Exemplo n.º 1
0
def test_CRootOf___eval_Eq__():
    f = Function('f')
    eq = x**3 + x + 3
    r = rootof(eq, 2)
    r1 = rootof(eq, 1)
    assert Eq(r, r1) is S.false
    assert Eq(r, r) is S.true
    assert unchanged(Eq, r, x)
    assert Eq(r, 0) is S.false
    assert Eq(r, S.Infinity) is S.false
    assert Eq(r, I) is S.false
    assert unchanged(Eq, r, f(0))
    sol = solve(eq)
    for s in sol:
        if s.is_real:
            assert Eq(r, s) is S.false
    r = rootof(eq, 0)
    for s in sol:
        if s.is_real:
            assert Eq(r, s) is S.true
    eq = x**3 + x + 1
    sol = solve(eq)
    assert [Eq(rootof(eq, i), j) for i in range(3) for j in sol] == [
        False, False, True, False, True, False, True, False, False]
    assert Eq(rootof(eq, 0), 1 + S.ImaginaryUnit) == False
Exemplo n.º 2
0
def test_evalf_relational():
    assert Eq(x/5, y/10).evalf() == Eq(0.2*x, 0.1*y)
    # if this first assertion fails it should be replaced with
    # one that doesn't
    assert unchanged(Eq, (3 - I)**2/2 + I, 0)
    assert Eq((3 - I)**2/2 + I, 0).n() is S.false
    # note: these don't always evaluate to Boolean
    assert nfloat(Eq((3 - I)**2 + I, 0)) == Eq((3.0 - I)**2 + I, 0)
Exemplo n.º 3
0
def test_ff_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert ff(nan, y) == nan
    assert ff(x, nan) == nan

    assert unchanged(ff, x, y)

    assert ff(oo, 0) == 1
    assert ff(-oo, 0) == 1

    assert ff(oo, 6) == oo
    assert ff(-oo, 7) == -oo
    assert ff(-oo, 6) == oo

    assert ff(oo, -6) == oo
    assert ff(-oo, -7) == oo

    assert ff(x, 0) == 1
    assert ff(x, 1) == x
    assert ff(x, 2) == x * (x - 1)
    assert ff(x, 3) == x * (x - 1) * (x - 2)
    assert ff(x, 5) == x * (x - 1) * (x - 2) * (x - 3) * (x - 4)

    assert ff(x, -1) == 1 / (x + 1)
    assert ff(x, -2) == 1 / ((x + 1) * (x + 2))
    assert ff(x, -3) == 1 / ((x + 1) * (x + 2) * (x + 3))

    assert ff(100, 100) == factorial(100)

    assert ff(2 * x**2 - 5 * x,
              2) == (2 * x**2 - 5 * x) * (2 * x**2 - 5 * x - 1)
    assert isinstance(ff(2 * x**2 - 5 * x, 2), Mul)
    assert ff(x**2 + 3 * x,
              -2) == 1 / ((x**2 + 3 * x + 1) * (x**2 + 3 * x + 2))

    assert ff(Poly(2 * x**2 - 5 * x, x),
              2) == Poly(4 * x**4 - 28 * x**3 + 59 * x**2 - 35 * x, x)
    assert isinstance(ff(Poly(2 * x**2 - 5 * x, x), 2), Poly)
    raises(ValueError, lambda: ff(Poly(2 * x**2 - 5 * x, x, y), 2))
    assert ff(Poly(x**2 + 3 * x, x),
              -2) == 1 / (x**4 + 12 * x**3 + 49 * x**2 + 78 * x + 40)
    raises(ValueError, lambda: ff(Poly(x**2 + 3 * x, x, y), -2))

    assert ff(x, m).is_integer is None
    assert ff(n, k).is_integer is None
    assert ff(n, m).is_integer is True
    assert ff(n, k + pi).is_integer is False
    assert ff(n, m + pi).is_integer is False
    assert ff(pi, m).is_integer is False

    assert isinstance(ff(x, x), ff)
    assert ff(n, n) == factorial(n)

    assert ff(x, k).rewrite(rf) == rf(x - k + 1, k)
    assert ff(x, k).rewrite(gamma) == (-1)**k * gamma(k - x) / gamma(-x)
    assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k)
    assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
    assert ff(x, y).rewrite(factorial) == ff(x, y)
    assert ff(x, y).rewrite(binomial) == ff(x, y)

    import random
    from mpmath import ff as mpmath_ff
    for i in range(100):
        x = -500 + 500 * random.random()
        k = -500 + 500 * random.random()
        assert (abs(mpmath_ff(x, k) - ff(x, k)) < 10**(-15))
Exemplo n.º 4
0
def test_PermutationMatrix_basic():
    p = Permutation([1, 0])
    assert unchanged(PermutationMatrix, p)
    raises(ValueError, lambda: PermutationMatrix((0, 1, 2)))
    assert PermutationMatrix(p).as_explicit() == Matrix([[0, 1], [1, 0]])
    assert isinstance(PermutationMatrix(p) * MatrixSymbol("A", 2, 2), MatMul)
Exemplo n.º 5
0
def test_ImageSet():
    raises(ValueError, lambda: ImageSet(x, S.Integers))
    assert ImageSet(Lambda(x, 1), S.Integers) == FiniteSet(1)
    assert ImageSet(Lambda(x, y), S.Integers) == {y}
    assert ImageSet(Lambda(x, 1), S.EmptySet) == S.EmptySet
    empty = Intersection(FiniteSet(log(2) / pi), S.Integers)
    assert unchanged(ImageSet, Lambda(x, 1), empty)  # issue #17471
    squares = ImageSet(Lambda(x, x**2), S.Naturals)
    assert 4 in squares
    assert 5 not in squares
    assert FiniteSet(*range(10)).intersect(squares) == FiniteSet(1, 4, 9)

    assert 16 not in squares.intersect(Interval(0, 10))

    si = iter(squares)
    a, b, c, d = next(si), next(si), next(si), next(si)
    assert (a, b, c, d) == (1, 4, 9, 16)

    harmonics = ImageSet(Lambda(x, 1 / x), S.Naturals)
    assert Rational(1, 5) in harmonics
    assert Rational(.25) in harmonics
    assert 0.25 not in harmonics
    assert Rational(.3) not in harmonics
    assert (1, 2) not in harmonics

    assert harmonics.is_iterable

    assert imageset(x, -x, Interval(0, 1)) == Interval(-1, 0)

    assert ImageSet(Lambda(x, x**2), Interval(0, 2)).doit() == Interval(0, 4)
    assert ImageSet(Lambda((x, y), 2 * x), {4}, {3}).doit() == FiniteSet(8)
    assert (ImageSet(Lambda((x, y), x + y), {1, 2, 3},
                     {10, 20, 30}).doit() == FiniteSet(11, 12, 13, 21, 22, 23,
                                                       31, 32, 33))

    c = Interval(1, 3) * Interval(1, 3)
    assert Tuple(2, 6) in ImageSet(Lambda(((x, y), ), (x, 2 * y)), c)
    assert Tuple(2, S.Half) in ImageSet(Lambda(((x, y), ), (x, 1 / y)), c)
    assert Tuple(2, -2) not in ImageSet(Lambda(((x, y), ), (x, y**2)), c)
    assert Tuple(2, -2) in ImageSet(Lambda(((x, y), ), (x, -2)), c)
    c3 = ProductSet(Interval(3, 7), Interval(8, 11), Interval(5, 9))
    assert Tuple(8, 3, 9) in ImageSet(Lambda(((t, y, x), ), (y, t, x)), c3)
    assert Tuple(Rational(1, 8), 3,
                 9) in ImageSet(Lambda(((t, y, x), ), (1 / y, t, x)), c3)
    assert 2 / pi not in ImageSet(Lambda(((x, y), ), 2 / x), c)
    assert 2 / S(100) not in ImageSet(Lambda(((x, y), ), 2 / x), c)
    assert Rational(2, 3) in ImageSet(Lambda(((x, y), ), 2 / x), c)

    S1 = imageset(lambda x, y: x + y, S.Integers, S.Naturals)
    assert S1.base_pset == ProductSet(S.Integers, S.Naturals)
    assert S1.base_sets == (S.Integers, S.Naturals)

    # Passing a set instead of a FiniteSet shouldn't raise
    assert unchanged(ImageSet, Lambda(x, x**2), {1, 2, 3})

    S2 = ImageSet(Lambda(((x, y), ), x + y), {(1, 2), (3, 4)})
    assert 3 in S2.doit()
    # FIXME: This doesn't yet work:
    #assert 3 in S2
    assert S2._contains(3) is None

    raises(TypeError, lambda: ImageSet(Lambda(x, x**2), 1))
def test_issue_15920():
    r = rootof(x**5 - x + 1, 0)
    p = Integral(x, (x, 1, y))
    assert unchanged(Eq, r, p)
Exemplo n.º 7
0
def test_Lambda():
    e = Lambda(x, x**2)
    assert e(4) == 16
    assert e(x) == x**2
    assert e(y) == y**2

    assert Lambda((), 42)() == 42
    assert unchanged(Lambda, (), 42)
    assert Lambda((), 42) != Lambda((), 43)
    assert Lambda((), f(x))() == f(x)
    assert Lambda((), 42).nargs == FiniteSet(0)

    assert unchanged(Lambda, (x, ), x**2)
    assert Lambda(x, x**2) == Lambda((x, ), x**2)
    assert Lambda(x, x**2) == Lambda(y, y**2)
    assert Lambda(x, x**2) != Lambda(y, y**2 + 1)
    assert Lambda((x, y), x**y) == Lambda((y, x), y**x)
    assert Lambda((x, y), x**y) != Lambda((x, y), y**x)

    assert Lambda((x, y), x**y)(x, y) == x**y
    assert Lambda((x, y), x**y)(3, 3) == 3**3
    assert Lambda((x, y), x**y)(x, 3) == x**3
    assert Lambda((x, y), x**y)(3, y) == 3**y
    assert Lambda(x, f(x))(x) == f(x)
    assert Lambda(x, x**2)(e(x)) == x**4
    assert e(e(x)) == x**4

    x1, x2 = (Indexed('x', i) for i in (1, 2))
    assert Lambda((x1, x2), x1 + x2)(x, y) == x + y

    assert Lambda((x, y), x + y).nargs == FiniteSet(2)

    p = x, y, z, t
    assert Lambda(p, t * (x + y + z))(*p) == t * (x + y + z)

    assert Lambda(x, 2 * x) + Lambda(y, 2 * y) == 2 * Lambda(x, 2 * x)
    assert Lambda(x, 2 * x) not in [Lambda(x, x)]
    raises(BadSignatureError, lambda: Lambda(1, x))
    assert Lambda(x, 1)(1) is S.One

    raises(BadSignatureError, lambda: Lambda((x, x), x + 2))
    raises(BadSignatureError, lambda: Lambda(((x, x), y), x))
    raises(BadSignatureError, lambda: Lambda(((y, x), x), x))
    raises(BadSignatureError, lambda: Lambda(((y, 1), 2), x))

    with warns_deprecated_sympy():
        assert Lambda([x, y], x + y) == Lambda((x, y), x + y)

    flam = Lambda(((x, y), ), x + y)
    assert flam((2, 3)) == 5
    flam = Lambda(((x, y), z), x + y + z)
    assert flam((2, 3), 1) == 6
    flam = Lambda((((x, y), z), ), x + y + z)
    assert flam(((2, 3), 1)) == 6
    raises(BadArgumentsError, lambda: flam(1, 2, 3))
    flam = Lambda((x, ), (x, x))
    assert flam(1, ) == (1, 1)
    assert flam((1, )) == ((1, ), (1, ))
    flam = Lambda(((x, ), ), (x, x))
    raises(BadArgumentsError, lambda: flam(1))
    assert flam((1, )) == (1, 1)

    # Previously TypeError was raised so this is potentially needed for
    # backwards compatibility.
    assert issubclass(BadSignatureError, TypeError)
    assert issubclass(BadArgumentsError, TypeError)

    # These are tested to see they don't raise:
    hash(Lambda(x, 2 * x))
    hash(Lambda(x, x))  # IdentityFunction subclass
Exemplo n.º 8
0
def test_literal_probability():
    X = Normal('X', 2, 3)
    Y = Normal('Y', 3, 4)
    Z = Poisson('Z', 4)
    W = Poisson('W', 3)
    x = symbols('x', real=True)
    y, w, z = symbols('y, w, z')

    assert Probability(X > 0).evaluate_integral() == probability(X > 0)
    assert Probability(X > x).evaluate_integral() == probability(X > x)
    assert Probability(X > 0).rewrite(Integral).doit() == probability(X > 0)
    assert Probability(X > x).rewrite(Integral).doit() == probability(X > x)

    assert Expectation(X).evaluate_integral() == expectation(X)
    assert Expectation(X).rewrite(Integral).doit() == expectation(X)
    assert Expectation(X**2).evaluate_integral() == expectation(X**2)
    assert Expectation(x * X).args == (x * X, )
    assert Expectation(x * X).doit() == x * Expectation(X)
    assert Expectation(2 * X + 3 * Y + z * X * Y).doit(
    ) == 2 * Expectation(X) + 3 * Expectation(Y) + z * Expectation(X * Y)
    assert Expectation(2 * X + 3 * Y + z * X * Y).args == (2 * X + 3 * Y +
                                                           z * X * Y, )
    assert Expectation(sin(X)) == Expectation(sin(X)).doit()
    assert Expectation(
        2 * x * sin(X) * Y + y * X**2 +
        z * X * Y).doit() == 2 * x * Expectation(sin(X) * Y) + y * Expectation(
            X**2) + z * Expectation(X * Y)

    assert Variance(w).args == (w, )
    assert Variance(w).doit() == 0
    assert Variance(X).evaluate_integral() == Variance(X).rewrite(
        Integral).doit() == variance(X)
    assert Variance(X + z).args == (X + z, )
    assert Variance(X + z).doit() == Variance(X)
    assert Variance(X * Y).args == (Mul(X, Y), )
    assert type(Variance(X * Y)) == Variance
    assert Variance(z * X).doit() == z**2 * Variance(X)
    assert Variance(
        X + Y).doit() == Variance(X) + Variance(Y) + 2 * Covariance(X, Y)
    assert Variance(X + Y + Z +
                    W).doit() == (Variance(X) + Variance(Y) + Variance(Z) +
                                  Variance(W) + 2 * Covariance(X, Y) +
                                  2 * Covariance(X, Z) + 2 * Covariance(X, W) +
                                  2 * Covariance(Y, Z) + 2 * Covariance(Y, W) +
                                  2 * Covariance(W, Z))
    assert Variance(X**2).evaluate_integral() == variance(X**2)
    assert unchanged(Variance, X**2)
    assert Variance(x * X**2).doit() == x**2 * Variance(X**2)
    assert Variance(sin(X)).args == (sin(X), )
    assert Variance(sin(X)).doit() == Variance(sin(X))
    assert Variance(x * sin(X)).doit() == x**2 * Variance(sin(X))

    assert Covariance(w, z).args == (w, z)
    assert Covariance(w, z).doit() == 0
    assert Covariance(X, w).doit() == 0
    assert Covariance(w, X).doit() == 0
    assert Covariance(X, Y).args == (X, Y)
    assert type(Covariance(X, Y)) == Covariance
    assert Covariance(z * X + 3, Y).doit() == z * Covariance(X, Y)
    assert Covariance(X, X).args == (X, X)
    assert Covariance(X, X).doit() == Variance(X)
    assert Covariance(z * X + 3, w * Y + 4).doit() == w * z * Covariance(X, Y)
    assert Covariance(X, Y) == Covariance(Y, X)
    assert Covariance(X + Y, Z + W).doit() == Covariance(W, X) + Covariance(
        W, Y) + Covariance(X, Z) + Covariance(Y, Z)
    assert Covariance(
        x * X + y * Y, z * Z +
        w * W).doit() == (x * w * Covariance(W, X) + w * y * Covariance(W, Y) +
                          x * z * Covariance(X, Z) + y * z * Covariance(Y, Z))
    assert Covariance(x * X**2 + y * sin(Y), z * Y * Z**2 +
                      w * W).doit() == (w * x * Covariance(W, X**2) +
                                        w * y * Covariance(sin(Y), W) +
                                        x * z * Covariance(Y * Z**2, X**2) +
                                        y * z * Covariance(Y * Z**2, sin(Y)))
    assert Covariance(X, X**2).doit() == Covariance(X, X**2)
    assert Covariance(X, sin(X)).doit() == Covariance(sin(X), X)
    assert Covariance(X**2, sin(X) * Y).doit() == Covariance(sin(X) * Y, X**2)
Exemplo n.º 9
0
def test_chebyshev():
    assert chebyshevt(0, x) == 1
    assert chebyshevt(1, x) == x
    assert chebyshevt(2, x) == 2 * x**2 - 1
    assert chebyshevt(3, x) == 4 * x**3 - 3 * x

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevt_root(n, k)
            assert chebyshevt(n, z) == 0
        raises(ValueError, lambda: chebyshevt_root(n, n))

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevu_root(n, k)
            assert chebyshevu(n, z) == 0
        raises(ValueError, lambda: chebyshevu_root(n, n))

    n = Symbol("n")
    X = chebyshevt(n, x)
    assert isinstance(X, chebyshevt)
    assert unchanged(chebyshevt, n, x)
    assert chebyshevt(n, -x) == (-1)**n * chebyshevt(n, x)
    assert chebyshevt(-n, x) == chebyshevt(n, x)

    assert chebyshevt(n, 0) == cos(pi * n / 2)
    assert chebyshevt(n, 1) == 1
    assert chebyshevt(n, oo) is oo

    assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x))

    assert diff(chebyshevt(n, x), x) == n * chebyshevu(n - 1, x)

    X = chebyshevu(n, x)
    assert isinstance(X, chebyshevu)

    y = Symbol("y")
    assert chebyshevu(n, -x) == (-1)**n * chebyshevu(n, x)
    assert chebyshevu(-n, x) == -chebyshevu(n - 2, x)
    assert unchanged(chebyshevu, -n + y, x)

    assert chebyshevu(n, 0) == cos(pi * n / 2)
    assert chebyshevu(n, 1) == n + 1
    assert chebyshevu(n, oo) is oo

    assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x))

    assert diff(chebyshevu(n, x),
                x) == (-x * chebyshevu(n, x) +
                       (n + 1) * chebyshevt(n + 1, x)) / (x**2 - 1)

    _k = Dummy("k")
    assert (chebyshevt(n, x).rewrite("polynomial").dummy_eq(
        Sum(
            x**(-2 * _k + n) * (x**2 - 1)**_k * binomial(n, 2 * _k),
            (_k, 0, floor(n / 2)),
        )))
    assert (chebyshevu(n, x).rewrite("polynomial").dummy_eq(
        Sum(
            (-1)**_k * (2 * x)**(-2 * _k + n) * factorial(-_k + n) /
            (factorial(_k) * factorial(-2 * _k + n)),
            (_k, 0, floor(n / 2)),
        )))
    raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(1))
    raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(3))
    raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(1))
    raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(3))
Exemplo n.º 10
0
def test_lowergamma():
    from sympy.functions.special.error_functions import expint
    from sympy.functions.special.hyper import meijerg
    assert lowergamma(x, 0) == 0
    assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y)
    assert td(lowergamma(randcplx(), y), y)
    assert td(lowergamma(x, randcplx()), x)
    assert lowergamma(x, y).diff(x) == \
        gamma(x)*digamma(x) - uppergamma(x, y)*log(y) \
        - meijerg([], [1, 1], [0, 0, x], [], y)

    assert lowergamma(S.Half, x) == sqrt(pi)*erf(sqrt(x))
    assert not lowergamma(S.Half - 3, x).has(lowergamma)
    assert not lowergamma(S.Half + 3, x).has(lowergamma)
    assert lowergamma(S.Half, x, evaluate=False).has(lowergamma)
    assert tn(lowergamma(S.Half + 3, x, evaluate=False),
              lowergamma(S.Half + 3, x), x)
    assert tn(lowergamma(S.Half - 3, x, evaluate=False),
              lowergamma(S.Half - 3, x), x)

    assert tn_branch(-3, lowergamma)
    assert tn_branch(-4, lowergamma)
    assert tn_branch(Rational(1, 3), lowergamma)
    assert tn_branch(pi, lowergamma)
    assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x)
    assert lowergamma(y, exp_polar(5*pi*I)*x) == \
        exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I))
    assert lowergamma(-2, exp_polar(5*pi*I)*x) == \
        lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I

    assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y))
    assert conjugate(lowergamma(x, 0)) == 0
    assert unchanged(conjugate, lowergamma(x, -oo))

    assert lowergamma(0, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(S(1)/3, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(1, x, evaluate=False)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(x, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(x + 1, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(1/x, x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(0, x + 1)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(S(1)/3, x + 1)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(1, x + 1, evaluate=False)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(x, x + 1)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(x + 1, x + 1)._eval_is_meromorphic(x, 0) == True
    assert lowergamma(1/x, x + 1)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(0, 1/x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(S(1)/3, 1/x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(1, 1/x, evaluate=False)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(x, 1/x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(x + 1, 1/x)._eval_is_meromorphic(x, 0) == False
    assert lowergamma(1/x, 1/x)._eval_is_meromorphic(x, 0) == False

    assert lowergamma(x, 2).series(x, oo, 3) == \
        2**x*(1 + 2/(x + 1))*exp(-2)/x + O(exp(x*log(2))/x**3, (x, oo))

    assert lowergamma(
        x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x)
    k = Symbol('k', integer=True)
    assert lowergamma(
        k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k)
    k = Symbol('k', integer=True, positive=False)
    assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
    assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)

    assert lowergamma(70, 6) == factorial(69) - 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320 * exp(-6)
    assert (lowergamma(S(77) / 2, 6) - lowergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
    assert (lowergamma(-S(77) / 2, 6) - lowergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
Exemplo n.º 11
0
def test_issue_18606():
    assert unchanged(Order, 0)
Exemplo n.º 12
0
def test_kind():
    x = Symbol('x')
    assert unchanged(kind, x)
Exemplo n.º 13
0
def test_piecewise1():

    # Test canonicalization
    assert unchanged(Piecewise, ExprCondPair(x, x < 1), ExprCondPair(0, True))
    assert Piecewise((x, x < 1),
                     (0, True)) == Piecewise(ExprCondPair(x, x < 1),
                                             ExprCondPair(0, True))
    assert Piecewise((x, x < 1), (0, True), (1, True)) == \
        Piecewise((x, x < 1), (0, True))
    assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \
        Piecewise((x, x < 1))
    assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \
        Piecewise((x, x < 1), (0, True))
    assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \
        Piecewise((x, x < 1), (0, True))
    assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \
        Piecewise((x, Or(x < 1, x < 2)), (0, True))
    assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x
    assert Piecewise((x, True)) == x
    # Explicitly constructed empty Piecewise not accepted
    raises(TypeError, lambda: Piecewise())
    # False condition is never retained
    assert Piecewise((2*x, x < 0), (x, False)) == \
        Piecewise((2*x, x < 0), (x, False), evaluate=False) == \
        Piecewise((2*x, x < 0))
    assert Piecewise((x, False)) == Undefined
    raises(TypeError, lambda: Piecewise(x))
    assert Piecewise((x, 1)) == x  # 1 and 0 are accepted as True/False
    raises(TypeError, lambda: Piecewise((x, 2)))
    raises(TypeError, lambda: Piecewise((x, x**2)))
    raises(TypeError, lambda: Piecewise(([1], True)))
    assert Piecewise(((1, 2), True)) == Tuple(1, 2)
    cond = (Piecewise((1, x < 0), (2, True)) < y)
    assert Piecewise((1, cond)) == Piecewise((1, ITE(x < 0, y > 1, y > 2)))

    assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1))) == Piecewise(
        (1, x > 0), (2, x > -1))

    # test for supporting Contains in Piecewise
    pwise = Piecewise((1, And(x <= 6, x > 1, Contains(x, S.Integers))),
                      (0, True))
    assert pwise.subs(x, pi) == 0
    assert pwise.subs(x, 2) == 1
    assert pwise.subs(x, 7) == 0

    # Test subs
    p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0))
    p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0))
    assert p.subs(x, x**2) == p_x2
    assert p.subs(x, -5) == -1
    assert p.subs(x, -1) == 1
    assert p.subs(x, 1) == log(1)

    # More subs tests
    p2 = Piecewise((1, x < pi), (-1, x < 2 * pi), (0, x > 2 * pi))
    p3 = Piecewise((1, Eq(x, 0)), (1 / x, True))
    p4 = Piecewise((1, Eq(x, 0)), (2, 1 / x > 2))
    assert p2.subs(x, 2) == 1
    assert p2.subs(x, 4) == -1
    assert p2.subs(x, 10) == 0
    assert p3.subs(x, 0.0) == 1
    assert p4.subs(x, 0.0) == 1

    f, g, h = symbols('f,g,h', cls=Function)
    pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1))
    pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1))
    assert pg.subs(g, f) == pf

    assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1
    assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0
    assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1
    assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1
    assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \
        Piecewise((1, Eq(exp(z), cos(z))), (0, True))

    p5 = Piecewise((0, Eq(cos(x) + y, 0)), (1, True))
    assert p5.subs(y, 0) == Piecewise((0, Eq(cos(x), 0)), (1, True))

    assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)),
                     (2, True)).subs(x, 1) == Piecewise((-1, y < 1), (2, True))
    assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1

    p6 = Piecewise((x, x > 0))
    n = symbols('n', negative=True)
    assert p6.subs(x, n) == Undefined

    # Test evalf
    assert p.evalf() == p
    assert p.evalf(subs={x: -2}) == -1
    assert p.evalf(subs={x: -1}) == 1
    assert p.evalf(subs={x: 1}) == log(1)
    assert p6.evalf(subs={x: -5}) == Undefined

    # Test doit
    f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1))
    assert f_int.doit() == Piecewise((S(1) / 2, x < 1))

    # Test differentiation
    f = x
    fp = x * p
    dp = Piecewise((0, x < -1), (2 * x, x < 0), (1 / x, x >= 0))
    fp_dx = x * dp + p
    assert diff(p, x) == dp
    assert diff(f * p, x) == fp_dx

    # Test simple arithmetic
    assert x * p == fp
    assert x * p + p == p + x * p
    assert p + f == f + p
    assert p + dp == dp + p
    assert p - dp == -(dp - p)

    # Test power
    dp2 = Piecewise((0, x < -1), (4 * x**2, x < 0), (1 / x**2, x >= 0))
    assert dp**2 == dp2

    # Test _eval_interval
    f1 = x * y + 2
    f2 = x * y**2 + 3
    peval = Piecewise((f1, x < 0), (f2, x > 0))
    peval_interval = f1.subs(x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(
        x, 0)
    assert peval._eval_interval(x, 0, 0) == 0
    assert peval._eval_interval(x, -1, 1) == peval_interval
    peval2 = Piecewise((f1, x < 0), (f2, True))
    assert peval2._eval_interval(x, 0, 0) == 0
    assert peval2._eval_interval(x, 1, -1) == -peval_interval
    assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1)
    assert peval2._eval_interval(x, -1, 1) == peval_interval
    assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0)
    assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1)

    # Test integration
    assert p.integrate() == Piecewise((-x, x < -1),
                                      (x**3 / 3 + S(4) / 3, x < 0),
                                      (x * log(x) - x + S(4) / 3, True))
    p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
    assert integrate(p, (x, -2, 2)) == S(5) / 6
    assert integrate(p, (x, 2, -2)) == -S(5) / 6
    p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True))
    assert integrate(p, (x, -oo, oo)) == 2
    p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
    assert integrate(p, (x, -2, 2)) == Undefined

    # Test commutativity
    assert isinstance(p, Piecewise) and p.is_commutative is True
Exemplo n.º 14
0
def test_cmplx():
    x = Symbol('x')
    assert unchanged(cmplx, 1, x)
Exemplo n.º 15
0
def test_dsign():
    x = Symbol('x')
    assert unchanged(dsign, 1, x)
    assert fcode(dsign(literal_dp(1), x), standard=95,
                 source_format='free') == 'dsign(1d0, x)'
Exemplo n.º 16
0
def test_isign():
    x = Symbol('x', integer=True)
    assert unchanged(isign, 1, x)
    assert fcode(isign(1, x), standard=95,
                 source_format='free') == 'isign(1, x)'
Exemplo n.º 17
0
def test_ceiling():

    assert ceiling(nan) is nan

    assert ceiling(oo) is oo
    assert ceiling(-oo) is -oo
    assert ceiling(zoo) is zoo

    assert ceiling(0) == 0

    assert ceiling(1) == 1
    assert ceiling(-1) == -1

    assert ceiling(E) == 3
    assert ceiling(-E) == -2

    assert ceiling(2 * E) == 6
    assert ceiling(-2 * E) == -5

    assert ceiling(pi) == 4
    assert ceiling(-pi) == -3

    assert ceiling(S.Half) == 1
    assert ceiling(Rational(-1, 2)) == 0

    assert ceiling(Rational(7, 3)) == 3
    assert ceiling(-Rational(7, 3)) == -2

    assert ceiling(Float(17.0)) == 17
    assert ceiling(-Float(17.0)) == -17

    assert ceiling(Float(7.69)) == 8
    assert ceiling(-Float(7.69)) == -7

    assert ceiling(I) == I
    assert ceiling(-I) == -I
    e = ceiling(i)
    assert e.func is ceiling and e.args[0] == i

    assert ceiling(oo * I) == oo * I
    assert ceiling(-oo * I) == -oo * I
    assert ceiling(exp(I * pi / 4) * oo) == exp(I * pi / 4) * oo

    assert ceiling(2 * I) == 2 * I
    assert ceiling(-2 * I) == -2 * I

    assert ceiling(I / 2) == I
    assert ceiling(-I / 2) == 0

    assert ceiling(E + 17) == 20
    assert ceiling(pi + 2) == 6

    assert ceiling(E + pi) == 6
    assert ceiling(I + pi) == I + 4

    assert ceiling(ceiling(pi)) == 4
    assert ceiling(ceiling(y)) == ceiling(y)
    assert ceiling(ceiling(x)) == ceiling(x)

    assert unchanged(ceiling, x)
    assert unchanged(ceiling, 2 * x)
    assert unchanged(ceiling, k * x)

    assert ceiling(k) == k
    assert ceiling(2 * k) == 2 * k
    assert ceiling(k * n) == k * n

    assert unchanged(ceiling, k / 2)

    assert unchanged(ceiling, x + y)

    assert ceiling(x + 3) == ceiling(x) + 3
    assert ceiling(x + k) == ceiling(x) + k

    assert ceiling(y + 3) == ceiling(y) + 3
    assert ceiling(y + k) == ceiling(y) + k

    assert ceiling(3 + pi + y * I) == 7 + ceiling(y) * I

    assert ceiling(k + n) == k + n

    assert unchanged(ceiling, x * I)
    assert ceiling(k * I) == k * I

    assert ceiling(Rational(23, 10) - E * I) == 3 - 2 * I

    assert ceiling(sin(1)) == 1
    assert ceiling(sin(-1)) == 0

    assert ceiling(exp(2)) == 8

    assert ceiling(-log(8) / log(2)) != -2
    assert int(ceiling(-log(8) / log(2)).evalf(chop=True)) == -3

    assert ceiling(factorial(50)/exp(1)) == \
        11188719610782480504630258070757734324011354208865721592720336801

    assert (ceiling(y) >= y) == True
    assert (ceiling(y) > y) == False
    assert (ceiling(y) < y) == False
    assert (ceiling(y) <= y) == False
    assert (ceiling(x) >= x).is_Relational  # x could be non-real
    assert (ceiling(x) < x).is_Relational
    assert (ceiling(x) >= y).is_Relational  # arg is not same as rhs
    assert (ceiling(x) < y).is_Relational
    assert (ceiling(y) >= -oo) == True
    assert (ceiling(y) > -oo) == True
    assert (ceiling(y) <= oo) == True
    assert (ceiling(y) < oo) == True

    assert ceiling(y).rewrite(floor) == -floor(-y)
    assert ceiling(y).rewrite(frac) == y + frac(-y)
    assert ceiling(y).rewrite(floor).subs(y, -pi) == -floor(pi)
    assert ceiling(y).rewrite(floor).subs(y, E) == -floor(-E)
    assert ceiling(y).rewrite(frac).subs(y, pi) == ceiling(pi)
    assert ceiling(y).rewrite(frac).subs(y, -E) == ceiling(-E)

    assert Eq(ceiling(y), y + frac(-y))
    assert Eq(ceiling(y), -floor(-y))

    neg = Symbol('neg', negative=True)
    nn = Symbol('nn', nonnegative=True)
    pos = Symbol('pos', positive=True)
    np = Symbol('np', nonpositive=True)

    assert (ceiling(neg) <= 0) == True
    assert (ceiling(neg) < 0) == (neg <= -1)
    assert (ceiling(neg) > 0) == False
    assert (ceiling(neg) >= 0) == (neg > -1)
    assert (ceiling(neg) > -3) == (neg > -3)
    assert (ceiling(neg) <= 10) == (neg <= 10)

    assert (ceiling(nn) < 0) == False
    assert (ceiling(nn) >= 0) == True

    assert (ceiling(pos) < 0) == False
    assert (ceiling(pos) <= 0) == False
    assert (ceiling(pos) > 0) == True
    assert (ceiling(pos) >= 0) == True
    assert (ceiling(pos) >= 1) == True
    assert (ceiling(pos) > 5) == (pos > 5)

    assert (ceiling(np) <= 0) == True
    assert (ceiling(np) > 0) == False

    assert ceiling(neg).is_positive == False
    assert ceiling(neg).is_nonpositive == True
    assert ceiling(nn).is_positive is None
    assert ceiling(nn).is_nonpositive is None
    assert ceiling(pos).is_positive == True
    assert ceiling(pos).is_nonpositive == False
    assert ceiling(np).is_positive == False
    assert ceiling(np).is_nonpositive == True

    assert (ceiling(7, evaluate=False) >= 7) == True
    assert (ceiling(7, evaluate=False) > 7) == False
    assert (ceiling(7, evaluate=False) <= 7) == True
    assert (ceiling(7, evaluate=False) < 7) == False

    assert (ceiling(7, evaluate=False) >= 6) == True
    assert (ceiling(7, evaluate=False) > 6) == True
    assert (ceiling(7, evaluate=False) <= 6) == False
    assert (ceiling(7, evaluate=False) < 6) == False

    assert (ceiling(7, evaluate=False) >= 8) == False
    assert (ceiling(7, evaluate=False) > 8) == False
    assert (ceiling(7, evaluate=False) <= 8) == True
    assert (ceiling(7, evaluate=False) < 8) == True

    assert (ceiling(x) <= 5.5) == Le(ceiling(x), 5.5, evaluate=False)
    assert (ceiling(x) >= -3.2) == Ge(ceiling(x), -3.2, evaluate=False)
    assert (ceiling(x) < 2.9) == Lt(ceiling(x), 2.9, evaluate=False)
    assert (ceiling(x) > -1.7) == Gt(ceiling(x), -1.7, evaluate=False)

    assert (ceiling(y) <= 5.5) == (y <= 5)
    assert (ceiling(y) >= -3.2) == (y > -4)
    assert (ceiling(y) < 2.9) == (y <= 2)
    assert (ceiling(y) > -1.7) == (y > -2)

    assert (ceiling(y) <= n) == (y <= n)
    assert (ceiling(y) >= n) == (y > n - 1)
    assert (ceiling(y) < n) == (y <= n - 1)
    assert (ceiling(y) > n) == (y > n)
Exemplo n.º 18
0
def test_sparse_matrices():
    spm = SparseMatrix.diag(1, 0)
    assert unchanged(TensorProduct, spm, spm)
Exemplo n.º 19
0
def test_frac():
    assert isinstance(frac(x), frac)
    assert frac(oo) == AccumBounds(0, 1)
    assert frac(-oo) == AccumBounds(0, 1)
    assert frac(zoo) is nan

    assert frac(n) == 0
    assert frac(nan) is nan
    assert frac(Rational(4, 3)) == Rational(1, 3)
    assert frac(-Rational(4, 3)) == Rational(2, 3)
    assert frac(Rational(-4, 3)) == Rational(2, 3)

    r = Symbol('r', real=True)
    assert frac(I * r) == I * frac(r)
    assert frac(1 + I * r) == I * frac(r)
    assert frac(0.5 + I * r) == 0.5 + I * frac(r)
    assert frac(n + I * r) == I * frac(r)
    assert frac(n + I * k) == 0
    assert unchanged(frac, x + I * x)
    assert frac(x + I * n) == frac(x)

    assert frac(x).rewrite(floor) == x - floor(x)
    assert frac(x).rewrite(ceiling) == x + ceiling(-x)
    assert frac(y).rewrite(floor).subs(y, pi) == frac(pi)
    assert frac(y).rewrite(floor).subs(y, -E) == frac(-E)
    assert frac(y).rewrite(ceiling).subs(y, -pi) == frac(-pi)
    assert frac(y).rewrite(ceiling).subs(y, E) == frac(E)

    assert Eq(frac(y), y - floor(y))
    assert Eq(frac(y), y + ceiling(-y))

    r = Symbol('r', real=True)
    p_i = Symbol('p_i', integer=True, positive=True)
    n_i = Symbol('p_i', integer=True, negative=True)
    np_i = Symbol('np_i', integer=True, nonpositive=True)
    nn_i = Symbol('nn_i', integer=True, nonnegative=True)
    p_r = Symbol('p_r', real=True, positive=True)
    n_r = Symbol('n_r', real=True, negative=True)
    np_r = Symbol('np_r', real=True, nonpositive=True)
    nn_r = Symbol('nn_r', real=True, nonnegative=True)

    # Real frac argument, integer rhs
    assert frac(r) <= p_i
    assert not frac(r) <= n_i
    assert (frac(r) <= np_i).has(Le)
    assert (frac(r) <= nn_i).has(Le)
    assert frac(r) < p_i
    assert not frac(r) < n_i
    assert not frac(r) < np_i
    assert (frac(r) < nn_i).has(Lt)
    assert not frac(r) >= p_i
    assert frac(r) >= n_i
    assert frac(r) >= np_i
    assert (frac(r) >= nn_i).has(Ge)
    assert not frac(r) > p_i
    assert frac(r) > n_i
    assert (frac(r) > np_i).has(Gt)
    assert (frac(r) > nn_i).has(Gt)

    assert not Eq(frac(r), p_i)
    assert not Eq(frac(r), n_i)
    assert Eq(frac(r), np_i).has(Eq)
    assert Eq(frac(r), nn_i).has(Eq)

    assert Ne(frac(r), p_i)
    assert Ne(frac(r), n_i)
    assert Ne(frac(r), np_i).has(Ne)
    assert Ne(frac(r), nn_i).has(Ne)

    # Real frac argument, real rhs
    assert (frac(r) <= p_r).has(Le)
    assert not frac(r) <= n_r
    assert (frac(r) <= np_r).has(Le)
    assert (frac(r) <= nn_r).has(Le)
    assert (frac(r) < p_r).has(Lt)
    assert not frac(r) < n_r
    assert not frac(r) < np_r
    assert (frac(r) < nn_r).has(Lt)
    assert (frac(r) >= p_r).has(Ge)
    assert frac(r) >= n_r
    assert frac(r) >= np_r
    assert (frac(r) >= nn_r).has(Ge)
    assert (frac(r) > p_r).has(Gt)
    assert frac(r) > n_r
    assert (frac(r) > np_r).has(Gt)
    assert (frac(r) > nn_r).has(Gt)

    assert not Eq(frac(r), n_r)
    assert Eq(frac(r), p_r).has(Eq)
    assert Eq(frac(r), np_r).has(Eq)
    assert Eq(frac(r), nn_r).has(Eq)

    assert Ne(frac(r), p_r).has(Ne)
    assert Ne(frac(r), n_r)
    assert Ne(frac(r), np_r).has(Ne)
    assert Ne(frac(r), nn_r).has(Ne)

    # Real frac argument, +/- oo rhs
    assert frac(r) < oo
    assert frac(r) <= oo
    assert not frac(r) > oo
    assert not frac(r) >= oo

    assert not frac(r) < -oo
    assert not frac(r) <= -oo
    assert frac(r) > -oo
    assert frac(r) >= -oo

    assert frac(r) < 1
    assert frac(r) <= 1
    assert not frac(r) > 1
    assert not frac(r) >= 1

    assert not frac(r) < 0
    assert (frac(r) <= 0).has(Le)
    assert (frac(r) > 0).has(Gt)
    assert frac(r) >= 0

    # Some test for numbers
    assert frac(r) <= sqrt(2)
    assert (frac(r) <= sqrt(3) - sqrt(2)).has(Le)
    assert not frac(r) <= sqrt(2) - sqrt(3)
    assert not frac(r) >= sqrt(2)
    assert (frac(r) >= sqrt(3) - sqrt(2)).has(Ge)
    assert frac(r) >= sqrt(2) - sqrt(3)

    assert not Eq(frac(r), sqrt(2))
    assert Eq(frac(r), sqrt(3) - sqrt(2)).has(Eq)
    assert not Eq(frac(r), sqrt(2) - sqrt(3))
    assert Ne(frac(r), sqrt(2))
    assert Ne(frac(r), sqrt(3) - sqrt(2)).has(Ne)
    assert Ne(frac(r), sqrt(2) - sqrt(3))

    assert frac(p_i, evaluate=False).is_zero
    assert frac(p_i, evaluate=False).is_finite
    assert frac(p_i, evaluate=False).is_integer
    assert frac(p_i, evaluate=False).is_real
    assert frac(r).is_finite
    assert frac(r).is_real
    assert frac(r).is_zero is None
    assert frac(r).is_integer is None

    assert frac(oo).is_finite
    assert frac(oo).is_real
Exemplo n.º 20
0
def test_polygamma():
    from sympy import I

    assert polygamma(n, nan) is nan

    assert polygamma(0, oo) is oo
    assert polygamma(0, -oo) is oo
    assert polygamma(0, I * oo) is oo
    assert polygamma(0, -I * oo) is oo
    assert polygamma(1, oo) == 0
    assert polygamma(5, oo) == 0

    assert polygamma(0, -9) is zoo

    assert polygamma(0, -9) is zoo
    assert polygamma(0, -1) is zoo

    assert polygamma(0, 0) is zoo

    assert polygamma(0, 1) == -EulerGamma
    assert polygamma(0, 7) == Rational(49, 20) - EulerGamma

    assert polygamma(1, 1) == pi**2 / 6
    assert polygamma(1, 2) == pi**2 / 6 - 1
    assert polygamma(1, 3) == pi**2 / 6 - Rational(5, 4)
    assert polygamma(3, 1) == pi**4 / 15
    assert polygamma(3, 5) == 6 * (Rational(-22369, 20736) + pi**4 / 90)
    assert polygamma(5, 1) == 8 * pi**6 / 63

    assert polygamma(1, S.Half) == pi**2 / 2
    assert polygamma(2, S.Half) == -14 * zeta(3)
    assert polygamma(11, S.Half) == 176896 * pi**12

    def t(m, n):
        x = S(m) / n
        r = polygamma(0, x)
        if r.has(polygamma):
            return False
        return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10

    assert t(1, 2)
    assert t(3, 2)
    assert t(-1, 2)
    assert t(1, 4)
    assert t(-3, 4)
    assert t(1, 3)
    assert t(4, 3)
    assert t(3, 4)
    assert t(2, 3)
    assert t(123, 5)

    assert polygamma(0, x).rewrite(zeta) == polygamma(0, x)
    assert polygamma(1, x).rewrite(zeta) == zeta(2, x)
    assert polygamma(2, x).rewrite(zeta) == -2 * zeta(3, x)
    assert polygamma(I, 2).rewrite(zeta) == polygamma(I, 2)
    n1 = Symbol('n1')
    n2 = Symbol('n2', real=True)
    n3 = Symbol('n3', integer=True)
    n4 = Symbol('n4', positive=True)
    n5 = Symbol('n5', positive=True, integer=True)
    assert polygamma(n1, x).rewrite(zeta) == polygamma(n1, x)
    assert polygamma(n2, x).rewrite(zeta) == polygamma(n2, x)
    assert polygamma(n3, x).rewrite(zeta) == polygamma(n3, x)
    assert polygamma(n4, x).rewrite(zeta) == polygamma(n4, x)
    assert polygamma(
        n5,
        x).rewrite(zeta) == (-1)**(n5 + 1) * factorial(n5) * zeta(n5 + 1, x)

    assert polygamma(3, 7 * x).diff(x) == 7 * polygamma(4, 7 * x)

    assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
    assert polygamma(
        2, x).rewrite(harmonic) == 2 * harmonic(x - 1, 3) - 2 * zeta(3)
    ni = Symbol("n", integer=True)
    assert polygamma(
        ni,
        x).rewrite(harmonic) == (-1)**(ni + 1) * (-harmonic(x - 1, ni + 1) +
                                                  zeta(ni + 1)) * factorial(ni)

    # Polygamma of non-negative integer order is unbranched:
    from sympy import exp_polar
    k = Symbol('n', integer=True, nonnegative=True)
    assert polygamma(k, exp_polar(2 * I * pi) * x) == polygamma(k, x)

    # but negative integers are branched!
    k = Symbol('n', integer=True)
    assert polygamma(k,
                     exp_polar(2 * I * pi) *
                     x).args == (k, exp_polar(2 * I * pi) * x)

    # Polygamma of order -1 is loggamma:
    assert polygamma(-1, x) == loggamma(x)

    # But smaller orders are iterated integrals and don't have a special name
    assert polygamma(-2, x).func is polygamma

    # Test a bug
    assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)

    assert polygamma(2, 2.5).is_positive == False
    assert polygamma(2, -2.5).is_positive == False
    assert polygamma(3, 2.5).is_positive == True
    assert polygamma(3, -2.5).is_positive is True
    assert polygamma(-2, -2.5).is_positive is None
    assert polygamma(-3, -2.5).is_positive is None

    assert polygamma(2, 2.5).is_negative == True
    assert polygamma(3, 2.5).is_negative == False
    assert polygamma(3, -2.5).is_negative == False
    assert polygamma(2, -2.5).is_negative is True
    assert polygamma(-2, -2.5).is_negative is None
    assert polygamma(-3, -2.5).is_negative is None

    assert polygamma(I, 2).is_positive is None
    assert polygamma(I, 3).is_negative is None

    # issue 17350
    assert polygamma(pi, 3).evalf() == polygamma(pi, 3)
    assert (I*polygamma(I, pi)).as_real_imag() == \
           (-im(polygamma(I, pi)), re(polygamma(I, pi)))
    assert (tanh(polygamma(I, 1))).rewrite(exp) == \
           (exp(polygamma(I, 1)) - exp(-polygamma(I, 1)))/(exp(polygamma(I, 1)) + exp(-polygamma(I, 1)))
    assert (I / polygamma(I, 4)).rewrite(exp) == \
           I*sqrt(re(polygamma(I, 4))**2 + im(polygamma(I, 4))**2)\
           /((re(polygamma(I, 4)) + I*im(polygamma(I, 4)))*Abs(polygamma(I, 4)))
    assert unchanged(polygamma, 2.3, 1.0)

    # issue 12569
    assert unchanged(im, polygamma(0, I))
    assert polygamma(Symbol('a', positive=True), Symbol(
        'b', positive=True)).is_real is True
    assert polygamma(0, I).is_real is None
Exemplo n.º 21
0
def test_Min():
    from sympy.abc import x, y, z
    n = Symbol('n', negative=True)
    n_ = Symbol('n_', negative=True)
    nn = Symbol('nn', nonnegative=True)
    nn_ = Symbol('nn_', nonnegative=True)
    p = Symbol('p', positive=True)
    p_ = Symbol('p_', positive=True)
    np = Symbol('np', nonpositive=True)
    np_ = Symbol('np_', nonpositive=True)
    r = Symbol('r', real=True)

    assert Min(5, 4) == 4
    assert Min(-oo, -oo) is -oo
    assert Min(-oo, n) is -oo
    assert Min(n, -oo) is -oo
    assert Min(-oo, np) is -oo
    assert Min(np, -oo) is -oo
    assert Min(-oo, 0) is -oo
    assert Min(0, -oo) is -oo
    assert Min(-oo, nn) is -oo
    assert Min(nn, -oo) is -oo
    assert Min(-oo, p) is -oo
    assert Min(p, -oo) is -oo
    assert Min(-oo, oo) is -oo
    assert Min(oo, -oo) is -oo
    assert Min(n, n) == n
    assert unchanged(Min, n, np)
    assert Min(np, n) == Min(n, np)
    assert Min(n, 0) == n
    assert Min(0, n) == n
    assert Min(n, nn) == n
    assert Min(nn, n) == n
    assert Min(n, p) == n
    assert Min(p, n) == n
    assert Min(n, oo) == n
    assert Min(oo, n) == n
    assert Min(np, np) == np
    assert Min(np, 0) == np
    assert Min(0, np) == np
    assert Min(np, nn) == np
    assert Min(nn, np) == np
    assert Min(np, p) == np
    assert Min(p, np) == np
    assert Min(np, oo) == np
    assert Min(oo, np) == np
    assert Min(0, 0) == 0
    assert Min(0, nn) == 0
    assert Min(nn, 0) == 0
    assert Min(0, p) == 0
    assert Min(p, 0) == 0
    assert Min(0, oo) == 0
    assert Min(oo, 0) == 0
    assert Min(nn, nn) == nn
    assert unchanged(Min, nn, p)
    assert Min(p, nn) == Min(nn, p)
    assert Min(nn, oo) == nn
    assert Min(oo, nn) == nn
    assert Min(p, p) == p
    assert Min(p, oo) == p
    assert Min(oo, p) == p
    assert Min(oo, oo) is oo

    assert Min(n, n_).func is Min
    assert Min(nn, nn_).func is Min
    assert Min(np, np_).func is Min
    assert Min(p, p_).func is Min

    # lists
    assert Min() is S.Infinity
    assert Min(x) == x
    assert Min(x, y) == Min(y, x)
    assert Min(x, y, z) == Min(z, y, x)
    assert Min(x, Min(y, z)) == Min(z, y, x)
    assert Min(x, Max(y, -oo)) == Min(x, y)
    assert Min(p, oo, n, p, p, p_) == n
    assert Min(p_, n_, p) == n_
    assert Min(n, oo, -7, p, p, 2) == Min(n, -7)
    assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_)
    assert Min(0, x, 1, y) == Min(0, x, y)
    assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100)
    assert unchanged(Min, sin(x), cos(x))
    assert Min(sin(x), cos(x)) == Min(cos(x), sin(x))
    assert Min(cos(x), sin(x)).subs(x, 1) == cos(1)
    assert Min(cos(x), sin(x)).subs(x, S.Half) == sin(S.Half)
    raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I))
    raises(ValueError, lambda: Min(I))
    raises(ValueError, lambda: Min(I, x))
    raises(ValueError, lambda: Min(S.ComplexInfinity, x))

    assert Min(1, x).diff(x) == Heaviside(1 - x)
    assert Min(x, 1).diff(x) == Heaviside(1 - x)
    assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \
        - 2*Heaviside(2*x + Min(0, -x) - 1)

    # issue 7619
    f = Function('f')
    assert Min(1, 2 * Min(f(1), 2))  # doesn't fail

    # issue 7233
    e = Min(0, x)
    assert e.n().args == (0, x)

    # issue 8643
    m = Min(n, p_, n_, r)
    assert m.is_positive is False
    assert m.is_nonnegative is False
    assert m.is_negative is True

    m = Min(p, p_)
    assert m.is_positive is True
    assert m.is_nonnegative is True
    assert m.is_negative is False

    m = Min(p, nn_, p_)
    assert m.is_positive is None
    assert m.is_nonnegative is True
    assert m.is_negative is False

    m = Min(nn, p, r)
    assert m.is_positive is None
    assert m.is_nonnegative is None
    assert m.is_negative is None
Exemplo n.º 22
0
def test_powerset_creation():
    assert unchanged(PowerSet, FiniteSet(1, 2))
    assert unchanged(PowerSet, S.EmptySet)
    raises(ValueError, lambda: PowerSet(123))
    assert unchanged(PowerSet, S.Reals)
    assert unchanged(PowerSet, S.Integers)
Exemplo n.º 23
0
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a / 2 - b / 2 + x * (a / 2 + b / 2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n) * gegenbauer(
        n, a + S.Half, x) / RisingFactorial(2 * a + 1, n)
    assert jacobi(n, a, -a,
                  x) == ((-1)**a * (-x + 1)**(-a / 2) * (x + 1)**(a / 2) *
                         assoc_legendre(n, a, x) * factorial(-a + n) *
                         gamma(a + n + 1) / (factorial(a + n) * gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b / 2) * (x + 1)**(-b / 2) *
                                   assoc_legendre(n, b, x) *
                                   gamma(-b + n + 1) / gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(Rational(
        3, 2), n) * chebyshevu(n, x) / factorial(n + 1)
    assert jacobi(
        n, Rational(-1, 2), Rational(-1, 2),
        x) == RisingFactorial(S.Half, n) * chebyshevt(n, x) / factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n * jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n) * gamma(a + n + 1) * hyper(
        (-b - n, -n), (a + 1, ), -1) / (factorial(n) * gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n) / factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo * RisingFactorial(a + b + m + 1, m)
    assert unchanged(jacobi, n, a, b, oo)

    assert conjugate(jacobi(m, a, b, x)) == jacobi(m, conjugate(a),
                                                   conjugate(b), conjugate(x))

    _k = Dummy("k")
    assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n, a, b, x), a).dummy_eq(
        Sum(
            (jacobi(n, a, b, x) + (2 * _k + a + b + 1) *
             RisingFactorial(_k + b + 1, -_k + n) * jacobi(_k, a, b, x) /
             ((-_k + n) * RisingFactorial(_k + a + b + 1, -_k + n))) /
            (_k + a + b + n + 1),
            (_k, 0, n - 1),
        ))
    assert diff(jacobi(n, a, b, x), b).dummy_eq(
        Sum(
            ((-1)**(-_k + n) * (2 * _k + a + b + 1) *
             RisingFactorial(_k + a + 1, -_k + n) * jacobi(_k, a, b, x) /
             ((-_k + n) * RisingFactorial(_k + a + b + 1, -_k + n)) +
             jacobi(n, a, b, x)) / (_k + a + b + n + 1),
            (_k, 0, n - 1),
        ))
    assert diff(jacobi(n, a, b, x),
                x) == (a / 2 + b / 2 + n / 2 + S.Half) * jacobi(
                    n - 1, a + 1, b + 1, x)

    assert jacobi_normalized(n, a, b, x) == (
        jacobi(n, a, b, x) /
        sqrt(2**(a + b + 1) * gamma(a + n + 1) * gamma(b + n + 1) /
             ((a + b + 2 * n + 1) * factorial(n) * gamma(a + b + n + 1))))

    raises(ValueError, lambda: jacobi(-2.1, a, b, x))
    raises(ValueError,
           lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))

    assert (jacobi(n, a, b, x).rewrite("polynomial").dummy_eq(
        Sum(
            (S.Half - x / 2)**_k * RisingFactorial(-n, _k) *
            RisingFactorial(_k + a + 1, -_k + n) *
            RisingFactorial(a + b + n + 1, _k) / factorial(_k),
            (_k, 0, n),
        ) / factorial(n)))
    raises(ArgumentIndexError, lambda: jacobi(n, a, b, x).fdiff(5))
Exemplo n.º 24
0
def test_im():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert im(nan) is nan

    assert im(oo * I) is oo
    assert im(-oo * I) is -oo

    assert im(0) == 0

    assert im(1) == 0
    assert im(-1) == 0

    assert im(E * I) == E
    assert im(-E * I) == -E

    assert unchanged(im, x)
    assert im(x * I) == re(x)
    assert im(r * I) == r
    assert im(r) == 0
    assert im(i * I) == 0
    assert im(i) == -I * i

    assert im(x + y) == im(x) + im(y)
    assert im(x + r) == im(x)
    assert im(x + r * I) == im(x) + r

    assert im(im(x) * I) == im(x)

    assert im(2 + I) == 1
    assert im(x + I) == im(x) + 1

    assert im(x + y * I) == im(x) + re(y)
    assert im(x + r * I) == im(x) + r

    assert im(log(2 * I)) == pi / 2

    assert im((2 + I)**2).expand(complex=True) == 4

    assert im(conjugate(x)) == -im(x)
    assert conjugate(im(x)) == im(x)

    assert im(x).as_real_imag() == (im(x), 0)

    assert im(i * r * x).diff(r) == im(i * x)
    assert im(i * r * x).diff(i) == -I * re(r * x)

    assert im(
        sqrt(a +
             b * I)) == (a**2 + b**2)**Rational(1, 4) * sin(atan2(b, a) / 2)
    assert im(a * (2 + b * I)) == a * b

    assert im((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2

    assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x))
    assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y))

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic == False

    assert im(S.ComplexInfinity) is S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A', n, m)

    assert im(A) == (S.One / (2 * I)) * (A - conjugate(A))

    A = Matrix([[1 + 4 * I, 2], [0, -3 * I]])
    assert im(A) == Matrix([[4, 0], [0, -3]])

    A = ImmutableMatrix([[1 + 3 * I, 3 - 2 * I], [0, 2 * I]])
    assert im(A) == ImmutableMatrix([[3, -2], [0, 2]])

    X = ImmutableSparseMatrix([[i * I + i for i in range(5)]
                               for i in range(5)])
    Y = SparseMatrix([[i for i in range(5)] for i in range(5)])
    assert im(X).as_immutable() == Y

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m * I))
    assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]])
Exemplo n.º 25
0
def test_fresnel():
    assert fresnels(0) == 0
    assert fresnels(oo) == S.Half
    assert fresnels(-oo) == -S.Half
    assert fresnels(I * oo) == -I * S.Half

    assert unchanged(fresnels, z)
    assert fresnels(-z) == -fresnels(z)
    assert fresnels(I * z) == -I * fresnels(z)
    assert fresnels(-I * z) == I * fresnels(z)

    assert conjugate(fresnels(z)) == fresnels(conjugate(z))

    assert fresnels(z).diff(z) == sin(pi * z**2 / 2)

    assert fresnels(z).rewrite(erf) == (S.One + I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) - I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnels(z).rewrite(hyper) == \
        pi*z**3/6 * hyper([S(3)/4], [S(3)/2, S(7)/4], -pi**2*z**4/16)

    assert fresnels(z).series(z, n=15) == \
        pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)

    assert fresnels(w).is_extended_real is True
    assert fresnels(w).is_finite is True

    assert fresnels(z).is_extended_real is None
    assert fresnels(z).is_finite is None

    assert fresnels(z).as_real_imag() == (
        fresnels(re(z) - I * im(z)) / 2 + fresnels(re(z) + I * im(z)) / 2,
        -I * (-fresnels(re(z) - I * im(z)) + fresnels(re(z) + I * im(z))) / 2)

    assert fresnels(z).as_real_imag(deep=False) == (
        fresnels(re(z) - I * im(z)) / 2 + fresnels(re(z) + I * im(z)) / 2,
        -I * (-fresnels(re(z) - I * im(z)) + fresnels(re(z) + I * im(z))) / 2)

    assert fresnels(w).as_real_imag() == (fresnels(w), 0)
    assert fresnels(w).as_real_imag(deep=True) == (fresnels(w), 0)

    assert fresnels(2 + 3 * I).as_real_imag() == (
        fresnels(2 + 3 * I) / 2 + fresnels(2 - 3 * I) / 2,
        -I * (fresnels(2 + 3 * I) - fresnels(2 - 3 * I)) / 2)

    assert expand_func(integrate(fresnels(z), z)) == \
        z*fresnels(z) + cos(pi*z**2/2)/pi

    assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(9)/4) * \
        meijerg(((), (1,)), ((S(3)/4,),
        (S(1)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(3)/4)*(z**2)**(S(3)/4))

    assert fresnelc(0) == 0
    assert fresnelc(oo) == S.Half
    assert fresnelc(-oo) == -S.Half
    assert fresnelc(I * oo) == I * S.Half

    assert unchanged(fresnelc, z)
    assert fresnelc(-z) == -fresnelc(z)
    assert fresnelc(I * z) == I * fresnelc(z)
    assert fresnelc(-I * z) == -I * fresnelc(z)

    assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))

    assert fresnelc(z).diff(z) == cos(pi * z**2 / 2)

    assert fresnelc(z).rewrite(erf) == (S.One - I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) + I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnelc(z).rewrite(hyper) == \
        z * hyper([S.One/4], [S.One/2, S(5)/4], -pi**2*z**4/16)

    assert fresnelc(w).is_extended_real is True

    assert fresnelc(z).as_real_imag() == \
        (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
         -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)

    assert fresnelc(z).as_real_imag(deep=False) == \
        (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
         -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)

    assert fresnelc(2 + 3 * I).as_real_imag() == (
        fresnelc(2 - 3 * I) / 2 + fresnelc(2 + 3 * I) / 2,
        -I * (fresnelc(2 + 3 * I) - fresnelc(2 - 3 * I)) / 2)

    assert expand_func(integrate(fresnelc(z), z)) == \
        z*fresnelc(z) - sin(pi*z**2/2)/pi

    assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(3)/4) * \
        meijerg(((), (1,)), ((S(1)/4,),
        (S(3)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(1)/4)*(z**2)**(S(1)/4))

    from sympy.utilities.randtest import verify_numerically

    verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z)
    verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z)

    verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z)
    verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)

    raises(ArgumentIndexError, lambda: fresnels(z).fdiff(2))
    raises(ArgumentIndexError, lambda: fresnelc(z).fdiff(2))

    assert fresnels(x).taylor_term(-1, x) == S.Zero
    assert fresnelc(x).taylor_term(-1, x) == S.Zero
    assert fresnelc(x).taylor_term(1, x) == -pi**2 * x**5 / 40
Exemplo n.º 26
0
def test_re():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert re(nan) is nan

    assert re(oo) is oo
    assert re(-oo) is -oo

    assert re(0) == 0

    assert re(1) == 1
    assert re(-1) == -1

    assert re(E) == E
    assert re(-E) == -E

    assert unchanged(re, x)
    assert re(x * I) == -im(x)
    assert re(r * I) == 0
    assert re(r) == r
    assert re(i * I) == I * i
    assert re(i) == 0

    assert re(x + y) == re(x) + re(y)
    assert re(x + r) == re(x) + r

    assert re(re(x)) == re(x)

    assert re(2 + I) == 2
    assert re(x + I) == re(x)

    assert re(x + y * I) == re(x) - im(y)
    assert re(x + r * I) == re(x)

    assert re(log(2 * I)) == log(2)

    assert re((2 + I)**2).expand(complex=True) == 3

    assert re(conjugate(x)) == re(x)
    assert conjugate(re(x)) == re(x)

    assert re(x).as_real_imag() == (re(x), 0)

    assert re(i * r * x).diff(r) == re(i * x)
    assert re(i * r * x).diff(i) == I * r * im(x)

    assert re(
        sqrt(a +
             b * I)) == (a**2 + b**2)**Rational(1, 4) * cos(atan2(b, a) / 2)
    assert re(a * (2 + b * I)) == 2 * a

    assert re((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + S.Half

    assert re(x).rewrite(im) == x - S.ImaginaryUnit * im(x)
    assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit * im(y)

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic == False

    assert re(S.ComplexInfinity) is S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A', n, m)
    assert re(A) == (S.Half) * (A + conjugate(A))

    A = Matrix([[1 + 4 * I, 2], [0, -3 * I]])
    assert re(A) == Matrix([[1, 2], [0, 0]])

    A = ImmutableMatrix([[1 + 3 * I, 3 - 2 * I], [0, 2 * I]])
    assert re(A) == ImmutableMatrix([[1, 3], [0, 0]])

    X = SparseMatrix([[2 * j + i * I for i in range(5)] for j in range(5)])
    assert re(X) - Matrix([[0, 0, 0, 0, 0], [2, 2, 2, 2, 2], [4, 4, 4, 4, 4],
                           [6, 6, 6, 6, 6], [8, 8, 8, 8, 8]
                           ]) == Matrix.zeros(5)

    assert im(X) - Matrix([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]
                           ]) == Matrix.zeros(5)

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m * I))
    assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
Exemplo n.º 27
0
def test_issue_18509():
    assert unchanged(Mul, oo, 1 / pi**oo)
    assert (1 / pi**oo).is_extended_positive == False
Exemplo n.º 28
0
def test_im():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert im(nan) == nan

    assert im(oo*I) == oo
    assert im(-oo*I) == -oo

    assert im(0) == 0

    assert im(1) == 0
    assert im(-1) == 0

    assert im(E*I) == E
    assert im(-E*I) == -E

    assert unchanged(im, x)
    assert im(x*I) == re(x)
    assert im(r*I) == r
    assert im(r) == 0
    assert im(i*I) == 0
    assert im(i) == -I * i

    assert im(x + y) == im(x + y)
    assert im(x + r) == im(x)
    assert im(x + r*I) == im(x) + r

    assert im(im(x)*I) == im(x)

    assert im(2 + I) == 1
    assert im(x + I) == im(x) + 1

    assert im(x + y*I) == im(x) + re(y)
    assert im(x + r*I) == im(x) + r

    assert im(log(2*I)) == pi/2

    assert im((2 + I)**2).expand(complex=True) == 4

    assert im(conjugate(x)) == -im(x)
    assert conjugate(im(x)) == im(x)

    assert im(x).as_real_imag() == (im(x), 0)

    assert im(i*r*x).diff(r) == im(i*x)
    assert im(i*r*x).diff(i) == -I * re(r*x)

    assert im(
        sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)
    assert im(a * (2 + b*I)) == a*b

    assert im((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2

    assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x))
    assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y))

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False

    assert im(S.ComplexInfinity) == S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A',n,m)

    assert im(A) == (S(1)/(2*I)) * (A - conjugate(A))

    A = Matrix([[1 + 4*I, 2],[0, -3*I]])
    assert im(A) == Matrix([[4, 0],[0, -3]])

    A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
    assert im(A) == ImmutableMatrix([[3, -2],[0, 2]])

    X = ImmutableSparseMatrix(
            [[i*I + i for i in range(5)] for i in range(5)])
    Y = SparseMatrix([[i for i in range(5)] for i in range(5)])
    assert im(X).as_immutable() == Y

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
    assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]])
Exemplo n.º 29
0
def test_AccumBounds_pow():
    assert B(0, 2)**2 == B(0, 4)
    assert B(-1, 1)**2 == B(0, 1)
    assert B(1, 2)**2 == B(1, 4)
    assert B(-1, 2)**3 == B(-1, 8)
    assert B(-1, 1)**0 == 1

    assert B(1, 2)**Rational(5, 2) == B(1, 4 * sqrt(2))
    assert B(0, 2)**S.Half == B(0, sqrt(2))

    neg = Symbol('neg', negative=True)
    assert unchanged(Pow, B(neg, 1), S.Half)
    nn = Symbol('nn', nonnegative=True)
    assert B(nn, nn + 1)**S.Half == B(sqrt(nn), sqrt(nn + 1))
    assert B(nn, nn + 1)**nn == B(nn**nn, (nn + 1)**nn)
    assert unchanged(Pow, B(nn, nn + 1), x)
    i = Symbol('i', integer=True)
    assert B(1, 2)**i == B(Min(1, 2**i), Max(1, 2**i))
    i = Symbol('i', integer=True, nonnegative=True)
    assert B(1, 2)**i == B(1, 2**i)
    assert B(0, 1)**i == B(0**i, 1)

    assert B(1, 5)**(-2) == B(Rational(1, 25), 1)
    assert B(-1, 3)**(-2) == B(0, oo)
    assert B(0, 2)**(-3) == B(Rational(1, 8), oo)
    assert B(-2, 0)**(-3) == B(-oo, -Rational(1, 8))
    assert B(0, 2)**(-2) == B(Rational(1, 4), oo)
    assert B(-1, 2)**(-3) == B(-oo, oo)
    assert B(-3, -2)**(-3) == B(Rational(-1, 8), Rational(-1, 27))
    assert B(-3, -2)**(-2) == B(Rational(1, 9), Rational(1, 4))
    assert B(0, oo)**S.Half == B(0, oo)
    assert B(-oo, 0)**(-2) == B(0, oo)
    assert B(-2, 0)**(-2) == B(Rational(1, 4), oo)

    assert B(Rational(1, 3), S.Half)**oo is S.Zero
    assert B(0, S.Half)**oo is S.Zero
    assert B(S.Half, 1)**oo == B(0, oo)
    assert B(0, 1)**oo == B(0, oo)
    assert B(2, 3)**oo is oo
    assert B(1, 2)**oo == B(0, oo)
    assert B(S.Half, 3)**oo == B(0, oo)
    assert B(Rational(-1, 3), Rational(-1, 4))**oo is S.Zero
    assert B(-1, Rational(-1, 2))**oo is S.NaN
    assert B(-3, -2)**oo is zoo
    assert B(-2, -1)**oo is S.NaN
    assert B(-2, Rational(-1, 2))**oo is S.NaN
    assert B(Rational(-1, 2), S.Half)**oo is S.Zero
    assert B(Rational(-1, 2), 1)**oo == B(0, oo)
    assert B(Rational(-2, 3), 2)**oo == B(0, oo)
    assert B(-1, 1)**oo == B(-oo, oo)
    assert B(-1, S.Half)**oo == B(-oo, oo)
    assert B(-1, 2)**oo == B(-oo, oo)
    assert B(-2, S.Half)**oo == B(-oo, oo)

    assert B(1, 2)**x == Pow(B(1, 2), x, evaluate=False)

    assert B(2, 3)**(-oo) is S.Zero
    assert B(0, 2)**(-oo) == B(0, oo)
    assert B(-1, 2)**(-oo) == B(-oo, oo)

    assert (tan(x)**sin(2*x)).subs(x, B(0, pi/2)) == \
        Pow(B(-oo, oo), B(0, 1))
Exemplo n.º 30
0
def test_issue_15920():
    r = rootof(x**5 - x + 1, 0)
    p = Integral(x, (x, 1, y))
    assert unchanged(Eq, r, p)
Exemplo n.º 31
0
def test_Abs():
    raises(TypeError, lambda: Abs(Interval(2, 3)))  # issue 8717

    x, y = symbols('x,y')
    assert sign(sign(x)) == sign(x)
    assert sign(x * y).func is sign
    assert Abs(0) == 0
    assert Abs(1) == 1
    assert Abs(-1) == 1
    assert Abs(I) == 1
    assert Abs(-I) == 1
    assert Abs(nan) is nan
    assert Abs(zoo) is oo
    assert Abs(I * pi) == pi
    assert Abs(-I * pi) == pi
    assert Abs(I * x) == Abs(x)
    assert Abs(-I * x) == Abs(x)
    assert Abs(-2 * x) == 2 * Abs(x)
    assert Abs(-2.0 * x) == 2.0 * Abs(x)
    assert Abs(2 * pi * x * y) == 2 * pi * Abs(x * y)
    assert Abs(conjugate(x)) == Abs(x)
    assert conjugate(Abs(x)) == Abs(x)
    assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2)

    a = Symbol('a', positive=True)
    assert Abs(2 * pi * x * a) == 2 * pi * a * Abs(x)
    assert Abs(2 * pi * I * x * a) == 2 * pi * a * Abs(x)

    x = Symbol('x', real=True)
    n = Symbol('n', integer=True)
    assert Abs((-1)**n) == 1
    assert x**(2 * n) == Abs(x)**(2 * n)
    assert Abs(x).diff(x) == sign(x)
    assert abs(x) == Abs(x)  # Python built-in
    assert Abs(x)**3 == x**2 * Abs(x)
    assert Abs(x)**4 == x**4
    assert (Abs(x)**(3 * n)).args == (Abs(x), 3 * n
                                      )  # leave symbolic odd unchanged
    assert (1 / Abs(x)).args == (Abs(x), -1)
    assert 1 / Abs(x)**3 == 1 / (x**2 * Abs(x))
    assert Abs(x)**-3 == Abs(x) / (x**4)
    assert Abs(x**3) == x**2 * Abs(x)
    assert Abs(I**I) == exp(-pi / 2)
    assert Abs(
        (4 + 5 * I)**(6 + 7 * I)) == 68921 * exp(-7 * atan(Rational(5, 4)))
    y = Symbol('y', real=True)
    assert Abs(I**y) == 1
    y = Symbol('y')
    assert Abs(I**y) == exp(-pi * im(y) / 2)

    x = Symbol('x', imaginary=True)
    assert Abs(x).diff(x) == -sign(x)

    eq = -sqrt(10 + 6 * sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3 * sqrt(3))
    # if there is a fast way to know when you can and when you cannot prove an
    # expression like this is zero then the equality to zero is ok
    assert abs(eq).func is Abs or abs(eq) == 0
    # but sometimes it's hard to do this so it's better not to load
    # abs down with tests that will be very slow
    q = 1 + sqrt(2) - 2 * sqrt(3) + 1331 * sqrt(6)
    p = expand(q**3)**Rational(1, 3)
    d = p - q
    assert abs(d).func is Abs or abs(d) == 0

    assert Abs(4 * exp(pi * I / 4)) == 4
    assert Abs(3**(2 + I)) == 9
    assert Abs((-3)**(1 - I)) == 3 * exp(pi)

    assert Abs(oo) is oo
    assert Abs(-oo) is oo
    assert Abs(oo + I) is oo
    assert Abs(oo + I * oo) is oo

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic == False
    assert Abs(x).fdiff() == sign(x)
    raises(ArgumentIndexError, lambda: Abs(x).fdiff(2))

    # doesn't have recursion error
    arg = sqrt(acos(1 - I) * acos(1 + I))
    assert abs(arg) == arg

    # special handling to put Abs in denom
    assert abs(1 / x) == 1 / Abs(x)
    e = abs(2 / x**2)
    assert e.is_Mul and e == 2 / Abs(x**2)
    assert unchanged(Abs, y / x)
    assert unchanged(Abs, x / (x + 1))
    assert unchanged(Abs, x * y)
    p = Symbol('p', positive=True)
    assert abs(x / p) == abs(x) / p

    # coverage
    assert unchanged(Abs, Symbol('x', real=True)**y)
Exemplo n.º 32
0
def test_rf_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert rf(nan, y) == nan
    assert rf(x, nan) == nan

    assert unchanged(rf, x, y)

    assert rf(oo, 0) == 1
    assert rf(-oo, 0) == 1

    assert rf(oo, 6) == oo
    assert rf(-oo, 7) == -oo
    assert rf(-oo, 6) == oo

    assert rf(oo, -6) == oo
    assert rf(-oo, -7) == oo

    assert rf(x, 0) == 1
    assert rf(x, 1) == x
    assert rf(x, 2) == x * (x + 1)
    assert rf(x, 3) == x * (x + 1) * (x + 2)
    assert rf(x, 5) == x * (x + 1) * (x + 2) * (x + 3) * (x + 4)

    assert rf(x, -1) == 1 / (x - 1)
    assert rf(x, -2) == 1 / ((x - 1) * (x - 2))
    assert rf(x, -3) == 1 / ((x - 1) * (x - 2) * (x - 3))

    assert rf(1, 100) == factorial(100)

    assert rf(x**2 + 3 * x, 2) == (x**2 + 3 * x) * (x**2 + 3 * x + 1)
    assert isinstance(rf(x**2 + 3 * x, 2), Mul)
    assert rf(x**3 + x, -2) == 1 / ((x**3 + x - 1) * (x**3 + x - 2))

    assert rf(Poly(x**2 + 3 * x, x),
              2) == Poly(x**4 + 8 * x**3 + 19 * x**2 + 12 * x, x)
    assert isinstance(rf(Poly(x**2 + 3 * x, x), 2), Poly)
    raises(ValueError, lambda: rf(Poly(x**2 + 3 * x, x, y), 2))
    assert rf(Poly(x**3 + x, x),
              -2) == 1 / (x**6 - 9 * x**5 + 35 * x**4 - 75 * x**3 + 94 * x**2 -
                          66 * x + 20)
    raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2))

    assert rf(x, m).is_integer is None
    assert rf(n, k).is_integer is None
    assert rf(n, m).is_integer is True
    assert rf(n, k + pi).is_integer is False
    assert rf(n, m + pi).is_integer is False
    assert rf(pi, m).is_integer is False

    assert rf(x, k).rewrite(ff) == ff(x + k - 1, k)
    assert rf(x, k).rewrite(binomial) == factorial(k) * binomial(x + k - 1, k)
    assert rf(n, k).rewrite(factorial) == \
        factorial(n + k - 1) / factorial(n - 1)
    assert rf(x, y).rewrite(factorial) == rf(x, y)
    assert rf(x, y).rewrite(binomial) == rf(x, y)

    import random
    from mpmath import rf as mpmath_rf
    for i in range(100):
        x = -500 + 500 * random.random()
        k = -500 + 500 * random.random()
        assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
Exemplo n.º 33
0
def test_re():
    x, y = symbols('x,y')
    a, b = symbols('a,b', real=True)

    r = Symbol('r', real=True)
    i = Symbol('i', imaginary=True)

    assert re(nan) == nan

    assert re(oo) == oo
    assert re(-oo) == -oo

    assert re(0) == 0

    assert re(1) == 1
    assert re(-1) == -1

    assert re(E) == E
    assert re(-E) == -E

    assert unchanged(re, x)
    assert re(x*I) == -im(x)
    assert re(r*I) == 0
    assert re(r) == r
    assert re(i*I) == I * i
    assert re(i) == 0

    assert re(x + y) == re(x + y)
    assert re(x + r) == re(x) + r

    assert re(re(x)) == re(x)

    assert re(2 + I) == 2
    assert re(x + I) == re(x)

    assert re(x + y*I) == re(x) - im(y)
    assert re(x + r*I) == re(x)

    assert re(log(2*I)) == log(2)

    assert re((2 + I)**2).expand(complex=True) == 3

    assert re(conjugate(x)) == re(x)
    assert conjugate(re(x)) == re(x)

    assert re(x).as_real_imag() == (re(x), 0)

    assert re(i*r*x).diff(r) == re(i*x)
    assert re(i*r*x).diff(i) == I*r*im(x)

    assert re(
        sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)
    assert re(a * (2 + b*I)) == 2*a

    assert re((1 + sqrt(a + b*I))/2) == \
        (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + Rational(1, 2)

    assert re(x).rewrite(im) == x - S.ImaginaryUnit*im(x)
    assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit*im(y)

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False

    assert re(S.ComplexInfinity) == S.NaN

    n, m, l = symbols('n m l')
    A = MatrixSymbol('A',n,m)
    assert re(A) == (S(1)/2) * (A + conjugate(A))

    A = Matrix([[1 + 4*I,2],[0, -3*I]])
    assert re(A) == Matrix([[1, 2],[0, 0]])

    A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
    assert re(A) == ImmutableMatrix([[1, 3],[0, 0]])

    X = SparseMatrix([[2*j + i*I for i in range(5)] for j in range(5)])
    assert re(X) - Matrix([[0, 0, 0, 0, 0],
                           [2, 2, 2, 2, 2],
                           [4, 4, 4, 4, 4],
                           [6, 6, 6, 6, 6],
                           [8, 8, 8, 8, 8]]) == Matrix.zeros(5)

    assert im(X) - Matrix([[0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4],
                           [0, 1, 2, 3, 4]]) == Matrix.zeros(5)

    X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
    assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
Exemplo n.º 34
0
def test_floor():

    assert floor(nan) is nan

    assert floor(oo) is oo
    assert floor(-oo) is -oo
    assert floor(zoo) is zoo

    assert floor(0) == 0

    assert floor(1) == 1
    assert floor(-1) == -1

    assert floor(E) == 2
    assert floor(-E) == -3

    assert floor(2 * E) == 5
    assert floor(-2 * E) == -6

    assert floor(pi) == 3
    assert floor(-pi) == -4

    assert floor(S.Half) == 0
    assert floor(Rational(-1, 2)) == -1

    assert floor(Rational(7, 3)) == 2
    assert floor(Rational(-7, 3)) == -3
    assert floor(-Rational(7, 3)) == -3

    assert floor(Float(17.0)) == 17
    assert floor(-Float(17.0)) == -17

    assert floor(Float(7.69)) == 7
    assert floor(-Float(7.69)) == -8

    assert floor(I) == I
    assert floor(-I) == -I
    e = floor(i)
    assert e.func is floor and e.args[0] == i

    assert floor(oo * I) == oo * I
    assert floor(-oo * I) == -oo * I
    assert floor(exp(I * pi / 4) * oo) == exp(I * pi / 4) * oo

    assert floor(2 * I) == 2 * I
    assert floor(-2 * I) == -2 * I

    assert floor(I / 2) == 0
    assert floor(-I / 2) == -I

    assert floor(E + 17) == 19
    assert floor(pi + 2) == 5

    assert floor(E + pi) == 5
    assert floor(I + pi) == 3 + I

    assert floor(floor(pi)) == 3
    assert floor(floor(y)) == floor(y)
    assert floor(floor(x)) == floor(x)

    assert unchanged(floor, x)
    assert unchanged(floor, 2 * x)
    assert unchanged(floor, k * x)

    assert floor(k) == k
    assert floor(2 * k) == 2 * k
    assert floor(k * n) == k * n

    assert unchanged(floor, k / 2)

    assert unchanged(floor, x + y)

    assert floor(x + 3) == floor(x) + 3
    assert floor(x + k) == floor(x) + k

    assert floor(y + 3) == floor(y) + 3
    assert floor(y + k) == floor(y) + k

    assert floor(3 + I * y + pi) == 6 + floor(y) * I

    assert floor(k + n) == k + n

    assert unchanged(floor, x * I)
    assert floor(k * I) == k * I

    assert floor(Rational(23, 10) - E * I) == 2 - 3 * I

    assert floor(sin(1)) == 0
    assert floor(sin(-1)) == -1

    assert floor(exp(2)) == 7

    assert floor(log(8) / log(2)) != 2
    assert int(floor(log(8) / log(2)).evalf(chop=True)) == 3

    assert floor(factorial(50)/exp(1)) == \
        11188719610782480504630258070757734324011354208865721592720336800

    assert (floor(y) < y) == False
    assert (floor(y) <= y) == True
    assert (floor(y) > y) == False
    assert (floor(y) >= y) == False
    assert (floor(x) <= x).is_Relational  # x could be non-real
    assert (floor(x) > x).is_Relational
    assert (floor(x) <= y).is_Relational  # arg is not same as rhs
    assert (floor(x) > y).is_Relational
    assert (floor(y) <= oo) == True
    assert (floor(y) < oo) == True
    assert (floor(y) >= -oo) == True
    assert (floor(y) > -oo) == True

    assert floor(y).rewrite(frac) == y - frac(y)
    assert floor(y).rewrite(ceiling) == -ceiling(-y)
    assert floor(y).rewrite(frac).subs(y, -pi) == floor(-pi)
    assert floor(y).rewrite(frac).subs(y, E) == floor(E)
    assert floor(y).rewrite(ceiling).subs(y, E) == -ceiling(-E)
    assert floor(y).rewrite(ceiling).subs(y, -pi) == -ceiling(pi)

    assert Eq(floor(y), y - frac(y))
    assert Eq(floor(y), -ceiling(-y))

    neg = Symbol('neg', negative=True)
    nn = Symbol('nn', nonnegative=True)
    pos = Symbol('pos', positive=True)
    np = Symbol('np', nonpositive=True)

    assert (floor(neg) < 0) == True
    assert (floor(neg) <= 0) == True
    assert (floor(neg) > 0) == False
    assert (floor(neg) >= 0) == False
    assert (floor(neg) <= -1) == True
    assert (floor(neg) >= -3) == (neg >= -3)
    assert (floor(neg) < 5) == (neg < 5)

    assert (floor(nn) < 0) == False
    assert (floor(nn) >= 0) == True

    assert (floor(pos) < 0) == False
    assert (floor(pos) <= 0) == (pos < 1)
    assert (floor(pos) > 0) == (pos >= 1)
    assert (floor(pos) >= 0) == True
    assert (floor(pos) >= 3) == (pos >= 3)

    assert (floor(np) <= 0) == True
    assert (floor(np) > 0) == False

    assert floor(neg).is_negative == True
    assert floor(neg).is_nonnegative == False
    assert floor(nn).is_negative == False
    assert floor(nn).is_nonnegative == True
    assert floor(pos).is_negative == False
    assert floor(pos).is_nonnegative == True
    assert floor(np).is_negative is None
    assert floor(np).is_nonnegative is None

    assert (floor(7, evaluate=False) >= 7) == True
    assert (floor(7, evaluate=False) > 7) == False
    assert (floor(7, evaluate=False) <= 7) == True
    assert (floor(7, evaluate=False) < 7) == False

    assert (floor(7, evaluate=False) >= 6) == True
    assert (floor(7, evaluate=False) > 6) == True
    assert (floor(7, evaluate=False) <= 6) == False
    assert (floor(7, evaluate=False) < 6) == False

    assert (floor(7, evaluate=False) >= 8) == False
    assert (floor(7, evaluate=False) > 8) == False
    assert (floor(7, evaluate=False) <= 8) == True
    assert (floor(7, evaluate=False) < 8) == True

    assert (floor(x) <= 5.5) == Le(floor(x), 5.5, evaluate=False)
    assert (floor(x) >= -3.2) == Ge(floor(x), -3.2, evaluate=False)
    assert (floor(x) < 2.9) == Lt(floor(x), 2.9, evaluate=False)
    assert (floor(x) > -1.7) == Gt(floor(x), -1.7, evaluate=False)

    assert (floor(y) <= 5.5) == (y < 6)
    assert (floor(y) >= -3.2) == (y >= -3)
    assert (floor(y) < 2.9) == (y < 3)
    assert (floor(y) > -1.7) == (y >= -1)

    assert (floor(y) <= n) == (y < n + 1)
    assert (floor(y) >= n) == (y >= n)
    assert (floor(y) < n) == (y < n)
    assert (floor(y) > n) == (y >= n + 1)