 = VectorTestFunction(T1, name='t1')

    x, y = domain.coordinates

    alpha = Constant('alpha')

    # ...
    expr = dot(grad(v), grad(u))
    a = BilinearForm((v, u), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
    # ...

    # ...
    expr = x * dx(v) * dx(u) + y * dy(v) * dy(u)
    a = BilinearForm((v, u), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
    # ...

    # ...
    expr = sin(x) * dx(v) * dx(u)
    a = BilinearForm((v, u), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
    # ...

    # ...
    #    expr = rot(w1)*rot(t1) + div(w1)*div(t1)
    expr = rot(w1) * rot(t1)  #+ div(w1)*div(t1)
    a = BilinearForm((w1, t1), expr, name='a')
    print(a)
    print(tensorize(a))
    print('')
Exemplo n.º 4
0
def test_linear_expr_2d_2():

    domain = Domain('Omega', dim=2)
    x, y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu = Constant('mu', is_real=True)

    V = VectorFunctionSpace('V', domain)

    u, u1, u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']]
    v, v1, v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']]

    g = Tuple(x, y)
    l = LinearExpr(v, dot(g, v))
    print(l)
    print(l.expr)
    print(l(v1))
    # TODO
    #    print(l(v1+v2))
    print('')
    # ...

    # ...
    g1 = Tuple(x, 0)
    g2 = Tuple(0, y)
    l = LinearExpr((v1, v2), dot(g1, v1) + dot(g2, v2))
    print(l)
    print(l.expr)
    print(l(u1, u2))
    # TODO
    #    print(l(u1+v1, u2+v2))
    print('')
Exemplo n.º 5
0
def test_terminal_expr_linear_2d_2():

    domain = Domain('Omega', dim=2)
    B1 = Boundary(r'\Gamma_1', domain)

    x, y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu = Constant('mu', is_real=True)

    V = VectorFunctionSpace('V', domain)

    u, u1, u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']]
    v, v1, v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']]

    # ...
    int_0 = lambda expr: integral(domain, expr)
    int_1 = lambda expr: integral(B1, expr)

    g = Matrix((x, y))
    l = LinearForm(v, int_0(dot(g, v)))
    print(TerminalExpr(l))
    print('')
    # ...

    # ...
    g = Matrix((x, y))
    l = LinearForm(v, int_0(dot(g, v) + div(v)))
    print(TerminalExpr(l))
    print('')
Exemplo n.º 6
0
def test_bilinear_expr_2d_2():

    domain = Domain('Omega', dim=2)
    x,y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu    = Constant('mu'   , is_real=True)

    V = VectorFunctionSpace('V', domain)

    u,u1,u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']]
    v,v1,v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']]

    # ...
    a = BilinearExpr((u,v), dot(u,v))
    print(a)
    print(a.expr)
    print(a(u1,v1))
    # TODO
#    print(a(u1+u2,v1+v2))
    print('')
    # ...

    # ...
    a1 = BilinearExpr((u,v), dot(u,v))
    a2 = BilinearExpr((u,v), inner(grad(u),grad(v)))
    print(a1(u1,v1) + a2(u2,v2))
    print('')
Exemplo n.º 7
0
def test_equation_2d_4():

    V = VectorFunctionSpace('V', domain)

    v = element_of(V, name='v')
    u = element_of(V, name='u')
    x, y = domain.coordinates

    B1 = Boundary(r'\Gamma_1', domain)

    int_0 = lambda expr: integral(domain, expr)
    int_1 = lambda expr: integral(B1, expr)

    # ... bilinear/linear forms
    a1 = BilinearForm((v, u), int_0(inner(grad(v), grad(u))))

    f = Tuple(x * y, sin(pi * x) * sin(pi * y))
    l1 = LinearForm(v, int_0(dot(f, v)))
    # ...

    # ...
    bc = EssentialBC(u, 0, B1)
    eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
    # ...

    # ...
    bc = EssentialBC(u[0], 0, B1)
    eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
    # ...

    # ...
    nn = NormalVector('nn')
    bc = EssentialBC(dot(u, nn), 0, B1)
    eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
Exemplo n.º 8
0
def test_Inner(dim):

    domain = Domain('Omega', dim=dim)
    W = VectorFunctionSpace('W', domain)
    a, b, c = elements_of(W, names='a, b, c')
    r = Constant('r')

    # Commutativity
    assert inner(a, b) == inner(b, a)

    # Bilinearity: vector addition
    assert inner(a, b + c) == inner(a, b) + inner(a, c)
    assert inner(a + b, c) == inner(a, c) + inner(b, c)

    # Bilinearity: scalar multiplication
    assert inner(a, r * b) == r * inner(a, b)
    assert inner(r * a, b) == r * inner(a, b)

    # Special case: null vector
    assert inner(a, 0) == 0
    assert inner(0, a) == 0

    # Special case: two arguments are the same
    assert inner(a, a).is_real
    assert inner(a, a).is_positive
Exemplo n.º 9
0
def test_projector_2d_1():

    DIM = 2
    domain = Domain('Omega', dim=DIM)

    V = ScalarFunctionSpace('V', domain, kind=None)
    W = VectorFunctionSpace('W', domain, kind=None)

    v, w = element_of(V * W, ['v', 'w'])

    # ...
    P_V = Projector(V)
    assert (P_V.space == V)

    Pv = P_V(v)
    assert (isinstance(Pv, ScalarTestFunction))
    assert (Pv == v)
    assert (grad(Pv**2) == 2 * v * grad(v))

    Pdiv_w = P_V(div(w))
    assert (isinstance(Pdiv_w, ScalarTestFunction))
    # ...

    # ...
    P_W = Projector(W)
    assert (P_W.space == W)

    Pw = P_W(w)
    assert (isinstance(Pw, VectorTestFunction))
    assert (Pw == w)

    Pgrad_v = P_W(grad(v))
    assert (isinstance(Pgrad_v, VectorTestFunction))
    assert (P_W(Pgrad_v) == Pgrad_v)
Exemplo n.º 10
0
def test_terminal_expr_bilinear_2d_2():

    domain = Domain('Omega', dim=2)
    B1 = Boundary(r'\Gamma_1', domain)

    x, y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu = Constant('mu', is_real=True)
    nn = NormalVector('nn')

    V = VectorFunctionSpace('V', domain)

    u, u1, u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']]
    v, v1, v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']]

    # ...
    int_0 = lambda expr: integral(domain, expr)
    int_1 = lambda expr: integral(B1, expr)

    a = BilinearForm((u, v), int_0(dot(u, v)))
    print(TerminalExpr(a))
    print('')

    # ...
    a = BilinearForm((u, v), int_0(inner(grad(u), grad(v))))
    print(TerminalExpr(a))
    print('')
    # ...

    # ...
    a = BilinearForm((u, v), int_0(dot(u, v) + inner(grad(u), grad(v))))
    print(TerminalExpr(a))
    print('')
Exemplo n.º 11
0
def test_bilinear_form_2d_4():

    domain = Domain('Omega', dim=2)
    B1 = Boundary(r'\Gamma_1', domain)

    x, y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu = Constant('mu', is_real=True)

    V = VectorFunctionSpace('V', domain)

    u, u1, u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']]
    v, v1, v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']]

    int_0 = lambda expr: integral(domain, expr)
    int_1 = lambda expr: integral(B1, expr)
    # ...
    a = BilinearForm((u, v), int_0(dot(u, v)))
    assert (a.is_symmetric)
    # ...

    # ...
    a = BilinearForm((u, v), int_0(inner(grad(u), grad(v))))
    assert (a.is_symmetric)
Exemplo n.º 12
0
def test_latex_2d_2():

    DIM = 2
    domain = Domain('Omega', dim=DIM)

    V = VectorFunctionSpace('V', domain)

    x, y = V.coordinates

    v = element_of(V, name='v')
    u = element_of(V, name='u')
    #    F = element_of(V, name='F')

    int_0 = lambda expr: integral(domain, expr)

    assert (latex(v) == r'\mathbf{v}')
    assert (latex(inner(
        grad(v), grad(u))) == r'\nabla{\mathbf{u}} : \nabla{\mathbf{v}}')

    a = BilinearForm((v, u), int_0(inner(grad(v), grad(u))))
    print(latex(a))
    #    assert(latex(a) == r'\int_{0}^{1}\int_{0}^{1} \nabla{\mathbf{v}} : \nabla{\mathbf{u}} dxdy')

    b = LinearForm(v, int_0(sin(pi * x) * cos(pi * y) * div(v)))
    print(latex(b))
Exemplo n.º 13
0
def test_linearize_form_2d_3():
    """steady Euler equation."""
    domain = Domain('Omega', dim=2)

    U = VectorFunctionSpace('U', domain)
    W = ScalarFunctionSpace('W', domain)

    # Test functions
    v = element_of(U, name='v')
    phi = element_of(W, name='phi')
    q = element_of(W, name='q')

    # Steady-state fields
    U_0 = element_of(U, name='U_0')
    Rho_0 = element_of(W, name='Rho_0')
    P_0 = element_of(W, name='P_0')

    # Trial functions (displacements from steady-state)
    d_u = element_of(U, name='d_u')
    d_rho = element_of(W, name='d_rho')
    d_p = element_of(W, name='d_p')

    # Shortcut
    int_0 = lambda expr: integral(domain, expr)

    # The Euler equations are a system of three non-linear equations; for each of
    # them we create a linear form in the test functions (phi, v, q) respectively.
    e1 = div(Rho_0 * U_0)
    l1 = LinearForm(phi, int_0(e1 * phi))

    e2 = Rho_0 * convect(U_0, U_0) + grad(P_0)
    l2 = LinearForm(v, int_0(dot(e2, v)))

    e3 = div(P_0 * U_0)
    l3 = LinearForm(q, int_0(e3 * q))
    # ...

    # Linearize l1, l2 and l3 separately
    a1 = linearize(l1, fields=[Rho_0, U_0], trials=[d_rho, d_u])
    a2 = linearize(l2, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p])
    a3 = linearize(l3, fields=[U_0, P_0], trials=[d_u, d_p])

    # Check individual bilinear forms
    d_e1 = div(U_0 * d_rho + Rho_0 * d_u)
    d_e2 = d_rho * convect(U_0, U_0) + \
           Rho_0 * convect(d_u, U_0) + \
           Rho_0 * convect(U_0, d_u) + grad(d_p)
    d_e3 = div(d_p * U_0 + P_0 * d_u)

    assert a1([d_rho, d_u], phi) == int_0(d_e1 * phi)
    assert a2([d_rho, d_u, d_p], v) == int_0(dot(d_e2, v))
    assert a3([d_u, d_p], q) == int_0(d_e3 * q)

    # Linearize linear form of system: l = l1 + l2 + l3
    l = LinearForm((phi, v, q), l1(phi) + l2(v) + l3(q))
    a = linearize(l, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p])

    # Check composite linear form
    assert a([d_rho, d_u, d_p], [phi, v, q]) == \
            int_0(d_e1 * phi + dot(d_e2, v) + d_e3 * q)
Exemplo n.º 14
0
def test_latex_ec_3d_1():

    n = 3

    # ...
    u_0 = DifferentialForm('u_0', index=0, dim=n)
    v_0 = DifferentialForm('v_0', index=0, dim=n)

    u_1 = DifferentialForm('u_1', index=1, dim=n)
    v_1 = DifferentialForm('v_1', index=1, dim=n)

    u_2 = DifferentialForm('u_2', index=2, dim=n)
    v_2 = DifferentialForm('v_2', index=2, dim=n)

    u_3 = DifferentialForm('u_3', index=3, dim=n)
    v_3 = DifferentialForm('v_3', index=3, dim=n)
    # ...

    # ...
    domain = Domain('Omega', dim=3)
    V = VectorFunctionSpace('V', domain)

    beta = element_of(V, 'beta')
    # ...

    print(latex(u_0))
    print(latex(d(u_0)))
    print(latex(d(delta(u_3))))
    print(latex(d(delta(u_2)) + delta(d(u_2))))
    print(latex(wedge(u_0, u_1)))

    print(latex(ip(beta, u_1)))
    print(latex(hodge(u_1)))
    print(latex(jp(beta, u_1)))
Exemplo n.º 15
0
def test_latex_2d_5():
    DIM = 2

    domain = Domain('Omega', dim=DIM)

    # ... abstract model
    W1 = VectorFunctionSpace('W1', domain)

    w1 = element_of(W1, name='w1')
    F = element_of(W1, 'F')

    int_0 = lambda expr: integral(domain, expr)

    # ...
    l1 = LinearForm(w1, int_0(dot(w1, F)))

    print(latex(l1))
    print('')
    # ...

    # ...
    l2 = LinearForm(w1, int_0(rot(w1) * rot(F) + div(w1) * div(F)))

    print(latex(l2))
    print('')
Exemplo n.º 16
0
def test_logical_expr_2d_3():
    dim = 2

    A = Square('A')
    B = Square('B')

    M1 = Mapping('M1', dim=dim)
    M2 = Mapping('M2', dim=dim)

    D1 = M1(A)
    D2 = M2(B)

    domain = D1.join(D2,
                     name='domain',
                     bnd_minus=D1.get_boundary(axis=0, ext=1),
                     bnd_plus=D2.get_boundary(axis=0, ext=-1))

    V = VectorFunctionSpace('V', domain, kind='hcurl')

    u, v = [element_of(V, name=i) for i in ['u', 'v']]

    int_0 = lambda expr: integral(domain, expr)

    expr = LogicalExpr(int_0(dot(u, v)), domain)
    assert str(
        expr.args[0]
    ) == 'Integral(A, Dot((Jacobian(M1)**(-1)).T * u, (Jacobian(M1)**(-1)).T * v)*sqrt(det(Jacobian(M1).T * Jacobian(M1))))'
    assert str(
        expr.args[1]
    ) == 'Integral(B, Dot((Jacobian(M2)**(-1)).T * u, (Jacobian(M2)**(-1)).T * v)*sqrt(det(Jacobian(M2).T * Jacobian(M2))))'
Exemplo n.º 17
0
def test_compiler_3d_stokes():

    domain = Domain('Omega', dim=3)

    # ...
    #    by setting the space type, we cannot evaluate grad of Hdiv function, then
    #    ArgumentTypeError will be raised.
    #    In order to avoid this problem, we need first to declare our space as an
    #    undefined type.
    Hdiv = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2 = ScalarFunctionSpace('V3', domain, kind='L2')

    X = Hdiv * L2

    u, p = element_of(X, name='u, p')
    v, q = element_of(X, name='v, q')

    with pytest.raises(ArgumentTypeError):
        expr = inner(grad(u), grad(v)) - div(v) * p + q * div(u)
    # ...

    # ...
    Hdiv = VectorFunctionSpace('V2', domain)
    L2 = ScalarFunctionSpace('V3', domain)

    X = Hdiv * L2

    u, p = element_of(X, name='u, p')
    v, q = element_of(X, name='v, q')

    expr = inner(grad(u), grad(v)) - div(v) * p + q * div(u)
    atoms = {
        u: DifferentialForm('u', index=2, dim=domain.dim),
        v: DifferentialForm('v', index=2, dim=domain.dim),
        p: DifferentialForm('p', index=3, dim=domain.dim),
        q: DifferentialForm('q', index=3, dim=domain.dim)
    }
    newexpr = ExteriorCalculusExpr(expr, tests=[v, q], atoms=atoms)
    print('===== BEFORE =====')
    print(newexpr)

    newexpr = augmented_expression(newexpr,
                                   tests=[v, q],
                                   atoms=atoms,
                                   weak=False)
    print('===== AFTER  =====')
    print(newexpr)
Exemplo n.º 18
0
def test_vector_2d_1():
    domain = Domain('Omega', dim=DIM)

    W1 = VectorFunctionSpace('W1', domain)
    T1 = VectorFunctionSpace('T1', domain)

    w1 = VectorTestFunction(W1, name='w1')
    t1 = VectorTestFunction(T1, name='t1')

    x, y = W1.coordinates

    F = VectorField(W1, 'F')

    #    # ...
    #    l1 = LinearForm(w1, dot(w1, F), name='l1')
    #    print(l1)
    #    print(atomize(l1))
    #    print(evaluate(l1))
    #    print('')
    #    # ...
    #
    #    # ...
    #    l2 = LinearForm(w1, rot(w1)*rot(F) + div(w1)*div(F), name='l2')
    #    print(l2)
    #    print(atomize(l2))
    #    print(evaluate(l2))
    #    print('')
    #    # ...

    # ...
    f = Tuple(sin(pi * x) * sin(pi * y), sin(pi * x) * sin(pi * y))
    error = Matrix([F[0] - f[0], F[1] - f[1]])
    l2_norm = Norm(error, domain, kind='l2')
    print(l2_norm)
    print(atomize(l2_norm))
    print(evaluate(l2_norm))
    print('')
    # ...

    # ...
    f = Tuple(sin(pi * x) * sin(pi * y), sin(pi * x) * sin(pi * y))
    error = Matrix([F[0] - f[0], F[1] - f[1]])
    h1_norm = Norm(error, domain, kind='h1')
    print(h1_norm)
    print(atomize(h1_norm))
    print(evaluate(h1_norm))
    print('')
Exemplo n.º 19
0
def test_compiler_3d_2():

    domain = Domain('Omega', dim=3)

    H1    = ScalarFunctionSpace('V0', domain, kind='H1')
    Hcurl = VectorFunctionSpace('V1', domain, kind='Hcurl')
    Hdiv  = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2    = ScalarFunctionSpace('V3', domain, kind='L2')
    V     = VectorFunctionSpace('V', domain)

    X = H1 * Hcurl * Hdiv * L2

    v = element_of(X, name='v0, v1, v2, v3')
    u = element_of(X, name='u0, u1, u2, u3')

    beta = Field(V, 'beta')

#    # ... Dot operator
#    expr = dot(u1, v1)
#    print(ExteriorCalculusExpr(expr, tests=[v1]))
#
#    expr = dot(u2, v2)
#    print(ExteriorCalculusExpr(expr, tests=[v2]))
#
#    expr = dot(grad(v0), u1)
#    print(ExteriorCalculusExpr(expr, tests=[v0]))
#
#    expr = dot(grad(u0), v1)
#    print(ExteriorCalculusExpr(expr, tests=[v1]))
#
#    expr = dot(curl(u1), v2)
#    print(ExteriorCalculusExpr(expr, tests=[v2]))
#
#    expr = dot(curl(v1), u2)
#    print(ExteriorCalculusExpr(expr, tests=[v1]))
#    # ...

    # ... Mul operator
    expr = u[0] * v[0]
    print(ExteriorCalculusExpr(expr, tests=[v[0]]))

    expr = u[0] * div(v[2])
    print(ExteriorCalculusExpr(expr, tests=[v[2]]))

    expr = v[0] * div(u[2])
    print(ExteriorCalculusExpr(expr, tests=[v[0]]))
Exemplo n.º 20
0
def test_compiler_3d_poisson():

    domain = Domain('Omega', dim=3)

    H1 = ScalarFunctionSpace('V0', domain, kind='H1')
    Hcurl = VectorFunctionSpace('V1', domain, kind='Hcurl')
    Hdiv = VectorFunctionSpace('V2', domain, kind='Hdiv')
    L2 = ScalarFunctionSpace('V3', domain, kind='L2')
    V = VectorFunctionSpace('V', domain)

    X = Hdiv * L2

    sigma, u = element_of(X, name='sigma, u')
    tau, v = element_of(X, name='tau,   v')

    expr = dot(sigma, tau) + div(tau) * u + div(sigma) * v
    print(ExteriorCalculusExpr(expr, tests=[tau, v]))
Exemplo n.º 21
0
def test_logical_expr_2d_1():
    rdim = 2

    M = Mapping('M', rdim)
    domain = M(Domain('Omega', dim=rdim))

    alpha = Constant('alpha')

    V = ScalarFunctionSpace('V', domain, kind='h1')
    W = VectorFunctionSpace('V', domain, kind='h1')

    u, v = [element_of(V, name=i) for i in ['u', 'v']]
    w = element_of(W, name='w')

    det_M = Jacobian(M).det()
    #print('det = ', det_M)
    det = Symbol('det')

    # ...
    expr = 2 * u + alpha * v
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    #print(expr)
    #print('')
    # ...

    # ...
    expr = dx(u)
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dy(u)
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dx(det_M)
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    expr = expr.subs(det_M, det)
    expr = expand(expr)
    #print(expr)
    #print('')
    # ...

    # ...
    expr = dx(dx(u))
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
    #print(expr.subs(det_M, det))
    #print('')
    # ...

    # ...
    expr = dx(w[0])
    expr = LogicalExpr(expr, mapping=M, dim=rdim)
Exemplo n.º 22
0
def test_calculus_2d_1():
    domain = Domain('Omega', dim=2)

    V = ScalarFunctionSpace('V', domain)
    W = VectorFunctionSpace('W', domain)

    alpha, beta, gamma = [Constant(i) for i in ['alpha', 'beta', 'gamma']]

    f, g, h = elements_of(V, names='f, g, h')
    F, G, H = elements_of(W, names='F, G, H')

    # ... scalar gradient properties
    assert (grad(f + g) == grad(f) + grad(g))
    assert (grad(alpha * h) == alpha * grad(h))
    assert (grad(alpha * f + beta * g) == alpha * grad(f) + beta * grad(g))

    assert (grad(f * g) == f * grad(g) + g * grad(f))
    assert (grad(f / g) == -f * grad(g) / g**2 + grad(f) / g)

    assert (expand(grad(f * g * h)) == f * g * grad(h) + f * h * grad(g) +
            g * h * grad(f))
    # ...

    # ... vector gradient properties
    assert (grad(F + G) == grad(F) + grad(G))
    assert (grad(alpha * H) == alpha * grad(H))
    assert (grad(alpha * F + beta * G) == alpha * grad(F) + beta * grad(G))

    assert (grad(dot(F, G)) == convect(F, G) + convect(G, F) +
            cross(F, curl(G)) - cross(curl(F), G))
    # ...

    # ... curl properties
    assert (curl(f + g) == curl(f) + curl(g))
    assert (curl(alpha * h) == alpha * curl(h))
    assert (curl(alpha * f + beta * g) == alpha * curl(f) + beta * curl(g))
    # ...

    # ... laplace properties
    assert (laplace(f + g) == laplace(f) + laplace(g))
    assert (laplace(alpha * h) == alpha * laplace(h))
    assert (laplace(alpha * f + beta * g) == alpha * laplace(f) +
            beta * laplace(g))
    # ...

    # ... divergence properties
    assert (div(F + G) == div(F) + div(G))
    assert (div(alpha * H) == alpha * div(H))
    assert (div(alpha * F + beta * G) == alpha * div(F) + beta * div(G))

    assert (div(cross(F, G)) == -dot(F, curl(G)) + dot(G, curl(F)))
    # ...

    # ... rot properties
    assert (rot(F + G) == rot(F) + rot(G))
    assert (rot(alpha * H) == alpha * rot(H))
    assert (rot(alpha * F + beta * G) == alpha * rot(F) + beta * rot(G))
Exemplo n.º 23
0
def test_linearize_expr_2d_1():
    domain = Domain('Omega', dim=2)
    x,y = domain.coordinates

    V1 = ScalarFunctionSpace('V1', domain)
    W1 = VectorFunctionSpace('W1', domain)

    v1 = element_of(V1, name='v1')
    w1 = element_of(W1, name='w1')

    alpha = Constant('alpha')

    F = element_of(V1, name='F')
    G = element_of(W1, 'G')


    # ...
    l = LinearExpr(v1, F**2*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, dot(grad(F), grad(F))*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, exp(-F)*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, cos(F)*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, cos(F**2)*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, F**2*dot(grad(F), grad(v1)))
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(w1, dot(rot(G), grad(G))*w1)
    a = linearize(l, G, trials='u1')
    print(a)
Exemplo n.º 24
0
def test_evaluation_2d_1():
    domain = Domain('Omega', dim=2)
    B_neumann = Boundary(r'\Gamma_1', domain)

    V = FunctionSpace('V', domain)
    W = VectorFunctionSpace('W', domain)

    p, q = [TestFunction(V, name=i) for i in ['p', 'q']]
    u, v = [VectorTestFunction(W, name=i) for i in ['u', 'v']]

    alpha = Constant('alpha')

    x, y = V.coordinates
    F = Field('F', space=V)

    a1 = BilinearForm((p, q), dot(grad(p), grad(q)))
    m = BilinearForm((p, q), p * q)
    a2 = BilinearForm((p, q), a1(p, q) + alpha * m(p, q))
    a3 = BilinearForm((u, v), rot(u) * rot(v) + alpha * div(u) * div(v))

    a11 = BilinearForm((v, u), inner(grad(v), grad(u)))
    a12 = BilinearForm((v, p), div(v) * p)
    a4 = BilinearForm(((v, q), (u, p)), a11(v, u) - a12(v, p) + a12(u, q))

    l0 = LinearForm(p, F * p)
    l_neu = LinearForm(p, p * trace_1(grad(F), B_neumann))
    l = LinearForm(p, l0(p) + l_neu(p))

    # ...
    print(a1)
    print(evaluate(a1))
    print('')
    # ...

    # ...
    print(a2)
    print(evaluate(a2))
    print('')
    # ...

    # ...
    print(a3)
    print(evaluate(a3))
    print('')
    # ...

    # ...
    print(a4)
    print(evaluate(a4))
    print('')
    # ...

    # ...
    print(l)
    print(evaluate(l))
    print('')
Exemplo n.º 25
0
def test_curldiv_2d():

    domain = Square()

    W1 = VectorFunctionSpace('W1', domain)
    T1 = VectorFunctionSpace('T1', domain)

    w1 = VectorTestFunction(W1, name='w1')
    t1 = VectorTestFunction(T1, name='t1')

    mu = Constant('mu')

    # ...
    a = BilinearForm((w1, t1),
                     rot(w1) * rot(t1) + mu * div(w1) * div(t1),
                     name='a')
    print(a)
    print(atomize(a))
    print(evaluate(a))
Exemplo n.º 26
0
def test_linearize_2d_1():
    domain = Domain('Omega', dim=DIM)
    x, y = domain.coordinates

    V1 = FunctionSpace('V1', domain)
    W1 = VectorFunctionSpace('W1', domain)

    v1 = TestFunction(V1, name='v1')
    w1 = VectorTestFunction(W1, name='w1')

    alpha = Constant('alpha')

    F = Field('F', space=V1)
    G = VectorField(W1, 'G')

    # ...
    l = LinearForm(v1, F**2 * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, dot(grad(F), grad(F)) * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, exp(-F) * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, cos(F) * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, cos(F**2) * v1, check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(v1, F**2 * dot(grad(F), grad(v1)), check=True)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearForm(w1, dot(rot(G), grad(G)) * w1, check=True)
    a = linearize(l, G, trials='u1')
    print(a)
Exemplo n.º 27
0
def test_logical_expr_3d_4():

    dim = 3
    domain = Domain('Omega', dim=dim)
    M = Mapping('M', dim=3)

    mapped_domain = M(domain)

    V = VectorFunctionSpace('V', domain, kind='hdiv')
    VM = VectorFunctionSpace('VM', mapped_domain, kind='hdiv')

    u, v = elements_of(V, names='u,v')
    um, vm = elements_of(VM, names='u,v')

    J = M.jacobian

    a = div(um) * div(vm)
    e = LogicalExpr(a, mapping=M, dim=dim)

    assert e == J.det()**-2 * div(u) * div(v)
Exemplo n.º 28
0
def test_logical_expr_3d_3():

    dim = 3
    domain = Domain('Omega', dim=dim)
    M = Mapping('M', dim=3)

    mapped_domain = M(domain)

    V = VectorFunctionSpace('V', domain, kind='hcurl')
    VM = VectorFunctionSpace('VM', mapped_domain, kind='hcurl')

    u, v = elements_of(V, names='u,v')
    um, vm = elements_of(VM, names='u,v')

    J = M.jacobian

    a = dot(curl(um), curl(vm))
    e = LogicalExpr(a, mapping=M, dim=dim)

    assert e == dot(J / J.det() * curl(u), J / J.det() * curl(v))
Exemplo n.º 29
0
def test_calculus_3d_4():
    domain = Domain('Omega', dim=3)

    W = VectorFunctionSpace('W', domain)

    alpha, beta, gamma = [Constant(i) for i in ['alpha', 'beta', 'gamma']]

    F, G, H = elements_of(W, names='F, G, H')

    # ...
    expected = alpha * inner(D(F), D(G)) + beta * inner(D(F), D(H))
    assert (inner(D(F), D(alpha * G + beta * H)) == expected)
Exemplo n.º 30
0
def test_calculus_3d_5():
    domain = Domain('Omega', dim=3)

    W = VectorFunctionSpace('W', domain)

    alpha, beta, gamma = [Constant(i) for i in ['alpha', 'beta', 'gamma']]

    F, G, H = elements_of(W, names='F, G, H')

    # ...
    expected = alpha * outer(F, G) + beta * outer(F, H)
    assert (outer(F, alpha * G + beta * H) == expected)