Exemplo n.º 1
0
def test_Factors():
    assert Factors() == Factors({})

    assert Factors().as_expr() == S.One
    assert Factors({
        x: 2,
        y: 3,
        sin(x): 4
    }).as_expr() == x**2 * y**3 * sin(x)**4

    a = Factors({x: 5, y: 3, z: 7})
    b = Factors({y: 4, z: 3, t: 10})

    assert a.mul(b) == a * b == Factors({x: 5, y: 7, z: 10, t: 10})

    assert a.div(b) == divmod(a, b) == (Factors({
        x: 5,
        z: 4
    }), Factors({
        y: 1,
        t: 10
    }))
    assert a.quo(b) == a / b == Factors({x: 5, z: 4})
    assert a.rem(b) == a % b == Factors({y: 1, t: 10})

    assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21})
    assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30})

    assert a.gcd(b) == Factors({y: 3, z: 3})
    assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10})

    a = Factors({x: 4, y: 7, t: 7})
    b = Factors({z: 1, t: 3})

    assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))
Exemplo n.º 2
0
def test_Factors():
    assert Factors() == Factors({})

    assert Factors().as_expr() == S.One
    assert Factors({x: 2, y: 3, sin(x): 4}).as_expr() == x**2*y**3*sin(x)**4

    a = Factors({x: 5, y: 3, z: 7})
    b = Factors({y: 4, z: 3, t: 10})

    assert a.mul(b) == a*b == Factors({x: 5, y: 7, z: 10, t: 10})

    assert a.div(b) == divmod(a, b) == (Factors({x: 5, z: 4}), Factors({y: 1, t: 10}))
    assert a.quo(b) == a/b == Factors({x: 5, z: 4})
    assert a.rem(b) == a%b == Factors({y: 1, t: 10})

    assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21})
    assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30})

    assert a.gcd(b) == Factors({y: 3, z: 3})
    assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10})

    a = Factors({x: 4, y: 7, t: 7})
    b = Factors({z: 1, t: 3})

    assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))
Exemplo n.º 3
0
def test_Factors():
    assert Factors() == Factors({}) == Factors(S(1))
    assert Factors().as_expr() == S.One
    assert Factors({
        x: 2,
        y: 3,
        sin(x): 4
    }).as_expr() == x**2 * y**3 * sin(x)**4
    assert Factors(S.Infinity) == Factors({oo: 1})
    assert Factors(S.NegativeInfinity) == Factors({oo: 1, -1: 1})

    a = Factors({x: 5, y: 3, z: 7})
    b = Factors({y: 4, z: 3, t: 10})

    assert a.mul(b) == a * b == Factors({x: 5, y: 7, z: 10, t: 10})

    assert a.div(b) == divmod(a, b) == \
        (Factors({x: 5, z: 4}), Factors({y: 1, t: 10}))
    assert a.quo(b) == a / b == Factors({x: 5, z: 4})
    assert a.rem(b) == a % b == Factors({y: 1, t: 10})

    assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21})
    assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30})

    assert a.gcd(b) == Factors({y: 3, z: 3})
    assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10})

    a = Factors({x: 4, y: 7, t: 7})
    b = Factors({z: 1, t: 3})

    assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))

    assert Factors(sqrt(2) * x).as_expr() == sqrt(2) * x

    assert Factors(-I) * I == Factors()
    assert Factors({S(-1): S(3)})*Factors({S(-1): S(1), I: S(5)}) == \
        Factors(I)

    assert Factors(S(2)**x).div(S(3)**x) == \
        (Factors({S(2): x}), Factors({S(3): x}))
    assert Factors(2**(2*x + 2)).div(S(8)) == \
        (Factors({S(2): 2*x + 2}), Factors({S(8): S(1)}))

    # coverage
    # /!\ things break if this is not True
    assert Factors({S(-1): S(3) / 2}) == Factors({I: S.One, S(-1): S.One})
    assert Factors({
        I: S(1),
        S(-1): S(1) / 3
    }).as_expr() == I * (-1)**(S(1) / 3)

    assert Factors(-1.) == Factors({S(-1): S(1), S(1.): 1})
    assert Factors(-2.) == Factors({S(-1): S(1), S(2.): 1})
    assert Factors((-2.)**x) == Factors({S(-2.): x})
    assert Factors(S(-2)) == Factors({S(-1): S(1), S(2): 1})
    assert Factors(S.Half) == Factors({S(2): -S.One})
    assert Factors(S(3) / 2) == Factors({S(3): S.One, S(2): S(-1)})
    assert Factors({I: S(1)}) == Factors(I)
    assert Factors({-1.0: 2, I: 1}) == Factors({S(1.0): 1, I: 1})
    assert Factors({S.NegativeOne: -S(3) / 2}).as_expr() == I
    A = symbols('A', commutative=False)
    assert Factors(2 * A**2) == Factors({S(2): 1, A**2: 1})
    assert Factors(I) == Factors({I: S.One})
    assert Factors(x).normal(S(2)) == (Factors(x), Factors(S(2)))
    assert Factors(x).normal(S(0)) == (Factors(), Factors(S(0)))
    raises(ZeroDivisionError, lambda: Factors(x).div(S(0)))
    assert Factors(x).mul(S(2)) == Factors(2 * x)
    assert Factors(x).mul(S(0)).is_zero
    assert Factors(x).mul(1 / x).is_one
    assert Factors(x**sqrt(2)**3).as_expr() == x**(2 * sqrt(2))
    assert Factors(x)**Factors(S(2)) == Factors(x**2)
    assert Factors(x).gcd(S(0)) == Factors(x)
    assert Factors(x).lcm(S(0)).is_zero
    assert Factors(S(0)).div(x) == (Factors(S(0)), Factors())
    assert Factors(x).div(x) == (Factors(), Factors())
    assert Factors({x: .2}) / Factors({x: .2}) == Factors()
    assert Factors(x) != Factors()
    assert Factors(S(0)).normal(x) == (Factors(S(0)), Factors())
    n, d = x**(2 + y), x**2
    f = Factors(n)
    assert f.div(d) == f.normal(d) == (Factors(x**y), Factors())
    assert f.gcd(d) == Factors()
    d = x**y
    assert f.div(d) == f.normal(d) == (Factors(x**2), Factors())
    assert f.gcd(d) == Factors(d)
    n = d = 2**x
    f = Factors(n)
    assert f.div(d) == f.normal(d) == (Factors(), Factors())
    assert f.gcd(d) == Factors(d)
    n, d = 2**x, 2**y
    f = Factors(n)
    assert f.div(d) == f.normal(d) == (Factors({S(2): x}), Factors({S(2): y}))
    assert f.gcd(d) == Factors()

    # extraction of constant only
    n = x**(x + 3)
    assert Factors(n).normal(x**-3) == (Factors({x: x + 6}), Factors({}))
    assert Factors(n).normal(x**3) == (Factors({x: x}), Factors({}))
    assert Factors(n).normal(x**4) == (Factors({x: x}), Factors({x: 1}))
    assert Factors(n).normal(x**(y - 3)) == \
        (Factors({x: x + 6}), Factors({x: y}))
    assert Factors(n).normal(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
    assert Factors(n).normal(x**(y + 4)) == \
        (Factors({x: x}), Factors({x: y + 1}))

    assert Factors(n).div(x**-3) == (Factors({x: x + 6}), Factors({}))
    assert Factors(n).div(x**3) == (Factors({x: x}), Factors({}))
    assert Factors(n).div(x**4) == (Factors({x: x}), Factors({x: 1}))
    assert Factors(n).div(x**(y - 3)) == \
        (Factors({x: x + 6}), Factors({x: y}))
    assert Factors(n).div(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
    assert Factors(n).div(x**(y + 4)) == \
        (Factors({x: x}), Factors({x: y + 1}))

    assert Factors(3 * x / 2) == Factors({3: 1, 2: -1, x: 1})
    assert Factors(x * x / y) == Factors({x: 2, y: -1})
    assert Factors(27 * x / y**9) == Factors({27: 1, x: 1, y: -9})
Exemplo n.º 4
0
def collect_const(expr, *vars, Numbers=True):
    """A non-greedy collection of terms with similar number coefficients in
    an Add expr. If ``vars`` is given then only those constants will be
    targeted. Although any Number can also be targeted, if this is not
    desired set ``Numbers=False`` and no Float or Rational will be collected.

    Parameters
    ==========

    expr : sympy expression
        This parameter defines the expression the expression from which
        terms with similar coefficients are to be collected. A non-Add
        expression is returned as it is.

    vars : variable length collection of Numbers, optional
        Specifies the constants to target for collection. Can be multiple in
        number.

    Numbers : bool
        Specifies to target all instance of
        :class:`sympy.core.numbers.Number` class. If ``Numbers=False``, then
        no Float or Rational will be collected.

    Returns
    =======

    expr : Expr
        Returns an expression with similar coefficient terms collected.

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.abc import s, x, y, z
    >>> from sympy.simplify.radsimp import collect_const
    >>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2)))
    sqrt(3)*(sqrt(2) + 2)
    >>> collect_const(sqrt(3)*s + sqrt(7)*s + sqrt(3) + sqrt(7))
    (sqrt(3) + sqrt(7))*(s + 1)
    >>> s = sqrt(2) + 2
    >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7))
    (sqrt(2) + 3)*(sqrt(3) + sqrt(7))
    >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7), sqrt(3))
    sqrt(7) + sqrt(3)*(sqrt(2) + 3) + sqrt(7)*(sqrt(2) + 2)

    The collection is sign-sensitive, giving higher precedence to the
    unsigned values:

    >>> collect_const(x - y - z)
    x - (y + z)
    >>> collect_const(-y - z)
    -(y + z)
    >>> collect_const(2*x - 2*y - 2*z, 2)
    2*(x - y - z)
    >>> collect_const(2*x - 2*y - 2*z, -2)
    2*x - 2*(y + z)

    See Also
    ========

    collect, collect_sqrt, rcollect
    """
    if not expr.is_Add:
        return expr

    recurse = False

    if not vars:
        recurse = True
        vars = set()
        for a in expr.args:
            for m in Mul.make_args(a):
                if m.is_number:
                    vars.add(m)
    else:
        vars = sympify(vars)
    if not Numbers:
        vars = [v for v in vars if not v.is_Number]

    vars = list(ordered(vars))
    for v in vars:
        terms = defaultdict(list)
        Fv = Factors(v)
        for m in Add.make_args(expr):
            f = Factors(m)
            q, r = f.div(Fv)
            if r.is_one:
                # only accept this as a true factor if
                # it didn't change an exponent from an Integer
                # to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2)
                # -- we aren't looking for this sort of change
                fwas = f.factors.copy()
                fnow = q.factors
                if not any(k in fwas and fwas[k].is_Integer and not
                        fnow[k].is_Integer for k in fnow):
                    terms[v].append(q.as_expr())
                    continue
            terms[S.One].append(m)

        args = []
        hit = False
        uneval = False
        for k in ordered(terms):
            v = terms[k]
            if k is S.One:
                args.extend(v)
                continue

            if len(v) > 1:
                v = Add(*v)
                hit = True
                if recurse and v != expr:
                    vars.append(v)
            else:
                v = v[0]

            # be careful not to let uneval become True unless
            # it must be because it's going to be more expensive
            # to rebuild the expression as an unevaluated one
            if Numbers and k.is_Number and v.is_Add:
                args.append(_keep_coeff(k, v, sign=True))
                uneval = True
            else:
                args.append(k*v)

        if hit:
            if uneval:
                expr = _unevaluated_Add(*args)
            else:
                expr = Add(*args)
            if not expr.is_Add:
                break

    return expr
Exemplo n.º 5
0
def test_Factors():
    assert Factors() == Factors({}) == Factors(S(1))
    assert Factors().as_expr() == S.One
    assert Factors({x: 2, y: 3, sin(x): 4}).as_expr() == x**2*y**3*sin(x)**4
    assert Factors(S.Infinity) == Factors({oo: 1})
    assert Factors(S.NegativeInfinity) == Factors({oo: 1, -1: 1})

    a = Factors({x: 5, y: 3, z: 7})
    b = Factors({      y: 4, z: 3, t: 10})

    assert a.mul(b) == a*b == Factors({x: 5, y: 7, z: 10, t: 10})

    assert a.div(b) == divmod(a, b) == \
        (Factors({x: 5, z: 4}), Factors({y: 1, t: 10}))
    assert a.quo(b) == a/b == Factors({x: 5, z: 4})
    assert a.rem(b) == a % b == Factors({y: 1, t: 10})

    assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21})
    assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30})

    assert a.gcd(b) == Factors({y: 3, z: 3})
    assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10})

    a = Factors({x: 4, y: 7, t: 7})
    b = Factors({z: 1, t: 3})

    assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))

    assert Factors(sqrt(2)*x).as_expr() == sqrt(2)*x

    assert Factors(-I)*I == Factors()
    assert Factors({S(-1): S(3)})*Factors({S(-1): S(1), I: S(5)}) == \
        Factors(I)

    assert Factors(S(2)**x).div(S(3)**x) == \
        (Factors({S(2): x}), Factors({S(3): x}))
    assert Factors(2**(2*x + 2)).div(S(8)) == \
        (Factors({S(2): 2*x + 2}), Factors({S(8): S(1)}))

    # coverage
    # /!\ things break if this is not True
    assert Factors({S(-1): S(3)/2}) == Factors({I: S.One, S(-1): S.One})
    assert Factors({I: S(1), S(-1): S(1)/3}).as_expr() == I*(-1)**(S(1)/3)

    assert Factors(-1.) == Factors({S(-1): S(1), S(1.): 1})
    assert Factors(-2.) == Factors({S(-1): S(1), S(2.): 1})
    assert Factors((-2.)**x) == Factors({S(-2.): x})
    assert Factors(S(-2)) == Factors({S(-1): S(1), S(2): 1})
    assert Factors(S.Half) == Factors({S(2): -S.One})
    assert Factors(S(3)/2) == Factors({S(3): S.One, S(2): S(-1)})
    assert Factors({I: S(1)}) == Factors(I)
    assert Factors({-1.0: 2, I: 1}) == Factors({S(1.0): 1, I: 1})
    assert Factors({S.NegativeOne: -S(3)/2}).as_expr() == I
    A = symbols('A', commutative=False)
    assert Factors(2*A**2) == Factors({S(2): 1, A**2: 1})
    assert Factors(I) == Factors({I: S.One})
    assert Factors(x).normal(S(2)) == (Factors(x), Factors(S(2)))
    assert Factors(x).normal(S(0)) == (Factors(), Factors(S(0)))
    raises(ZeroDivisionError, lambda: Factors(x).div(S(0)))
    assert Factors(x).mul(S(2)) == Factors(2*x)
    assert Factors(x).mul(S(0)).is_zero
    assert Factors(x).mul(1/x).is_one
    assert Factors(x**sqrt(2)**3).as_expr() == x**(2*sqrt(2))
    assert Factors(x)**Factors(S(2)) == Factors(x**2)
    assert Factors(x).gcd(S(0)) == Factors(x)
    assert Factors(x).lcm(S(0)).is_zero
    assert Factors(S(0)).div(x) == (Factors(S(0)), Factors())
    assert Factors(x).div(x) == (Factors(), Factors())
    assert Factors({x: .2})/Factors({x: .2}) == Factors()
    assert Factors(x) != Factors()
    assert Factors(S(0)).normal(x) == (Factors(S(0)), Factors())
    n, d = x**(2 + y), x**2
    f = Factors(n)
    assert f.div(d) == f.normal(d) == (Factors(x**y), Factors())
    d = x**y
    assert f.div(d) == f.normal(d) == (Factors(x**2), Factors())
    n = d = 2**x
    f = Factors(n)
    assert f.div(d) == f.normal(d) == (Factors(), Factors())
    n, d = 2**x, 2**y
    f = Factors(n)
    assert f.div(d) == f.normal(d) == (Factors({S(2): x}), Factors({S(2): y}))

    # extraction of constant only
    n = x**(x + 3)
    assert Factors(n).normal(x**-3) == (Factors({x: x + 6}), Factors({}))
    assert Factors(n).normal(x**3) == (Factors({x: x}), Factors({}))
    assert Factors(n).normal(x**4) == (Factors({x: x}), Factors({x: 1}))
    assert Factors(n).normal(x**(y - 3)) == \
        (Factors({x: x + 6}), Factors({x: y}))
    assert Factors(n).normal(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
    assert Factors(n).normal(x**(y + 4)) == \
        (Factors({x: x}), Factors({x: y + 1}))

    assert Factors(n).div(x**-3) == (Factors({x: x + 6}), Factors({}))
    assert Factors(n).div(x**3) == (Factors({x: x}), Factors({}))
    assert Factors(n).div(x**4) == (Factors({x: x}), Factors({x: 1}))
    assert Factors(n).div(x**(y - 3)) == \
        (Factors({x: x + 6}), Factors({x: y}))
    assert Factors(n).div(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
    assert Factors(n).div(x**(y + 4)) == \
        (Factors({x: x}), Factors({x: y + 1}))
Exemplo n.º 6
0
def collect_const(expr, *vars, **kwargs):
    """A non-greedy collection of terms with similar number coefficients in
    an Add expr. If ``vars`` is given then only those constants will be
    targeted. Although any Number can also be targeted, if this is not
    desired set ``Numbers=False`` and no Float or Rational will be collected.

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.abc import a, s, x, y, z
    >>> from sympy.simplify.radsimp import collect_const
    >>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2)))
    sqrt(3)*(sqrt(2) + 2)
    >>> collect_const(sqrt(3)*s + sqrt(7)*s + sqrt(3) + sqrt(7))
    (sqrt(3) + sqrt(7))*(s + 1)
    >>> s = sqrt(2) + 2
    >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7))
    (sqrt(2) + 3)*(sqrt(3) + sqrt(7))
    >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7), sqrt(3))
    sqrt(7) + sqrt(3)*(sqrt(2) + 3) + sqrt(7)*(sqrt(2) + 2)

    The collection is sign-sensitive, giving higher precedence to the
    unsigned values:

    >>> collect_const(x - y - z)
    x - (y + z)
    >>> collect_const(-y - z)
    -(y + z)
    >>> collect_const(2*x - 2*y - 2*z, 2)
    2*(x - y - z)
    >>> collect_const(2*x - 2*y - 2*z, -2)
    2*x - 2*(y + z)

    See Also
    ========
    collect, collect_sqrt, rcollect
    """
    if not expr.is_Add:
        return expr

    recurse = False
    Numbers = kwargs.get('Numbers', True)

    if not vars:
        recurse = True
        vars = set()
        for a in expr.args:
            for m in Mul.make_args(a):
                if m.is_number:
                    vars.add(m)
    else:
        vars = sympify(vars)
    if not Numbers:
        vars = [v for v in vars if not v.is_Number]

    vars = list(ordered(vars))
    for v in vars:
        terms = defaultdict(list)
        Fv = Factors(v)
        for m in Add.make_args(expr):
            f = Factors(m)
            q, r = f.div(Fv)
            if r.is_one:
                # only accept this as a true factor if
                # it didn't change an exponent from an Integer
                # to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2)
                # -- we aren't looking for this sort of change
                fwas = f.factors.copy()
                fnow = q.factors
                if not any(k in fwas and fwas[k].is_Integer and not
                        fnow[k].is_Integer for k in fnow):
                    terms[v].append(q.as_expr())
                    continue
            terms[S.One].append(m)

        args = []
        hit = False
        uneval = False
        for k in ordered(terms):
            v = terms[k]
            if k is S.One:
                args.extend(v)
                continue

            if len(v) > 1:
                v = Add(*v)
                hit = True
                if recurse and v != expr:
                    vars.append(v)
            else:
                v = v[0]

            # be careful not to let uneval become True unless
            # it must be because it's going to be more expensive
            # to rebuild the expression as an unevaluated one
            if Numbers and k.is_Number and v.is_Add:
                args.append(_keep_coeff(k, v, sign=True))
                uneval = True
            else:
                args.append(k*v)

        if hit:
            if uneval:
                expr = _unevaluated_Add(*args)
            else:
                expr = Add(*args)
            if not expr.is_Add:
                break

    return expr
Exemplo n.º 7
0
def collect_const(expr, *vars, **kwargs):
    """ This is the very same code of sympy.simplify.radsimp.py collect_const,
    with modification: the original method used Mul._from_args
    and Add._from_args, which do not call a post-processor, hence I obtained the
    wrong result. Here, I use VecAdd, VecMul...
    """
    if not expr.is_Add:
        return expr

    recurse = False
    Numbers = kwargs.get('Numbers', True)

    if not vars:
        recurse = True
        vars = set()
        for a in expr.args:
            for m in Mul.make_args(a):
                if m.is_number:
                    vars.add(m)
    else:
        vars = sympify(vars)
    if not Numbers:
        vars = [v for v in vars if not v.is_Number]

    vars = list(ordered(vars))
    for v in vars:
        terms = defaultdict(list)
        Fv = Factors(v)
        for m in Add.make_args(expr):
            f = Factors(m)
            q, r = f.div(Fv)
            if r.is_one:
                # only accept this as a true factor if
                # it didn't change an exponent from an Integer
                # to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2)
                # -- we aren't looking for this sort of change
                fwas = f.factors.copy()
                fnow = q.factors
                if not any(k in fwas and fwas[k].is_Integer
                           and not fnow[k].is_Integer for k in fnow):
                    terms[v].append(q.as_expr())
                    continue
            terms[S.One].append(m)

        args = []
        hit = False
        uneval = False
        for k in ordered(terms):
            v = terms[k]
            if k is S.One:
                args.extend(v)
                continue

            if len(v) > 1:
                v = Add(*v)
                hit = True
                if recurse and v != expr:
                    vars.append(v)
            else:
                v = v[0]

            # be careful not to let uneval become True unless
            # it must be because it's going to be more expensive
            # to rebuild the expression as an unevaluated one
            if Numbers and k.is_Number and v.is_Add:
                # args.append(_keep_coeff(k, v, sign=True))
                args.append(VecMul(*[k, v], evaluate=False))
                uneval = True
            else:
                args.append(k * v)

        if hit:
            if uneval:
                # expr = Add(*args)
                expr = VecAdd(*args, evaluate=False)
            else:
                # expr = Add(*args)
                expr = VecAdd(*args)
            if not expr.is_Add:
                break

    return expr