Exemplo n.º 1
0
def continued_fraction_periodic(p, q, d=0):
    r"""
    Find the periodic continued fraction expansion of a quadratic irrational.

    Compute the continued fraction expansion of a rational or a
    quadratic irrational number, i.e. `\frac{p + \sqrt{d}}{q}`, where
    `p`, `q` and `d \ge 0` are integers.

    Returns the continued fraction representation (canonical form) as
    a list of integers, optionally ending (for quadratic irrationals)
    with repeating block as the last term of this list.

    Parameters
    ==========

    p : int
        the rational part of the number's numerator
    q : int
        the denominator of the number
    d : int, optional
        the irrational part (discriminator) of the number's numerator

    Examples
    ========

    >>> from sympy.ntheory.continued_fraction import continued_fraction_periodic
    >>> continued_fraction_periodic(3, 2, 7)
    [2, [1, 4, 1, 1]]

    Golden ratio has the simplest continued fraction expansion:

    >>> continued_fraction_periodic(1, 2, 5)
    [[1]]

    If the discriminator is zero or a perfect square then the number will be a
    rational number:

    >>> continued_fraction_periodic(4, 3, 0)
    [1, 3]
    >>> continued_fraction_periodic(4, 3, 49)
    [3, 1, 2]

    See Also
    ========

    continued_fraction_iterator, continued_fraction_reduce

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Periodic_continued_fraction
    .. [2] K. Rosen. Elementary Number theory and its applications.
           Addison-Wesley, 3 Sub edition, pages 379-381, January 1992.

    """
    from sympy.core.compatibility import as_int
    from sympy.functions import sqrt

    p, q, d = list(map(as_int, [p, q, d]))
    sd = sqrt(d)

    if q == 0:
        raise ValueError("The denominator is zero.")

    if d < 0:
        raise ValueError("Delta supposed to be a non-negative "
                         "integer, got %d" % d)
    elif d == 0 or sd.is_integer:
        # the number is a rational number
        return list(continued_fraction_iterator(Rational(p + sd, q)))

    if (d - p**2) % q:
        d *= q**2
        sd *= q
        p *= abs(q)
        q *= abs(q)

    terms = []
    pq = {}

    while (p, q) not in pq:
        pq[(p, q)] = len(terms)
        terms.append(int((p + sd) / q))
        p = terms[-1] * q - p
        q = (d - p**2) / q

    i = pq[(p, q)]
    return terms[:i] + [terms[i:]]
Exemplo n.º 2
0
def roots_quartic(f):
    r"""
    Returns a list of roots of a quartic polynomial.

    There are many references for solving quartic expressions available [1-5].
    This reviewer has found that many of them require one to select from among
    2 or more possible sets of solutions and that some solutions work when one
    is searching for real roots but don't work when searching for complex roots
    (though this is not always stated clearly). The following routine has been
    tested and found to be correct for 0, 2 or 4 complex roots.

    The quasisymmetric case solution [6] looks for quartics that have the form
    `x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.

    Although there is a general solution, simpler results can be obtained for
    certain values of the coefficients. In all cases, 4 roots are returned:

      1) `f = c + a*(a**2/8 - b/2) == 0`
      2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
      3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
        a) `p == 0`
        b) `p != 0`

    **Examples**

        >>> from sympy import Poly, symbols, I
        >>> from sympy.polys.polyroots import roots_quartic

        >>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))

        >>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
        >>> sorted(str(tmp.evalf(n=2)) for tmp in r)
        ['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']

    **References**

    1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
    2. http://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
    3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
    4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
    5. http://www.albmath.org/files/Math_5713.pdf
    6. http://www.statemaster.com/encyclopedia/Quartic-equation

    """
    _, a, b, c, d = f.monic().all_coeffs()

    if not d:
        return [S.Zero] + roots([1, a, b, c], multiple=True)
    elif (c / a)**2 == d:
        x, m = f.gen, c / a

        g = Poly(x**2 + a * x + b - 2 * m, x)

        z1, z2 = roots_quadratic(g)

        h1 = Poly(x**2 - z1 * x + m, x)
        h2 = Poly(x**2 - z2 * x + m, x)

        r1 = roots_quadratic(h1)
        r2 = roots_quadratic(h2)

        return r1 + r2
    else:
        a2 = a**2
        e = b - 3 * a2 / 8
        f = c + a * (a2 / 8 - b / 2)
        g = d - a * (a * (3 * a2 / 256 - b / 16) + c / 4)
        aon4 = a / 4
        ans = []

        if f is S.Zero:
            y1, y2 = [tmp**S.Half for tmp in roots([1, e, g], multiple=True)]
            return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
        if g is S.Zero:
            y = [S.Zero] + roots([1, 0, e, f], multiple=True)
            return [tmp - aon4 for tmp in y]
        else:
            p = -e**2 / 12 - g
            q = -e**3 / 108 + e * g / 3 - f**2 / 8
            TH = Rational(1, 3)
            if p is S.Zero:
                y = -5 * e / 6 - q**TH
            else:
                # with p !=0 then u below is not 0
                root = sqrt(q**2 / 4 + p**3 / 27)
                r = -q / 2 + root  # or -q/2 - root
                u = r**TH  # primary root of solve(x**3-r, x)
                y = -5 * e / 6 + u - p / u / 3
            w = sqrt(e + 2 * y)
            arg1 = 3 * e + 2 * y
            arg2 = 2 * f / w
            for s in [-1, 1]:
                root = sqrt(-(arg1 + s * arg2))
                for t in [-1, 1]:
                    ans.append((s * w - t * root) / 2 - aon4)

    return ans
Exemplo n.º 3
0
    def as_content_primitive(self, radical=False):
        """Return the tuple (R, self/R) where R is the positive Rational
        extracted from self. If radical is True (default is False) then
        common radicals will be removed and included as a factor of the
        primitive expression.

        Examples
        ========

        >>> from sympy import sqrt
        >>> (3 + 3*sqrt(2)).as_content_primitive()
        (3, 1 + sqrt(2))

        Radical content can also be factored out of the primitive:

        >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
        (2, sqrt(2)*(1 + 2*sqrt(5)))

        See docstring of Expr.as_content_primitive for more examples.
        """
        con, prim = self.func(*[
            _keep_coeff(*a.as_content_primitive(radical=radical))
            for a in self.args
        ]).primitive()
        if radical and prim.is_Add:
            # look for common radicals that can be removed
            args = prim.args
            rads = []
            common_q = None
            for m in args:
                term_rads = defaultdict(list)
                for ai in Mul.make_args(m):
                    if ai.is_Pow:
                        b, e = ai.as_base_exp()
                        if e.is_Rational and b.is_Integer:
                            term_rads[e.q].append(abs(int(b))**e.p)
                if not term_rads:
                    break
                if common_q is None:
                    common_q = set(term_rads.keys())
                else:
                    common_q = common_q & set(term_rads.keys())
                    if not common_q:
                        break
                rads.append(term_rads)
            else:
                # process rads
                # keep only those in common_q
                for r in rads:
                    for q in list(r.keys()):
                        if q not in common_q:
                            r.pop(q)
                    for q in r:
                        r[q] = prod(r[q])
                # find the gcd of bases for each q
                G = []
                for q in common_q:
                    g = reduce(igcd, [r[q] for r in rads], 0)
                    if g != 1:
                        G.append(g**Rational(1, q))
                if G:
                    G = Mul(*G)
                    args = [ai / G for ai in args]
                    prim = G * prim.func(*args)

        return con, prim
Exemplo n.º 4
0
def test_simple_8():
    assert O(sqrt(-x)) == O(sqrt(x))
    assert O(x**2 * sqrt(x)) == O(x**Rational(5, 2))
    assert O(x**3 * sqrt(-(-x)**3)) == O(x**Rational(9, 2))
    assert O(x**Rational(3, 2) * sqrt((-x)**3)) == O(x**3)
    assert O(x * (-2 * x)**(I / 2)) == O(x * (-x)**(I / 2))
Exemplo n.º 5
0
    def eval(cls, arg, base=None):
        from sympy import unpolarify
        from sympy.calculus import AccumBounds
        from sympy.sets.setexpr import SetExpr
        from sympy.functions.elementary.complexes import Abs

        arg = sympify(arg)

        if base is not None:
            base = sympify(base)
            if base == 1:
                if arg == 1:
                    return S.NaN
                else:
                    return S.ComplexInfinity
            try:
                # handle extraction of powers of the base now
                # or else expand_log in Mul would have to handle this
                n = multiplicity(base, arg)
                if n:
                    return n + log(arg / base**n) / log(base)
                else:
                    return log(arg) / log(base)
            except ValueError:
                pass
            if base is not S.Exp1:
                return cls(arg) / cls(base)
            else:
                return cls(arg)

        if arg.is_Number:
            if arg.is_zero:
                return S.ComplexInfinity
            elif arg is S.One:
                return S.Zero
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.Infinity
            elif arg is S.NaN:
                return S.NaN
            elif arg.is_Rational and arg.p == 1:
                return -cls(arg.q)

        I = S.ImaginaryUnit
        if isinstance(arg, exp) and arg.args[0].is_extended_real:
            return arg.args[0]
        elif isinstance(arg, exp) and arg.args[0].is_number:
            r_, i_ = match_real_imag(arg.args[0])
            if i_ and i_.is_comparable:
                i_ %= 2 * S.Pi
                if i_ > S.Pi:
                    i_ -= 2 * S.Pi
                return r_ + expand_mul(i_ * I, deep=False)
        elif isinstance(arg, exp_polar):
            return unpolarify(arg.exp)
        elif isinstance(arg, AccumBounds):
            if arg.min.is_positive:
                return AccumBounds(log(arg.min), log(arg.max))
            else:
                return
        elif isinstance(arg, SetExpr):
            return arg._eval_func(cls)

        if arg.is_number:
            if arg.is_negative:
                return S.Pi * I + cls(-arg)
            elif arg is S.ComplexInfinity:
                return S.ComplexInfinity
            elif arg is S.Exp1:
                return S.One

        if arg.is_zero:
            return S.ComplexInfinity

        # don't autoexpand Pow or Mul (see the issue 3351):
        if not arg.is_Add:
            coeff = arg.as_coefficient(I)

            if coeff is not None:
                if coeff is S.Infinity:
                    return S.Infinity
                elif coeff is S.NegativeInfinity:
                    return S.Infinity
                elif coeff.is_Rational:
                    if coeff.is_nonnegative:
                        return S.Pi * I * S.Half + cls(coeff)
                    else:
                        return -S.Pi * I * S.Half + cls(-coeff)

        if arg.is_number and arg.is_algebraic:
            # Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real.
            coeff, arg_ = arg.as_independent(I, as_Add=False)
            if coeff.is_negative:
                coeff *= -1
                arg_ *= -1
            arg_ = expand_mul(arg_, deep=False)
            r_, i_ = arg_.as_independent(I, as_Add=True)
            i_ = i_.as_coefficient(I)
            if coeff.is_real and i_ and i_.is_real and r_.is_real:
                if r_.is_zero:
                    if i_.is_positive:
                        return S.Pi * I * S.Half + cls(coeff * i_)
                    elif i_.is_negative:
                        return -S.Pi * I * S.Half + cls(coeff * -i_)
                else:
                    from sympy.simplify import ratsimp
                    # Check for arguments involving rational multiples of pi
                    t = (i_ / r_).cancel()
                    atan_table = {
                        # first quadrant only
                        sqrt(3):
                        S.Pi / 3,
                        1:
                        S.Pi / 4,
                        sqrt(5 - 2 * sqrt(5)):
                        S.Pi / 5,
                        sqrt(2) * sqrt(5 - sqrt(5)) / (1 + sqrt(5)):
                        S.Pi / 5,
                        sqrt(5 + 2 * sqrt(5)):
                        S.Pi * Rational(2, 5),
                        sqrt(2) * sqrt(sqrt(5) + 5) / (-1 + sqrt(5)):
                        S.Pi * Rational(2, 5),
                        sqrt(3) / 3:
                        S.Pi / 6,
                        sqrt(2) - 1:
                        S.Pi / 8,
                        sqrt(2 - sqrt(2)) / sqrt(sqrt(2) + 2):
                        S.Pi / 8,
                        sqrt(2) + 1:
                        S.Pi * Rational(3, 8),
                        sqrt(sqrt(2) + 2) / sqrt(2 - sqrt(2)):
                        S.Pi * Rational(3, 8),
                        sqrt(1 - 2 * sqrt(5) / 5):
                        S.Pi / 10,
                        (-sqrt(2) + sqrt(10)) / (2 * sqrt(sqrt(5) + 5)):
                        S.Pi / 10,
                        sqrt(1 + 2 * sqrt(5) / 5):
                        S.Pi * Rational(3, 10),
                        (sqrt(2) + sqrt(10)) / (2 * sqrt(5 - sqrt(5))):
                        S.Pi * Rational(3, 10),
                        2 - sqrt(3):
                        S.Pi / 12,
                        (-1 + sqrt(3)) / (1 + sqrt(3)):
                        S.Pi / 12,
                        2 + sqrt(3):
                        S.Pi * Rational(5, 12),
                        (1 + sqrt(3)) / (-1 + sqrt(3)):
                        S.Pi * Rational(5, 12)
                    }
                    if t in atan_table:
                        modulus = ratsimp(coeff * Abs(arg_))
                        if r_.is_positive:
                            return cls(modulus) + I * atan_table[t]
                        else:
                            return cls(modulus) + I * (atan_table[t] - S.Pi)
                    elif -t in atan_table:
                        modulus = ratsimp(coeff * Abs(arg_))
                        if r_.is_positive:
                            return cls(modulus) + I * (-atan_table[-t])
                        else:
                            return cls(modulus) + I * (S.Pi - atan_table[-t])
Exemplo n.º 6
0
def test_Abs():
    assert str(Abs(x)) == "Abs(x)"
    assert str(Abs(Rational(1, 6))) == "1/6"
    assert str(Abs(Rational(-1, 6))) == "1/6"
Exemplo n.º 7
0
def roots_quartic(f):
    r"""
    Returns a list of roots of a quartic polynomial.

    There are many references for solving quartic expressions available [1-5].
    This reviewer has found that many of them require one to select from among
    2 or more possible sets of solutions and that some solutions work when one
    is searching for real roots but don't work when searching for complex roots
    (though this is not always stated clearly). The following routine has been
    tested and found to be correct for 0, 2 or 4 complex roots.

    The quasisymmetric case solution [6] looks for quartics that have the form
    `x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.

    Although no general solution that is always applicable for all
    coefficients is known to this reviewer, certain conditions are tested
    to determine the simplest 4 expressions that can be returned:

      1) `f = c + a*(a**2/8 - b/2) == 0`
      2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
      3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
        a) `p == 0`
        b) `p != 0`

    Examples
    ========

        >>> from sympy import Poly, symbols, I
        >>> from sympy.polys.polyroots import roots_quartic

        >>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))

        >>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
        >>> sorted(str(tmp.evalf(n=2)) for tmp in r)
        ['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']

    References
    ==========

    1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
    2. https://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
    3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
    4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
    5. http://www.albmath.org/files/Math_5713.pdf
    6. http://www.statemaster.com/encyclopedia/Quartic-equation
    7. eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf
    """
    _, a, b, c, d = f.monic().all_coeffs()

    if not d:
        return [S.Zero] + roots([1, a, b, c], multiple=True)
    elif (c / a)**2 == d:
        x, m = f.gen, c / a

        g = Poly(x**2 + a * x + b - 2 * m, x)

        z1, z2 = roots_quadratic(g)

        h1 = Poly(x**2 - z1 * x + m, x)
        h2 = Poly(x**2 - z2 * x + m, x)

        r1 = roots_quadratic(h1)
        r2 = roots_quadratic(h2)

        return r1 + r2
    else:
        a2 = a**2
        e = b - 3 * a2 / 8
        f = _mexpand(c + a * (a2 / 8 - b / 2))
        g = _mexpand(d - a * (a * (3 * a2 / 256 - b / 16) + c / 4))
        aon4 = a / 4

        if f is S.Zero:
            y1, y2 = [sqrt(tmp) for tmp in roots([1, e, g], multiple=True)]
            return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
        if g is S.Zero:
            y = [S.Zero] + roots([1, 0, e, f], multiple=True)
            return [tmp - aon4 for tmp in y]
        else:
            # Descartes-Euler method, see [7]
            sols = _roots_quartic_euler(e, f, g, aon4)
            if sols:
                return sols
            # Ferrari method, see [1, 2]
            a2 = a**2
            e = b - 3 * a2 / 8
            f = c + a * (a2 / 8 - b / 2)
            g = d - a * (a * (3 * a2 / 256 - b / 16) + c / 4)
            p = -(e**2) / 12 - g
            q = -(e**3) / 108 + e * g / 3 - f**2 / 8
            TH = Rational(1, 3)

            def _ans(y):
                w = sqrt(e + 2 * y)
                arg1 = 3 * e + 2 * y
                arg2 = 2 * f / w
                ans = []
                for s in [-1, 1]:
                    root = sqrt(-(arg1 + s * arg2))
                    for t in [-1, 1]:
                        ans.append((s * w - t * root) / 2 - aon4)
                return ans

            # p == 0 case
            y1 = e * Rational(-5, 6) - q**TH
            if p.is_zero:
                return _ans(y1)

            # if p != 0 then u below is not 0
            root = sqrt(q**2 / 4 + p**3 / 27)
            r = -q / 2 + root  # or -q/2 - root
            u = r**TH  # primary root of solve(x**3 - r, x)
            y2 = e * Rational(-5, 6) + u - p / u / 3
            if fuzzy_not(p.is_zero):
                return _ans(y2)

            # sort it out once they know the values of the coefficients
            return [
                Piecewise((a1, Eq(p, 0)), (a2, True))
                for a1, a2 in zip(_ans(y1), _ans(y2))
            ]
Exemplo n.º 8
0
def test_issue_14885():
    assert series(x**Rational(-3, 2)*exp(x), x, 0) == (x**Rational(-3, 2) + 1/sqrt(x) +
        sqrt(x)/2 + x**Rational(3, 2)/6 + x**Rational(5, 2)/24 + x**Rational(7, 2)/120 +
        x**Rational(9, 2)/720 + x**Rational(11, 2)/5040 + O(x**6))
 def test_equality(r, alg="Greedy"):
     return r == Add(*[Rational(1, i) for i in egyptian_fraction(r, alg)])
Exemplo n.º 10
0
def test_issue_6318():
    eq = (1/x)**Rational(2, 3)
    assert (eq + 1).as_leading_term(x) == eq
Exemplo n.º 11
0
def test_x_is_base_detection():
    eq = (x**2)**Rational(2, 3)
    assert eq.series() == x**Rational(4, 3)
Exemplo n.º 12
0
def trigintegrate(f, x):
    """Integrate f = Mul(trig) over x

       >>> from sympy import Symbol, sin, cos, tan, sec, csc, cot
       >>> from sympy.integrals.trigonometry import trigintegrate
       >>> from sympy.abc import x

       >>> trigintegrate(sin(x)*cos(x), x)
       sin(x)**2/2

       >>> trigintegrate(sin(x)**2, x)
       x/2 - sin(x)*cos(x)/2

       >>> trigintegrate(tan(x)*sec(x),x)
       1/cos(x)

       >>> trigintegrate(sin(x)*tan(x),x)
       -log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)

       http://en.wikibooks.org/wiki/Calculus/Further_integration_techniques

    See Also
    ========

    sympy.integrals.integrals.Integral.doit
    sympy.integrals.integrals.Integral
    """

    pat, a,n,m = _pat_sincos(x)
    pat1, s,t,q,r = _pat_gen(x)


    M_ = f.match(pat1)


    if M_ is None:
        return

    q = M_[q]
    r = M_[r]


  ###
  ###  f =  function1(written in terms of sincos) X function2(written in terms of sincos)
  ###
    if q is not S.Zero and r is not S.Zero:
        s = M_[s]
        t = M_[t]
        if s.args is not () and t.args is not () \
            and Trig_Check(s) and Trig_Check(t):

            f = s._eval_rewrite_as_sincos(s.args[0])**q * t._eval_rewrite_as_sincos(t.args[0])**r

    if q is S.Zero and r is S.Zero:
        return x

    if q is S.Zero and r is not S.Zero:
        t = M_[t]
        if t.args is not () and Trig_Check(t):
            f = t._eval_rewrite_as_sincos(t.args[0])**r

    if r is S.Zero and q is not S.Zero:
        s = M_[s]
        if s.args is not () and Trig_Check(s):
            f = s._eval_rewrite_as_sincos(s.args[0])**q


    M= f.match(pat)   # matching the rewritten function with the sincos pattern


    if M is None:
        return

    n, m  = M[n], M[m]
    if n is S.Zero and m is S.Zero:
        return x

    a = M[a]

    if n.is_integer and m.is_integer:

        if n.is_odd or m.is_odd:
            u = _u
            n_, m_ = n.is_odd, m.is_odd

            # take smallest n or m -- to choose simplest substitution
            if n_ and m_:
                n_ = n_ and     (n < m)  # NB: careful here, one of the
                m_ = m_ and not (n < m)  #     conditions *must* be true

            #  n      m       u=C        (n-1)/2    m
            # S(x) * C(x) dx  --> -(1-u^2)       * u  du
            if n_:
                ff = -(1-u**2)**((n-1)/2) * u**m
                uu = cos(a*x)

            #  n      m       u=S   n         (m-1)/2
            # S(x) * C(x) dx  -->  u  * (1-u^2)       du
            elif m_:
                ff = u**n * (1-u**2)**((m-1)/2)
                uu = sin(a*x)

            fi= sympy.integrals.integrate(ff, u)    # XXX cyclic deps
            fx= fi.subs(u, uu)
            return fx / a

        # n & m are even
        else:
            #               2k      2m                         2l       2l
            # we transform S (x) * C (x) into terms with only S (x) or C (x)
            #
            # example:
            #  100     4       100        2    2    100          4         2
            # S (x) * C (x) = S (x) * (1-S (x))  = S (x) * (1 + S (x) - 2*S (x))
            #
            #                  104       102     100
            #               = S (x) - 2*S (x) + S (x)
            #       2k
            # then S   is integrated with recursive formula

            # take largest n or m -- to choose simplest substitution
            n_ =  (abs(n) > abs(m))
            m_ =  (abs(m) > abs(n))
            res = S.Zero

            if n_:
                #  2k       2 k             i            2i
                # C   = (1-S )  = sum(i, (-) * B(k,i) * S  )
                if m > 0 :
                    for i in range(0,m/2+1):
                        res += (-1)**i * binomial(m/2,i) * _sin_pow_integrate(n+2*i, x)

                elif m == 0:
                    res=_sin_pow_integrate(n,x)
                else:
                    # m < 0 , |n| > |m|
                    #  /                                                           /
                    # |                                                           |
                    # |    m       n            -1        m+1     n-1     n - 1   |     m+2     n-2
                    # | cos (x) sin (x) dx =  ________ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                           |
                    # |                         m + 1                     m + 1   |
                    #/                                                           /
                    #
                    #
                    res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*trigintegrate(cos(x)**(m+2)*sin(x)**(n-2),x)


            elif m_:
                #  2k        2 k            i            2i
                # S   = (1 -C ) = sum(i, (-) * B(k,i) * C  )
                if n > 0:
                    #      /                            /
                    #     |                            |
                    #     |    m       n               |    -m         n
                    #     | cos (x)*sin (x) dx  or     | cos (x) * sin (x) dx
                    #     |                            |
                    #    /                            /
                    #
                    #    |m| > |n| ; m,n >0 ; m,n belong to Z - {0}
                    #       n                                        2
                    #    sin (x) term is expanded here interms of cos (x), and then integrated.
                    for i in range(0,n/2+1):
                        res += (-1)**i * binomial(n/2,i) * _cos_pow_integrate(m+2*i, x)

                elif n == 0 :
                    ##  /
                    ## |
                    #  |  1
                    #  | _ _ _
                    #  |    m
                    #  | cos (x)
                    # /
                    res= _cos_pow_integrate(m,x)
                else:
                    # n < 0 , |m| > |n|
                    #  /                                                         /
                    # |                                                         |
                    # |    m       n           1        m-1     n+1     m - 1   |     m-2     n+2
                    # | cos (x) sin (x) dx = _______ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                         |
                    # |                       n + 1                     n + 1   |
                    #/                                                         /
                    #
                    #
                    res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*trigintegrate(cos(x)**(m-2)*sin(x)**(n+2),x)

            else :
                if m == n:
                    ##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
                    res=sympy.integrals.integrate((Rational(1,2)*sin(2*x))**m,x)
                elif (m == -n):
                    if n < 0:
                        ##Same as the scheme described above.
                        res= Rational(1,(n+1))*cos(x)**(m-1)*sin(x)**(n+1) + Rational(m-1,n+1)*sympy.integrals.integrate(cos(x)**(m-2)*sin(x)**(n+2),x) ##the function argument to integrate in the end will be 1 , this cannot be integrated by trigintegrate. Hence use sympy.integrals.integrate.
                    else:
                        res=Rational(-1,m+1)*cos(x)**(m+1)*sin(x)**(n-1) + Rational(n-1,m+1)*sympy.integrals.integrate(cos(x)**(m+2)*sin(x)**(n-2),x)
            return res.subs(x, a*x) / a
Exemplo n.º 13
0
def test_limit():
    x, y = symbols('x y')
    m = CalculusOnlyMatrix(2, 1, [1 / x, y])
    assert m.limit(x, 5) == Matrix(2, 1, [Rational(1, 5), y])
Exemplo n.º 14
0
def median(X, evaluate=True, **kwargs):
    r"""
    Calculuates the median of the probability distribution.

    Explanation
    ===========

    Mathematically, median of Probability distribution is defined as all those
    values of `m` for which the following condition is satisfied

    .. math::
        P(X\leq m) \geq  \frac{1}{2} \text{ and} \text{ } P(X\geq m)\geq \frac{1}{2}

    Parameters
    ==========

    X: The random expression whose median is to be calculated.

    Returns
    =======

    The FiniteSet or an Interval which contains the median of the
    random expression.

    Examples
    ========

    >>> from sympy.stats import Normal, Die, median
    >>> N = Normal('N', 3, 1)
    >>> median(N)
    {3}
    >>> D = Die('D')
    >>> median(D)
    {3, 4}

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Median#Probability_distributions

    """
    if not is_random(X):
        return X

    from sympy.stats.crv import ContinuousPSpace
    from sympy.stats.drv import DiscretePSpace
    from sympy.stats.frv import FinitePSpace

    if isinstance(pspace(X), FinitePSpace):
        cdf = pspace(X).compute_cdf(X)
        result = []
        for key, value in cdf.items():
            if value>= Rational(1, 2) and (1 - value) + \
            pspace(X).probability(Eq(X, key)) >= Rational(1, 2):
                result.append(key)
        return FiniteSet(*result)
    if isinstance(pspace(X), (ContinuousPSpace, DiscretePSpace)):
        cdf = pspace(X).compute_cdf(X)
        x = Dummy('x')
        result = solveset(piecewise_fold(cdf(x) - Rational(1, 2)), x,
                          pspace(X).set)
        return result
    raise NotImplementedError("The median of %s is not implemeted." %
                              str(pspace(X)))
Exemplo n.º 15
0
def test_match_bug6():
    x = Symbol('x')
    p = Wild('p')
    e = x
    assert e.match(3*p*x) == {p: Rational(1)/3}
Exemplo n.º 16
0
def test_dice():
    # TODO: Make iid method!
    X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
    a, b, t, p = symbols('a b t p')

    assert E(X) == 3 + S.Half
    assert variance(X) == Rational(35, 12)
    assert E(X + Y) == 7
    assert E(X + X) == 7
    assert E(a * X + b) == a * E(X) + b
    assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2)
    assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2)
    assert cmoment(X, 0) == 1
    assert cmoment(4 * X, 3) == 64 * cmoment(X, 3)
    assert covariance(X, Y) is S.Zero
    assert covariance(X, X + Y) == variance(X)
    assert density(Eq(cos(X * S.Pi), 1))[True] == S.Half
    assert correlation(X, Y) == 0
    assert correlation(X, Y) == correlation(Y, X)
    assert smoment(X + Y, 3) == skewness(X + Y)
    assert smoment(X + Y, 4) == kurtosis(X + Y)
    assert smoment(X, 0) == 1
    assert P(X > 3) == S.Half
    assert P(2 * X > 6) == S.Half
    assert P(X > Y) == Rational(5, 12)
    assert P(Eq(X, Y)) == P(Eq(X, 1))

    assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3)
    assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3)
    assert E(X + Y, Eq(X, Y)) == E(2 * X)
    assert moment(X, 0) == 1
    assert moment(5 * X, 2) == 25 * moment(X, 2)
    assert quantile(X)(p) == Piecewise((nan, (p > 1) | (p < 0)),\
        (S.One, p <= Rational(1, 6)), (S(2), p <= Rational(1, 3)), (S(3), p <= S.Half),\
        (S(4), p <= Rational(2, 3)), (S(5), p <= Rational(5, 6)), (S(6), p <= 1))

    assert P(X > 3, X > 3) is S.One
    assert P(X > Y, Eq(Y, 6)) is S.Zero
    assert P(Eq(X + Y, 12)) == Rational(1, 36)
    assert P(Eq(X + Y, 12), Eq(X, 6)) == Rational(1, 6)

    assert density(X + Y) == density(Y + Z) != density(X + X)
    d = density(2 * X + Y**Z)
    assert d[S(22)] == Rational(1, 108) and d[S(4100)] == Rational(
        1, 216) and S(3130) not in d

    assert pspace(X).domain.as_boolean() == Or(
        *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]])

    assert where(X > 3).set == FiniteSet(4, 5, 6)

    assert characteristic_function(X)(t) == exp(6 * I * t) / 6 + exp(
        5 * I * t) / 6 + exp(4 * I * t) / 6 + exp(3 * I * t) / 6 + exp(
            2 * I * t) / 6 + exp(I * t) / 6
    assert moment_generating_function(X)(
        t) == exp(6 * t) / 6 + exp(5 * t) / 6 + exp(4 * t) / 6 + exp(
            3 * t) / 6 + exp(2 * t) / 6 + exp(t) / 6
    assert median(X) == FiniteSet(3, 4)
    D = Die('D', 7)
    assert median(D) == FiniteSet(4)
    # Bayes test for die
    BayesTest(X > 3, X + Y < 5)
    BayesTest(Eq(X - Y, Z), Z > Y)
    BayesTest(X > 3, X > 2)

    # arg test for die
    raises(ValueError, lambda: Die('X', -1))  # issue 8105: negative sides.
    raises(ValueError, lambda: Die('X', 0))
    raises(ValueError, lambda: Die('X', 1.5))  # issue 8103: non integer sides.

    # symbolic test for die
    n, k = symbols('n, k', positive=True)
    D = Die('D', n)
    dens = density(D).dict
    assert dens == Density(DieDistribution(n))
    assert set(dens.subs(n, 4).doit().keys()) == {1, 2, 3, 4}
    assert set(dens.subs(n, 4).doit().values()) == {Rational(1, 4)}
    k = Dummy('k', integer=True)
    assert E(D).dummy_eq(Sum(Piecewise((k / n, k <= n), (0, True)), (k, 1, n)))
    assert variance(D).subs(n, 6).doit() == Rational(35, 12)

    ki = Dummy('ki')
    cumuf = cdf(D)(k)
    assert cumuf.dummy_eq(
        Sum(Piecewise((1 / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k)))
    assert cumuf.subs({n: 6, k: 2}).doit() == Rational(1, 3)

    t = Dummy('t')
    cf = characteristic_function(D)(t)
    assert cf.dummy_eq(
        Sum(Piecewise((exp(ki * I * t) / n, (ki >= 1) & (ki <= n)), (0, True)),
            (ki, 1, n)))
    assert cf.subs(
        n,
        3).doit() == exp(3 * I * t) / 3 + exp(2 * I * t) / 3 + exp(I * t) / 3
    mgf = moment_generating_function(D)(t)
    assert mgf.dummy_eq(
        Sum(Piecewise((exp(ki * t) / n, (ki >= 1) & (ki <= n)), (0, True)),
            (ki, 1, n)))
    assert mgf.subs(n,
                    3).doit() == exp(3 * t) / 3 + exp(2 * t) / 3 + exp(t) / 3
Exemplo n.º 17
0
def test_Rational():
    n1 = Rational(1, 4)
    n2 = Rational(1, 3)
    n3 = Rational(2, 4)
    n4 = Rational(2, -4)
    n5 = Rational(0)
    n7 = Rational(3)
    n8 = Rational(-3)
    assert str(n1*n2) == "1/12"
    assert str(n1*n2) == "1/12"
    assert str(n3) == "1/2"
    assert str(n1*n3) == "1/8"
    assert str(n1 + n3) == "3/4"
    assert str(n1 + n2) == "7/12"
    assert str(n1 + n4) == "-1/4"
    assert str(n4*n4) == "1/4"
    assert str(n4 + n2) == "-1/6"
    assert str(n4 + n5) == "-1/2"
    assert str(n4*n5) == "0"
    assert str(n3 + n4) == "0"
    assert str(n1**n7) == "1/64"
    assert str(n2**n7) == "1/27"
    assert str(n2**n8) == "27"
    assert str(n7**n8) == "1/27"
    assert str(Rational("-25")) == "-25"
    assert str(Rational("1.25")) == "5/4"
    assert str(Rational("-2.6e-2")) == "-13/500"
    assert str(S("25/7")) == "25/7"
    assert str(S("-123/569")) == "-123/569"
    assert str(S("0.1[23]", rational=1)) == "61/495"
    assert str(S("5.1[666]", rational=1)) == "31/6"
    assert str(S("-5.1[666]", rational=1)) == "-31/6"
    assert str(S("0.[9]", rational=1)) == "1"
    assert str(S("-0.[9]", rational=1)) == "-1"

    assert str(sqrt(Rational(1, 4))) == "1/2"
    assert str(sqrt(Rational(1, 36))) == "1/6"

    assert str((123**25) ** Rational(1, 25)) == "123"
    assert str((123**25 + 1)**Rational(1, 25)) != "123"
    assert str((123**25 - 1)**Rational(1, 25)) != "123"
    assert str((123**25 - 1)**Rational(1, 25)) != "122"

    assert str(sqrt(Rational(81, 36))**3) == "27/8"
    assert str(1/sqrt(Rational(81, 36))**3) == "8/27"

    assert str(sqrt(-4)) == str(2*I)
    assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"

    assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
    x = Symbol("x")
    assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
    assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
    assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
        "Limit(x, x, S(7)/2)"
Exemplo n.º 18
0
def test_expand():
    assert expand_func(besselj(S.Half, z).rewrite(jn)) == \
        sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert expand_func(bessely(S.Half, z).rewrite(yn)) == \
        -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))

    # XXX: teach sin/cos to work around arguments like
    # x*exp_polar(I*pi*n/2).  Then change besselsimp -> expand_func
    assert besselsimp(besselj(S.Half, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besselj(Rational(5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besselj(Rational(-5, 2), z)) == \
        -sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(bessely(S.Half, z)) == \
        -(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(bessely(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(bessely(Rational(-5, 2), z)) == \
        -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besseli(S.Half, z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(-1, 2), z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(Rational(5, 2), z)) == \
        sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2))
    assert besselsimp(besseli(Rational(-5, 2), z)) == \
        sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2))

    assert besselsimp(besselk(S.Half, z)) == \
        besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z))
    assert besselsimp(besselk(Rational(5, 2), z)) == \
        besselsimp(besselk(Rational(-5, 2), z)) == \
        sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2))

    n = Symbol('n', integer=True, positive=True)

    assert expand_func(besseli(n + 2, z)) == \
        besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z
    assert expand_func(besselj(n + 2, z)) == \
        -besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z
    assert expand_func(besselk(n + 2, z)) == \
        besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z
    assert expand_func(bessely(n + 2, z)) == \
        -bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z

    assert expand_func(besseli(n + S.Half, z).rewrite(jn)) == \
        (sqrt(2)*sqrt(z)*exp(-I*pi*(n + S.Half)/2) *
         exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi))
    assert expand_func(besselj(n + S.Half, z).rewrite(jn)) == \
        sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi)

    r = Symbol('r', real=True)
    p = Symbol('p', positive=True)
    i = Symbol('i', integer=True)

    for besselx in [besselj, bessely, besseli, besselk]:
        assert besselx(i, p).is_extended_real is True
        assert besselx(i, x).is_extended_real is None
        assert besselx(x, z).is_extended_real is None

    for besselx in [besselj, besseli]:
        assert besselx(i, r).is_extended_real is True
    for besselx in [bessely, besselk]:
        assert besselx(i, r).is_extended_real is None

    for besselx in [besselj, bessely, besseli, besselk]:
        assert expand_func(besselx(oo, x)) == besselx(oo, x, evaluate=False)
        assert expand_func(besselx(-oo, x)) == besselx(-oo, x, evaluate=False)
Exemplo n.º 19
0
def roots_cubic(f, trig=False):
    """Returns a list of roots of a cubic polynomial.

    References
    ==========
    [1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots,
    (accessed November 17, 2014).
    """
    if trig:
        a, b, c, d = f.all_coeffs()
        p = (3 * a * c - b**2) / 3 / a**2
        q = (2 * b**3 - 9 * a * b * c + 27 * a**2 * d) / (27 * a**3)
        D = (18 * a * b * c * d - 4 * b**3 * d + b**2 * c**2 - 4 * a * c**3 -
             27 * a**2 * d**2)
        if (D > 0) == True:
            rv = []
            for k in range(3):
                rv.append(2 * sqrt(-p / 3) * cos(
                    acos(q / p * sqrt(-3 / p) * Rational(3, 2)) / 3 -
                    k * pi * Rational(2, 3)))
            return [i - b / 3 / a for i in rv]

    _, a, b, c = f.monic().all_coeffs()

    if c is S.Zero:
        x1, x2 = roots([1, a, b], multiple=True)
        return [x1, S.Zero, x2]

    p = b - a**2 / 3
    q = c - a * b / 3 + 2 * a**3 / 27

    pon3 = p / 3
    aon3 = a / 3

    u1 = None
    if p is S.Zero:
        if q is S.Zero:
            return [-aon3] * 3
        if q.is_real:
            if q.is_positive:
                u1 = -root(q, 3)
            elif q.is_negative:
                u1 = root(-q, 3)
    elif q is S.Zero:
        y1, y2 = roots([1, 0, p], multiple=True)
        return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
    elif q.is_real and q.is_negative:
        u1 = -root(-q / 2 + sqrt(q**2 / 4 + pon3**3), 3)

    coeff = I * sqrt(3) / 2
    if u1 is None:
        u1 = S.One
        u2 = Rational(-1, 2) + coeff
        u3 = Rational(-1, 2) - coeff
        a, b, c, d = S(1), a, b, c
        D0 = b**2 - 3 * a * c
        D1 = 2 * b**3 - 9 * a * b * c + 27 * a**2 * d
        C = root((D1 + sqrt(D1**2 - 4 * D0**3)) / 2, 3)
        return [-(b + uk * C + D0 / C / uk) / 3 / a for uk in [u1, u2, u3]]

    u2 = u1 * (Rational(-1, 2) + coeff)
    u3 = u1 * (Rational(-1, 2) - coeff)

    if p is S.Zero:
        return [u1 - aon3, u2 - aon3, u3 - aon3]

    soln = [
        -u1 + pon3 / u1 - aon3, -u2 + pon3 / u2 - aon3, -u3 + pon3 / u3 - aon3
    ]

    return soln
Exemplo n.º 20
0
def test_airyai():
    z = Symbol('z', real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airyai(z), airyai)

    assert airyai(0) == 3**Rational(1, 3)/(3*gamma(Rational(2, 3)))
    assert airyai(oo) == 0
    assert airyai(-oo) == 0

    assert diff(airyai(z), z) == airyaiprime(z)

    assert series(airyai(z), z, 0, 3) == (
        3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) - 3**Rational(1, 6)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3))

    assert airyai(z).rewrite(hyper) == (
        -3**Rational(2, 3)*z*hyper((), (Rational(4, 3),), z**3/9)/(3*gamma(Rational(1, 3))) +
         3**Rational(1, 3)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3))))

    assert isinstance(airyai(z).rewrite(besselj), airyai)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
                  besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airyai(z).rewrite(besseli) == (
        -z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(1, 3)) +
         (z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3)
    assert airyai(p).rewrite(besseli) == (
        sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) -
                 besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3)

    assert expand_func(airyai(2*(3*z**5)**Rational(1, 3))) == (
        -sqrt(3)*(-1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/6 +
         (1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
Exemplo n.º 21
0
from __future__ import print_function, division

from sympy.core.numbers import Integer, Rational, integer_nthroot, igcd
from sympy import S, pi, oo

i3 = Integer(3)
i4 = Integer(4)
r34 = Rational(3, 4)
q45 = Rational(4, 5)


def timeit_Integer_create():
    Integer(2)


def timeit_Integer_int():
    int(i3)


def timeit_neg_one():
    -S.One


def timeit_Integer_neg():
    -i3


def timeit_Integer_abs():
    abs(i3)

Exemplo n.º 22
0
def test_airybiprime():
    z = Symbol('z', real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airybiprime(z), airybiprime)

    assert airybiprime(0) == 3**Rational(1, 6)/gamma(Rational(1, 3))
    assert airybiprime(oo) is oo
    assert airybiprime(-oo) == 0

    assert diff(airybiprime(z), z) == z*airybi(z)

    assert series(airybiprime(z), z, 0, 3) == (
        3**Rational(1, 6)/gamma(Rational(1, 3)) + 3**Rational(5, 6)*z**2/(6*gamma(Rational(2, 3))) + O(z**3))

    assert airybiprime(z).rewrite(hyper) == (
        3**Rational(5, 6)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) +
        3**Rational(1, 6)*hyper((), (Rational(1, 3),), z**3/9)/gamma(Rational(1, 3)))

    assert isinstance(airybiprime(z).rewrite(besselj), airybiprime)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) +
                  besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3)
    assert airybiprime(z).rewrite(besseli) == (
        sqrt(3)*(z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(2, 3) +
                 (z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-2, 3), 2*z**Rational(3, 2)/3))/3)
    assert airybiprime(p).rewrite(besseli) == (
        sqrt(3)*p*(besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3)

    assert expand_func(airybiprime(2*(3*z**5)**Rational(1, 3))) == (
        sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2 +
        (z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2)
Exemplo n.º 23
0
# Coulomb's constant:
SI.set_quantity_dimension(coulomb_constant, force * length ** 2 / charge ** 2)
SI.set_quantity_scale_factor(coulomb_constant, 1/(4*pi*vacuum_permittivity))

SI.set_quantity_dimension(psi, pressure)
SI.set_quantity_scale_factor(psi, pound * gee / inch ** 2)

SI.set_quantity_dimension(mmHg, pressure)
SI.set_quantity_scale_factor(mmHg, dHg0 * acceleration_due_to_gravity * kilogram / meter**2)

SI.set_quantity_dimension(milli_mass_unit, mass)
SI.set_quantity_scale_factor(milli_mass_unit, atomic_mass_unit/1000)

SI.set_quantity_dimension(quart, length ** 3)
SI.set_quantity_scale_factor(quart, Rational(231, 4) * inch**3)

# Other convenient units and magnitudes

SI.set_quantity_dimension(lightyear, length)
SI.set_quantity_scale_factor(lightyear, speed_of_light*julian_year)

SI.set_quantity_dimension(astronomical_unit, length)
SI.set_quantity_scale_factor(astronomical_unit, 149597870691*meter)

# Fundamental Planck units:

SI.set_quantity_dimension(planck_mass, mass)
SI.set_quantity_scale_factor(planck_mass, sqrt(hbar*speed_of_light/G))

SI.set_quantity_dimension(planck_time, time)
Exemplo n.º 24
0
def ratsimpmodprime(expr, G, *gens, quick=True, polynomial=False, **args):
    """
    Simplifies a rational expression ``expr`` modulo the prime ideal
    generated by ``G``.  ``G`` should be a Groebner basis of the
    ideal.

    Examples
    ========

    >>> from sympy.simplify.ratsimp import ratsimpmodprime
    >>> from sympy.abc import x, y
    >>> eq = (x + y**5 + y)/(x - y)
    >>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex')
    (-x**2 - x*y - x - y)/(-x**2 + x*y)

    If ``polynomial`` is ``False``, the algorithm computes a rational
    simplification which minimizes the sum of the total degrees of
    the numerator and the denominator.

    If ``polynomial`` is ``True``, this function just brings numerator and
    denominator into a canonical form. This is much faster, but has
    potentially worse results.

    References
    ==========

    .. [1] M. Monagan, R. Pearce, Rational Simplification Modulo a Polynomial
    Ideal,
    http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.6984
    (specifically, the second algorithm)
    """
    from sympy import solve

    debug('ratsimpmodprime', expr)

    # usual preparation of polynomials:

    num, denom = cancel(expr).as_numer_denom()

    try:
        polys, opt = parallel_poly_from_expr([num, denom] + G, *gens, **args)
    except PolificationFailed:
        return expr

    domain = opt.domain

    if domain.has_assoc_Field:
        opt.domain = domain.get_field()
    else:
        raise DomainError("can't compute rational simplification over %s" %
                          domain)

    # compute only once
    leading_monomials = [g.LM(opt.order) for g in polys[2:]]
    tested = set()

    def staircase(n):
        """
        Compute all monomials with degree less than ``n`` that are
        not divisible by any element of ``leading_monomials``.
        """
        if n == 0:
            return [1]
        S = []
        for mi in combinations_with_replacement(range(len(opt.gens)), n):
            m = [0] * len(opt.gens)
            for i in mi:
                m[i] += 1
            if all([monomial_div(m, lmg) is None
                    for lmg in leading_monomials]):
                S.append(m)

        return [Monomial(s).as_expr(*opt.gens) for s in S] + staircase(n - 1)

    def _ratsimpmodprime(a, b, allsol, N=0, D=0):
        r"""
        Computes a rational simplification of ``a/b`` which minimizes
        the sum of the total degrees of the numerator and the denominator.

        Explanation
        ===========

        The algorithm proceeds by looking at ``a * d - b * c`` modulo
        the ideal generated by ``G`` for some ``c`` and ``d`` with degree
        less than ``a`` and ``b`` respectively.
        The coefficients of ``c`` and ``d`` are indeterminates and thus
        the coefficients of the normalform of ``a * d - b * c`` are
        linear polynomials in these indeterminates.
        If these linear polynomials, considered as system of
        equations, have a nontrivial solution, then `\frac{a}{b}
        \equiv \frac{c}{d}` modulo the ideal generated by ``G``. So,
        by construction, the degree of ``c`` and ``d`` is less than
        the degree of ``a`` and ``b``, so a simpler representation
        has been found.
        After a simpler representation has been found, the algorithm
        tries to reduce the degree of the numerator and denominator
        and returns the result afterwards.

        As an extension, if quick=False, we look at all possible degrees such
        that the total degree is less than *or equal to* the best current
        solution. We retain a list of all solutions of minimal degree, and try
        to find the best one at the end.
        """
        c, d = a, b
        steps = 0

        maxdeg = a.total_degree() + b.total_degree()
        if quick:
            bound = maxdeg - 1
        else:
            bound = maxdeg
        while N + D <= bound:
            if (N, D) in tested:
                break
            tested.add((N, D))

            M1 = staircase(N)
            M2 = staircase(D)
            debug('%s / %s: %s, %s' % (N, D, M1, M2))

            Cs = symbols("c:%d" % len(M1), cls=Dummy)
            Ds = symbols("d:%d" % len(M2), cls=Dummy)
            ng = Cs + Ds

            c_hat = Poly(sum([Cs[i] * M1[i] for i in range(len(M1))]),
                         opt.gens + ng)
            d_hat = Poly(sum([Ds[i] * M2[i] for i in range(len(M2))]),
                         opt.gens + ng)

            r = reduced(a * d_hat - b * c_hat,
                        G,
                        opt.gens + ng,
                        order=opt.order,
                        polys=True)[1]

            S = Poly(r, gens=opt.gens).coeffs()
            sol = solve(S, Cs + Ds, particular=True, quick=True)

            if sol and not all([s == 0 for s in sol.values()]):
                c = c_hat.subs(sol)
                d = d_hat.subs(sol)

                # The "free" variables occurring before as parameters
                # might still be in the substituted c, d, so set them
                # to the value chosen before:
                c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
                d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))

                c = Poly(c, opt.gens)
                d = Poly(d, opt.gens)
                if d == 0:
                    raise ValueError('Ideal not prime?')

                allsol.append((c_hat, d_hat, S, Cs + Ds))
                if N + D != maxdeg:
                    allsol = [allsol[-1]]

                break

            steps += 1
            N += 1
            D += 1

        if steps > 0:
            c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps)
            c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D)

        return c, d, allsol

    # preprocessing. this improves performance a bit when deg(num)
    # and deg(denom) are large:
    num = reduced(num, G, opt.gens, order=opt.order)[1]
    denom = reduced(denom, G, opt.gens, order=opt.order)[1]

    if polynomial:
        return (num / denom).cancel()

    c, d, allsol = _ratsimpmodprime(Poly(num, opt.gens, domain=opt.domain),
                                    Poly(denom, opt.gens, domain=opt.domain),
                                    [])
    if not quick and allsol:
        debug('Looking for best minimal solution. Got: %s' % len(allsol))
        newsol = []
        for c_hat, d_hat, S, ng in allsol:
            sol = solve(S, ng, particular=True, quick=False)
            newsol.append((c_hat.subs(sol), d_hat.subs(sol)))
        c, d = min(newsol, key=lambda x: len(x[0].terms()) + len(x[1].terms()))

    if not domain.is_Field:
        cn, c = c.clear_denoms(convert=True)
        dn, d = d.clear_denoms(convert=True)
        r = Rational(cn, dn)
    else:
        r = Rational(1)

    return (c * r.q) / (d * r.p)
Exemplo n.º 25
0
def trigintegrate(f, x):
    """Integrate f = Mul(trig) over x

       >>> from sympy import Symbol, sin, cos
       >>> from sympy.integrals.trigonometry import trigintegrate
       >>> x = Symbol('x')

       >>> trigintegrate(sin(x)*cos(x), x)
       sin(x)**2/2

       >>> trigintegrate(sin(x)**2, x)
       x/2 - cos(x)*sin(x)/2

       http://en.wikibooks.org/wiki/Calculus/Further_integration_techniques
    """

    pat, a, n, m = _pat_sincos(x)
    ##m - cos
    ##n - sin

    M = f.match(pat)

    if M is None:
        return

    n, m = M[n], M[m]  # should always be there
    if n is S.Zero and m is S.Zero:
        return x

    a = M[a]

    if n.is_integer and m.is_integer:

        if n.is_odd or m.is_odd:
            u = _u
            n_, m_ = n.is_odd, m.is_odd

            # take smallest n or m -- to choose simplest substitution
            if n_ and m_:
                n_ = n_ and (n < m)  # NB: careful here, one of the
                m_ = m_ and not (n < m)  #     conditions *must* be true

            #  n      m       u=C        (n-1)/2    m
            # S(x) * C(x) dx  --> -(1-u^2)       * u  du
            if n_:
                ff = -(1 - u**2)**((n - 1) / 2) * u**m
                uu = cos(a * x)

            #  n      m       u=S   n         (m-1)/2
            # S(x) * C(x) dx  -->  u  * (1-u^2)       du
            elif m_:
                ff = u**n * (1 - u**2)**((m - 1) / 2)
                uu = sin(a * x)

            fi = sympy.integrals.integrate(ff, u)  # XXX cyclic deps
            fx = fi.subs(u, uu)
            return fx / a

        # n & m are even
        else:
            #               2k      2m                         2l       2l
            # we transform S (x) * C (x) into terms with only S (x) or C (x)
            #
            # example:
            #  100     4       100        2    2    100          4         2
            # S (x) * C (x) = S (x) * (1-S (x))  = S (x) * (1 + S (x) - 2*S (x))
            #
            #                  104       102     100
            #               = S (x) - 2*S (x) + S (x)
            #       2k
            # then S   is integrated with recursive formula

            # take largest n or m -- to choose simplest substitution
            n_ = (abs(n) > abs(m))
            m_ = (abs(m) > abs(n))
            res = S.Zero

            if n_:
                #  2k       2 k             i            2i
                # C   = (1-S )  = sum(i, (-) * B(k,i) * S  )
                if m > 0:
                    for i in range(0, m / 2 + 1):
                        res += (-1)**i * binomial(
                            m / 2, i) * sin_pow_integrate(n + 2 * i, x)

                elif m == 0:
                    res = sin_pow_integrate(n, x)
                else:
                    # m < 0 , |n| > |m|
                    #  /                                                           /
                    # |                                                           |
                    # |    m       n            -1        m+1     n-1     n - 1   |     m+2     n-2
                    # | cos (x) sin (x) dx =  ________ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                           |
                    # |                         m + 1                     m + 1   |
                    #/                                                           /
                    #
                    #
                    res = Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(
                        n - 1) + Rational(n - 1, m + 1) * trigintegrate(
                            cos(x)**(m + 2) * sin(x)**(n - 2), x)

            elif m_:
                #  2k        2 k            i            2i
                # S   = (1 -C ) = sum(i, (-) * B(k,i) * C  )
                if n > 0:
                    #      /                            /
                    #     |                            |
                    #     |    m       n               |    -m         n
                    #     | cos (x)*sin (x) dx  or     | cos (x) * sin (x) dx
                    #     |                            |
                    #    /                            /
                    #
                    #    |m| > |n| ; m,n >0 ; m,n belong to Z - {0}
                    #       n                                        2
                    #    sin (x) term is expanded here interms of cos (x), and then integrated.
                    for i in range(0, n / 2 + 1):
                        res += (-1)**i * binomial(
                            n / 2, i) * cos_pow_integrate(m + 2 * i, x)

                elif n == 0:
                    ##  /
                    ## |
                    #  |  1
                    #  | _ _ _
                    #  |    m
                    #  | cos (x)
                    # /
                    res = cos_pow_integrate(m, x)
                else:
                    # n < 0 , |m| > |n|
                    #  /                                                         /
                    # |                                                         |
                    # |    m       n           1        m-1     n+1     m - 1   |     m-2     n+2
                    # | cos (x) sin (x) dx = _______ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
                    # |                                                         |
                    # |                       n + 1                     n + 1   |
                    #/                                                         /
                    #
                    #
                    res = Rational(1, (n + 1)) * cos(x)**(m - 1) * sin(x)**(
                        n + 1) + Rational(m - 1, n + 1) * trigintegrate(
                            cos(x)**(m - 2) * sin(x)**(n + 2), x)

            else:
                if m == n:
                    ##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
                    res = sympy.integrals.integrate(
                        (Rational(1, 2) * sin(2 * x))**m, x)
                elif (m == -n):
                    if n < 0:
                        ##Same as the scheme described above.
                        res = Rational(1, (n + 1)) * cos(x)**(m - 1) * sin(x)**(
                            n + 1
                        ) + Rational(m - 1, n + 1) * sympy.integrals.integrate(
                            cos(x)
                            **(m - 2) *
                            sin(x)**
                            (n +
                             2), x
                        )  ##the function argument to integrate in the end will be 1 , this cannot be integrated by trigintegrate. Hence use sympy.integrals.integrate.
                    else:
                        res = Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(
                            n - 1) + Rational(
                                n - 1, m + 1) * sympy.integrals.integrate(
                                    cos(x)**(m + 2) * sin(x)**(n - 2), x)
            return res.subs(x, a * x) / a
Exemplo n.º 26
0
def test_pow_eval():
    # XXX Pow does not fully support conversion of negative numbers
    #     to their complex equivalent

    assert sqrt(-1) == I

    assert sqrt(-4) == 2 * I
    assert sqrt(4) == 2
    assert (8)**Rational(1, 3) == 2
    assert (-8)**Rational(1, 3) == 2 * ((-1)**Rational(1, 3))

    assert sqrt(-2) == I * sqrt(2)
    assert (-1)**Rational(1, 3) != I
    assert (-10)**Rational(1, 3) != I * ((10)**Rational(1, 3))
    assert (-2)**Rational(1, 4) != (2)**Rational(1, 4)

    assert 64**Rational(1, 3) == 4
    assert 64**Rational(2, 3) == 16
    assert 24 / sqrt(64) == 3
    assert (-27)**Rational(1, 3) == 3 * (-1)**Rational(1, 3)

    assert (cos(2) / tan(2))**2 == (cos(2) / tan(2))**2
Exemplo n.º 27
0
    def primitive(self):
        """
        Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```.

        ``R`` is collected only from the leading coefficient of each term.

        Examples
        ========

        >>> from sympy.abc import x, y

        >>> (2*x + 4*y).primitive()
        (2, x + 2*y)

        >>> (2*x/3 + 4*y/9).primitive()
        (2/9, 3*x + 2*y)

        >>> (2*x/3 + 4.2*y).primitive()
        (1/3, 2*x + 12.6*y)

        No subprocessing of term factors is performed:

        >>> ((2 + 2*x)*x + 2).primitive()
        (1, x*(2*x + 2) + 2)

        Recursive subprocessing can be done with the as_content_primitive()
        method:

        >>> ((2 + 2*x)*x + 2).as_content_primitive()
        (2, x*(x + 1) + 1)

        See also: primitive() function in polytools.py

        """

        terms = []
        inf = False
        for a in self.args:
            c, m = a.as_coeff_Mul()
            if not c.is_Rational:
                c = S.One
                m = a
            inf = inf or m is S.ComplexInfinity
            terms.append((c.p, c.q, m))

        if not inf:
            ngcd = reduce(igcd, [t[0] for t in terms], 0)
            dlcm = reduce(ilcm, [t[1] for t in terms], 1)
        else:
            ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0)
            dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1)

        if ngcd == dlcm == 1:
            return S.One, self
        if not inf:
            for i, (p, q, term) in enumerate(terms):
                terms[i] = _keep_coeff(Rational((p // ngcd) * (dlcm // q)),
                                       term)
        else:
            for i, (p, q, term) in enumerate(terms):
                if q:
                    terms[i] = _keep_coeff(Rational((p // ngcd) * (dlcm // q)),
                                           term)
                else:
                    terms[i] = _keep_coeff(Rational(p, q), term)

        # we don't need a complete re-flattening since no new terms will join
        # so we just use the same sort as is used in Add.flatten. When the
        # coefficient changes, the ordering of terms may change, e.g.
        #     (3*x, 6*y) -> (2*y, x)
        #
        # We do need to make sure that term[0] stays in position 0, however.
        #
        if terms[0].is_Number or terms[0] is S.ComplexInfinity:
            c = terms.pop(0)
        else:
            c = None
        _addsort(terms)
        if c:
            terms.insert(0, c)
        return Rational(ngcd, dlcm), self._new_rawargs(*terms)
Exemplo n.º 28
0
def test_pow_eval_X1():
    assert (-1)**Rational(1, 3) == S.Half + S.Half * I * sqrt(3)
Exemplo n.º 29
0
def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops):
    """
    reduces expression by combining powers with similar bases and exponents.

    Notes
    =====

    If deep is True then powsimp() will also simplify arguments of
    functions. By default deep is set to False.

    If force is True then bases will be combined without checking for
    assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true
    if x and y are both negative.

    You can make powsimp() only combine bases or only combine exponents by
    changing combine='base' or combine='exp'.  By default, combine='all',
    which does both.  combine='base' will only combine::

         a   a          a                          2x      x
        x * y  =>  (x*y)   as well as things like 2   =>  4

    and combine='exp' will only combine
    ::

         a   b      (a + b)
        x * x  =>  x

    combine='exp' will strictly only combine exponents in the way that used
    to be automatic.  Also use deep=True if you need the old behavior.

    When combine='all', 'exp' is evaluated first.  Consider the first
    example below for when there could be an ambiguity relating to this.
    This is done so things like the second example can be completely
    combined.  If you want 'base' combined first, do something like
    powsimp(powsimp(expr, combine='base'), combine='exp').

    Examples
    ========

    >>> from sympy import powsimp, exp, log, symbols
    >>> from sympy.abc import x, y, z, n
    >>> powsimp(x**y*x**z*y**z, combine='all')
    x**(y + z)*y**z
    >>> powsimp(x**y*x**z*y**z, combine='exp')
    x**(y + z)*y**z
    >>> powsimp(x**y*x**z*y**z, combine='base', force=True)
    x**y*(x*y)**z

    >>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
    (n*x)**(y + z)
    >>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
    n**(y + z)*x**(y + z)
    >>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
    (n*x)**y*(n*x)**z

    >>> x, y = symbols('x y', positive=True)
    >>> powsimp(log(exp(x)*exp(y)))
    log(exp(x)*exp(y))
    >>> powsimp(log(exp(x)*exp(y)), deep=True)
    x + y

    Radicals with Mul bases will be combined if combine='exp'

    >>> from sympy import sqrt, Mul
    >>> x, y = symbols('x y')

    Two radicals are automatically joined through Mul:

    >>> a=sqrt(x*sqrt(y))
    >>> a*a**3 == a**4
    True

    But if an integer power of that radical has been
    autoexpanded then Mul does not join the resulting factors:

    >>> a**4 # auto expands to a Mul, no longer a Pow
    x**2*y
    >>> _*a # so Mul doesn't combine them
    x**2*y*sqrt(x*sqrt(y))
    >>> powsimp(_) # but powsimp will
    (x*sqrt(y))**(5/2)
    >>> powsimp(x*y*a) # but won't when doing so would violate assumptions
    x*y*sqrt(x*sqrt(y))

    """
    from sympy.matrices.expressions.matexpr import MatrixSymbol

    def recurse(arg, **kwargs):
        _deep = kwargs.get('deep', deep)
        _combine = kwargs.get('combine', combine)
        _force = kwargs.get('force', force)
        _measure = kwargs.get('measure', measure)
        return powsimp(arg, _deep, _combine, _force, _measure)

    expr = sympify(expr)

    if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol)
            or (expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))):
        return expr

    if deep or expr.is_Add or expr.is_Mul and _y not in expr.args:
        expr = expr.func(*[recurse(w) for w in expr.args])

    if expr.is_Pow:
        return recurse(expr * _y, deep=False) / _y

    if not expr.is_Mul:
        return expr

    # handle the Mul
    if combine in ('exp', 'all'):
        # Collect base/exp data, while maintaining order in the
        # non-commutative parts of the product
        c_powers = defaultdict(list)
        nc_part = []
        newexpr = []
        coeff = S.One
        for term in expr.args:
            if term.is_Rational:
                coeff *= term
                continue
            if term.is_Pow:
                term = _denest_pow(term)
            if term.is_commutative:
                b, e = term.as_base_exp()
                if deep:
                    b, e = [recurse(i) for i in [b, e]]
                if b.is_Pow or isinstance(b, exp):
                    # don't let smthg like sqrt(x**a) split into x**a, 1/2
                    # or else it will be joined as x**(a/2) later
                    b, e = b**e, S.One
                c_powers[b].append(e)
            else:
                # This is the logic that combines exponents for equal,
                # but non-commutative bases: A**x*A**y == A**(x+y).
                if nc_part:
                    b1, e1 = nc_part[-1].as_base_exp()
                    b2, e2 = term.as_base_exp()
                    if (b1 == b2 and e1.is_commutative and e2.is_commutative):
                        nc_part[-1] = Pow(b1, Add(e1, e2))
                        continue
                nc_part.append(term)

        # add up exponents of common bases
        for b, e in ordered(iter(c_powers.items())):
            # allow 2**x/4 -> 2**(x - 2); don't do this when b and e are
            # Numbers since autoevaluation will undo it, e.g.
            # 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4
            if (b and b.is_Rational and not all(ei.is_Number for ei in e) and \
                    coeff is not S.One and
                    b not in (S.One, S.NegativeOne)):
                m = multiplicity(abs(b), abs(coeff))
                if m:
                    e.append(m)
                    coeff /= b**m
            c_powers[b] = Add(*e)
        if coeff is not S.One:
            if coeff in c_powers:
                c_powers[coeff] += S.One
            else:
                c_powers[coeff] = S.One

        # convert to plain dictionary
        c_powers = dict(c_powers)

        # check for base and inverted base pairs
        be = list(c_powers.items())
        skip = set()  # skip if we already saw them
        for b, e in be:
            if b in skip:
                continue
            bpos = b.is_positive or b.is_polar
            if bpos:
                binv = 1 / b
                if b != binv and binv in c_powers:
                    if b.as_numer_denom()[0] is S.One:
                        c_powers.pop(b)
                        c_powers[binv] -= e
                    else:
                        skip.add(binv)
                        e = c_powers.pop(binv)
                        c_powers[b] -= e

        # check for base and negated base pairs
        be = list(c_powers.items())
        _n = S.NegativeOne
        for i, (b, e) in enumerate(be):
            if ((-b).is_Symbol or b.is_Add) and -b in c_powers:
                if (b.is_positive in (0, 1) or e.is_integer):
                    c_powers[-b] += c_powers.pop(b)
                    if _n in c_powers:
                        c_powers[_n] += e
                    else:
                        c_powers[_n] = e

        # filter c_powers and convert to a list
        c_powers = [(b, e) for b, e in c_powers.items() if e]

        # ==============================================================
        # check for Mul bases of Rational powers that can be combined with
        # separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) ->
        # (x*sqrt(x*y))**(3/2)
        # ---------------- helper functions

        def ratq(x):
            '''Return Rational part of x's exponent as it appears in the bkey.
            '''
            return bkey(x)[0][1]

        def bkey(b, e=None):
            '''Return (b**s, c.q), c.p where e -> c*s. If e is not given then
            it will be taken by using as_base_exp() on the input b.
            e.g.
                x**3/2 -> (x, 2), 3
                x**y -> (x**y, 1), 1
                x**(2*y/3) -> (x**y, 3), 2
                exp(x/2) -> (exp(a), 2), 1

            '''
            if e is not None:  # coming from c_powers or from below
                if e.is_Integer:
                    return (b, S.One), e
                elif e.is_Rational:
                    return (b, Integer(e.q)), Integer(e.p)
                else:
                    c, m = e.as_coeff_Mul(rational=True)
                    if c is not S.One:
                        if m.is_integer:
                            return (b, Integer(c.q)), m * Integer(c.p)
                        return (b**m, Integer(c.q)), Integer(c.p)
                    else:
                        return (b**e, S.One), S.One
            else:
                return bkey(*b.as_base_exp())

        def update(b):
            '''Decide what to do with base, b. If its exponent is now an
            integer multiple of the Rational denominator, then remove it
            and put the factors of its base in the common_b dictionary or
            update the existing bases if necessary. If it has been zeroed
            out, simply remove the base.
            '''
            newe, r = divmod(common_b[b], b[1])
            if not r:
                common_b.pop(b)
                if newe:
                    for m in Mul.make_args(b[0]**newe):
                        b, e = bkey(m)
                        if b not in common_b:
                            common_b[b] = 0
                        common_b[b] += e
                        if b[1] != 1:
                            bases.append(b)

        # ---------------- end of helper functions

        # assemble a dictionary of the factors having a Rational power
        common_b = {}
        done = []
        bases = []
        for b, e in c_powers:
            b, e = bkey(b, e)
            if b in common_b:
                common_b[b] = common_b[b] + e
            else:
                common_b[b] = e
            if b[1] != 1 and b[0].is_Mul:
                bases.append(b)
        c_powers = [(b, e) for b, e in common_b.items() if e]
        bases.sort(key=default_sort_key)  # this makes tie-breaking canonical
        bases.sort(key=measure, reverse=True)  # handle longest first
        for base in bases:
            if base not in common_b:  # it may have been removed already
                continue
            b, exponent = base
            last = False  # True when no factor of base is a radical
            qlcm = 1  # the lcm of the radical denominators
            while True:
                bstart = b
                qstart = qlcm

                bb = []  # list of factors
                ee = []  # (factor's expo. and it's current value in common_b)
                for bi in Mul.make_args(b):
                    bib, bie = bkey(bi)
                    if bib not in common_b or common_b[bib] < bie:
                        ee = bb = []  # failed
                        break
                    ee.append([bie, common_b[bib]])
                    bb.append(bib)
                if ee:
                    # find the number of integral extractions possible
                    # e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1
                    min1 = ee[0][1] // ee[0][0]
                    for i in range(1, len(ee)):
                        rat = ee[i][1] // ee[i][0]
                        if rat < 1:
                            break
                        min1 = min(min1, rat)
                    else:
                        # update base factor counts
                        # e.g. if ee = [(2, 5), (3, 6)] then min1 = 2
                        # and the new base counts will be 5-2*2 and 6-2*3
                        for i in range(len(bb)):
                            common_b[bb[i]] -= min1 * ee[i][0]
                            update(bb[i])
                        # update the count of the base
                        # e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y)
                        # will increase by 4 to give bkey (x*sqrt(y), 2, 5)
                        common_b[base] += min1 * qstart * exponent
                if (last  # no more radicals in base
                        or len(common_b) == 1  # nothing left to join with
                        or all(k[1] == 1
                               for k in common_b)  # no rad's in common_b
                    ):
                    break
                # see what we can exponentiate base by to remove any radicals
                # so we know what to search for
                # e.g. if base were x**(1/2)*y**(1/3) then we should
                # exponentiate by 6 and look for powers of x and y in the ratio
                # of 2 to 3
                qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)])
                if qlcm == 1:
                    break  # we are done
                b = bstart**qlcm
                qlcm *= qstart
                if all(ratq(bi) == 1 for bi in Mul.make_args(b)):
                    last = True  # we are going to be done after this next pass
            # this base no longer can find anything to join with and
            # since it was longer than any other we are done with it
            b, q = base
            done.append((b, common_b.pop(base) * Rational(1, q)))

        # update c_powers and get ready to continue with powsimp
        c_powers = done
        # there may be terms still in common_b that were bases that were
        # identified as needing processing, so remove those, too
        for (b, q), e in common_b.items():
            if (b.is_Pow or isinstance(b, exp)) and \
                    q is not S.One and not b.exp.is_Rational:
                b, be = b.as_base_exp()
                b = b**(be / q)
            else:
                b = root(b, q)
            c_powers.append((b, e))
        check = len(c_powers)
        c_powers = dict(c_powers)
        assert len(c_powers) == check  # there should have been no duplicates
        # ==============================================================

        # rebuild the expression
        newexpr = expr.func(*(newexpr +
                              [Pow(b, e) for b, e in c_powers.items()]))
        if combine == 'exp':
            return expr.func(newexpr, expr.func(*nc_part))
        else:
            return recurse(expr.func(*nc_part), combine='base') * \
                recurse(newexpr, combine='base')

    elif combine == 'base':

        # Build c_powers and nc_part.  These must both be lists not
        # dicts because exp's are not combined.
        c_powers = []
        nc_part = []
        for term in expr.args:
            if term.is_commutative:
                c_powers.append(list(term.as_base_exp()))
            else:
                nc_part.append(term)

        # Pull out numerical coefficients from exponent if assumptions allow
        # e.g., 2**(2*x) => 4**x
        for i in range(len(c_powers)):
            b, e = c_powers[i]
            if not (all(x.is_nonnegative for x in b.as_numer_denom())
                    or e.is_integer or force or b.is_polar):
                continue
            exp_c, exp_t = e.as_coeff_Mul(rational=True)
            if exp_c is not S.One and exp_t is not S.One:
                c_powers[i] = [Pow(b, exp_c), exp_t]

        # Combine bases whenever they have the same exponent and
        # assumptions allow
        # first gather the potential bases under the common exponent
        c_exp = defaultdict(list)
        for b, e in c_powers:
            if deep:
                e = recurse(e)
            c_exp[e].append(b)
        del c_powers

        # Merge back in the results of the above to form a new product
        c_powers = defaultdict(list)
        for e in c_exp:
            bases = c_exp[e]

            # calculate the new base for e

            if len(bases) == 1:
                new_base = bases[0]
            elif e.is_integer or force:
                new_base = expr.func(*bases)
            else:
                # see which ones can be joined
                unk = []
                nonneg = []
                neg = []
                for bi in bases:
                    if bi.is_negative:
                        neg.append(bi)
                    elif bi.is_nonnegative:
                        nonneg.append(bi)
                    elif bi.is_polar:
                        nonneg.append(
                            bi)  # polar can be treated like non-negative
                    else:
                        unk.append(bi)
                if len(unk) == 1 and not neg or len(neg) == 1 and not unk:
                    # a single neg or a single unk can join the rest
                    nonneg.extend(unk + neg)
                    unk = neg = []
                elif neg:
                    # their negative signs cancel in groups of 2*q if we know
                    # that e = p/q else we have to treat them as unknown
                    israt = False
                    if e.is_Rational:
                        israt = True
                    else:
                        p, d = e.as_numer_denom()
                        if p.is_integer and d.is_integer:
                            israt = True
                    if israt:
                        neg = [-w for w in neg]
                        unk.extend([S.NegativeOne] * len(neg))
                    else:
                        unk.extend(neg)
                        neg = []
                    del israt

                # these shouldn't be joined
                for b in unk:
                    c_powers[b].append(e)
                # here is a new joined base
                new_base = expr.func(*(nonneg + neg))

                # if there are positive parts they will just get separated
                # again unless some change is made

                def _terms(e):
                    # return the number of terms of this expression
                    # when multiplied out -- assuming no joining of terms
                    if e.is_Add:
                        return sum([_terms(ai) for ai in e.args])
                    if e.is_Mul:
                        return prod([_terms(mi) for mi in e.args])
                    return 1

                xnew_base = expand_mul(new_base, deep=False)
                if len(Add.make_args(xnew_base)) < _terms(new_base):
                    new_base = factor_terms(xnew_base)

            c_powers[new_base].append(e)

        # break out the powers from c_powers now
        c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e]

        # we're done
        return expr.func(*(c_part + nc_part))

    else:
        raise ValueError("combine must be one of ('all', 'exp', 'base').")
Exemplo n.º 30
0
def test_nested_floor_ceiling():
    assert floor(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
    assert ceiling(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
    assert floor(ceiling(-floor(x**Rational(7, 2)/y))) == -floor(x**Rational(7, 2)/y)
    assert -ceiling(-ceiling(floor(x)/y)) == ceiling(floor(x)/y)