Exemplo n.º 1
0
def test_And():
    assert And() is true
    assert And(A) == A
    assert And(True) is true
    assert And(False) is false
    assert And(True, True) is true
    assert And(True, False) is false
    assert And(False, False) is false
    assert And(True, A) == A
    assert And(False, A) is false
    assert And(True, True, True) is true
    assert And(True, True, A) == A
    assert And(True, False, A) is false
    assert And(1, A) == A
    raises(TypeError, lambda: And(2, A))
    raises(TypeError, lambda: And(A < 2, A))
    assert And(A < 1, A >= 1) is false
    e = A > 1
    assert And(e, e.canonical) == e.canonical
    g, l, ge, le = A > B, B < A, A >= B, B <= A
    assert And(g, l, ge, le) == And(ge, g)
    assert {And(*i) for i in permutations((l, g, le, ge))} == {And(ge, g)}
    assert And(And(Eq(a, 0), Eq(b, 0)), And(Ne(a, 0), Eq(c, 0))) is false
Exemplo n.º 2
0
def test_ITE():
    A, B, C = symbols('A:C')
    assert ITE(True, False, True) is false
    assert ITE(True, True, False) is true
    assert ITE(False, True, False) is false
    assert ITE(False, False, True) is true
    assert isinstance(ITE(A, B, C), ITE)

    A = True
    assert ITE(A, B, C) == B
    A = False
    assert ITE(A, B, C) == C
    B = True
    assert ITE(And(A, B), B, C) == C
    assert ITE(Or(A, False), And(B, True), False) is false
    assert ITE(x, A, B) == Not(x)
    assert ITE(x, B, A) == x
    assert ITE(1, x, y) == x
    assert ITE(0, x, y) == y
    raises(TypeError, lambda: ITE(2, x, y))
    raises(TypeError, lambda: ITE(1, [], y))
    raises(TypeError, lambda: ITE(1, (), y))
    raises(TypeError, lambda: ITE(1, y, []))
    assert ITE(1, 1, 1) is S.true
    assert isinstance(ITE(1, 1, 1, evaluate=False), ITE)

    raises(TypeError, lambda: ITE(x > 1, y, x))
    assert ITE(Eq(x, True), y, x) == ITE(x, y, x)
    assert ITE(Eq(x, False), y, x) == ITE(~x, y, x)
    assert ITE(Ne(x, True), y, x) == ITE(~x, y, x)
    assert ITE(Ne(x, False), y, x) == ITE(x, y, x)
    assert ITE(Eq(S.true, x), y, x) == ITE(x, y, x)
    assert ITE(Eq(S.false, x), y, x) == ITE(~x, y, x)
    assert ITE(Ne(S.true, x), y, x) == ITE(~x, y, x)
    assert ITE(Ne(S.false, x), y, x) == ITE(x, y, x)
    # 0 and 1 in the context are not treated as True/False
    # so the equality must always be False since dissimilar
    # objects cannot be equal
    assert ITE(Eq(x, 0), y, x) == x
    assert ITE(Eq(x, 1), y, x) == x
    assert ITE(Ne(x, 0), y, x) == y
    assert ITE(Ne(x, 1), y, x) == y
    assert ITE(Eq(x, 0), y, z).subs(x, 0) == y
    assert ITE(Eq(x, 0), y, z).subs(x, 1) == z
    raises(ValueError, lambda: ITE(x > 1, y, x, z))
Exemplo n.º 3
0
def test_Piecewise():
   assert refine(Piecewise((1, x < 0), (3, True)),  Q.is_true(x < 0)) == 1
   assert refine(Piecewise((1, x < 0), (3, True)), ~Q.is_true(x < 0)) == 3
   assert refine(Piecewise((1, x < 0), (3, True)),  Q.is_true(y < 0)) == Piecewise((1, x < 0), (3, True))
   assert refine(Piecewise((1, x > 0), (3, True)),  Q.is_true(x > 0)) == 1
   assert refine(Piecewise((1, x > 0), (3, True)), ~Q.is_true(x > 0)) == 3
   assert refine(Piecewise((1, x > 0), (3, True)),  Q.is_true(y > 0)) == Piecewise((1, x > 0), (3, True))
   assert refine(Piecewise((1, x <= 0), (3, True)),  Q.is_true(x <= 0)) == 1
   assert refine(Piecewise((1, x <= 0), (3, True)), ~Q.is_true(x <= 0)) == 3
   assert refine(Piecewise((1, x <= 0), (3, True)),  Q.is_true(y <= 0)) == Piecewise((1, x <= 0), (3, True))
   assert refine(Piecewise((1, x >= 0), (3, True)),  Q.is_true(x >= 0)) == 1
   assert refine(Piecewise((1, x >= 0), (3, True)), ~Q.is_true(x >= 0)) == 3
   assert refine(Piecewise((1, x >= 0), (3, True)),  Q.is_true(y >= 0)) == Piecewise((1, x >= 0), (3, True))
   assert refine(Piecewise((1, Eq(x, 0)), (3, True)),  Q.is_true(Eq(x, 0))) == 1
   assert refine(Piecewise((1, Eq(x, 0)), (3, True)), ~Q.is_true(Eq(x, 0))) == 3
   assert refine(Piecewise((1, Eq(x, 0)), (3, True)),  Q.is_true(Eq(y, 0))) == Piecewise((1, Eq(x, 0)), (3, True))
   assert refine(Piecewise((1, Ne(x, 0)), (3, True)),  Q.is_true(Ne(x, 0))) == 1
   assert refine(Piecewise((1, Ne(x, 0)), (3, True)), ~Q.is_true(Ne(x, 0))) == 3
   assert refine(Piecewise((1, Ne(x, 0)), (3, True)),  Q.is_true(Ne(y, 0))) == Piecewise((1, Ne(x, 0)), (3, True))
Exemplo n.º 4
0
def test_simplify_relational():
    assert simplify(x * (y + 1) - x * y - x + 1 < x) == (x > 1)
    assert simplify(x * (y + 1) - x * y - x - 1 < x) == (x > -1)
    assert simplify(x < x * (y + 1) - x * y - x + 1) == (x < 1)
    q, r = symbols("q r")
    assert (((-q + r) - (q - r)) <= 0).simplify() == (q >= r)
    root2 = sqrt(2)
    equation = ((root2 * (-q + r) - root2 * (q - r)) <= 0).simplify()
    assert equation == (q >= r)
    r = S.One < x
    # canonical operations are not the same as simplification,
    # so if there is no simplification, canonicalization will
    # be done unless the measure forbids it
    assert simplify(r) == r.canonical
    assert simplify(r, ratio=0) != r.canonical
    # this is not a random test; in _eval_simplify
    # this will simplify to S.false and that is the
    # reason for the 'if r.is_Relational' in Relational's
    # _eval_simplify routine
    assert simplify(-(2**(pi * Rational(3, 2)) + 6**pi)**(1 / pi) + 2 *
                    (2**(pi / 2) + 3**pi)**(1 / pi) < 0) is S.false
    # canonical at least
    assert Eq(y, x).simplify() == Eq(x, y)
    assert Eq(x - 1, 0).simplify() == Eq(x, 1)
    assert Eq(x - 1, x).simplify() == S.false
    assert Eq(2 * x - 1, x).simplify() == Eq(x, 1)
    assert Eq(2 * x, 4).simplify() == Eq(x, 2)
    z = cos(1)**2 + sin(1)**2 - 1  # z.is_zero is None
    assert Eq(z * x, 0).simplify() == S.true

    assert Ne(y, x).simplify() == Ne(x, y)
    assert Ne(x - 1, 0).simplify() == Ne(x, 1)
    assert Ne(x - 1, x).simplify() == S.true
    assert Ne(2 * x - 1, x).simplify() == Ne(x, 1)
    assert Ne(2 * x, 4).simplify() == Ne(x, 2)
    assert Ne(z * x, 0).simplify() == S.false

    # No real-valued assumptions
    assert Ge(y, x).simplify() == Le(x, y)
    assert Ge(x - 1, 0).simplify() == Ge(x, 1)
    assert Ge(x - 1, x).simplify() == S.false
    assert Ge(2 * x - 1, x).simplify() == Ge(x, 1)
    assert Ge(2 * x, 4).simplify() == Ge(x, 2)
    assert Ge(z * x, 0).simplify() == S.true
    assert Ge(x, -2).simplify() == Ge(x, -2)
    assert Ge(-x, -2).simplify() == Le(x, 2)
    assert Ge(x, 2).simplify() == Ge(x, 2)
    assert Ge(-x, 2).simplify() == Le(x, -2)

    assert Le(y, x).simplify() == Ge(x, y)
    assert Le(x - 1, 0).simplify() == Le(x, 1)
    assert Le(x - 1, x).simplify() == S.true
    assert Le(2 * x - 1, x).simplify() == Le(x, 1)
    assert Le(2 * x, 4).simplify() == Le(x, 2)
    assert Le(z * x, 0).simplify() == S.true
    assert Le(x, -2).simplify() == Le(x, -2)
    assert Le(-x, -2).simplify() == Ge(x, 2)
    assert Le(x, 2).simplify() == Le(x, 2)
    assert Le(-x, 2).simplify() == Ge(x, -2)

    assert Gt(y, x).simplify() == Lt(x, y)
    assert Gt(x - 1, 0).simplify() == Gt(x, 1)
    assert Gt(x - 1, x).simplify() == S.false
    assert Gt(2 * x - 1, x).simplify() == Gt(x, 1)
    assert Gt(2 * x, 4).simplify() == Gt(x, 2)
    assert Gt(z * x, 0).simplify() == S.false
    assert Gt(x, -2).simplify() == Gt(x, -2)
    assert Gt(-x, -2).simplify() == Lt(x, 2)
    assert Gt(x, 2).simplify() == Gt(x, 2)
    assert Gt(-x, 2).simplify() == Lt(x, -2)

    assert Lt(y, x).simplify() == Gt(x, y)
    assert Lt(x - 1, 0).simplify() == Lt(x, 1)
    assert Lt(x - 1, x).simplify() == S.true
    assert Lt(2 * x - 1, x).simplify() == Lt(x, 1)
    assert Lt(2 * x, 4).simplify() == Lt(x, 2)
    assert Lt(z * x, 0).simplify() == S.false
    assert Lt(x, -2).simplify() == Lt(x, -2)
    assert Lt(-x, -2).simplify() == Gt(x, 2)
    assert Lt(x, 2).simplify() == Lt(x, 2)
    assert Lt(-x, 2).simplify() == Gt(x, -2)

    # Test particulat branches of _eval_simplify
    m = exp(1) - exp_polar(1)
    assert simplify(m * x > 1) is S.false
    # These two tests the same branch
    assert simplify(m * x + 2 * m * y > 1) is S.false
    assert simplify(m * x + y > 1 + y) is S.false
Exemplo n.º 5
0
def test_new_relational():
    x = Symbol('x')

    assert Eq(x, 0) == Relational(x, 0)  # None ==> Equality
    assert Eq(x, 0) == Relational(x, 0, '==')
    assert Eq(x, 0) == Relational(x, 0, 'eq')
    assert Eq(x, 0) == Equality(x, 0)

    assert Eq(x, 0) != Relational(x, 1)  # None ==> Equality
    assert Eq(x, 0) != Relational(x, 1, '==')
    assert Eq(x, 0) != Relational(x, 1, 'eq')
    assert Eq(x, 0) != Equality(x, 1)

    assert Eq(x, -1) == Relational(x, -1)  # None ==> Equality
    assert Eq(x, -1) == Relational(x, -1, '==')
    assert Eq(x, -1) == Relational(x, -1, 'eq')
    assert Eq(x, -1) == Equality(x, -1)
    assert Eq(x, -1) != Relational(x, 1)  # None ==> Equality
    assert Eq(x, -1) != Relational(x, 1, '==')
    assert Eq(x, -1) != Relational(x, 1, 'eq')
    assert Eq(x, -1) != Equality(x, 1)

    assert Ne(x, 0) == Relational(x, 0, '!=')
    assert Ne(x, 0) == Relational(x, 0, '<>')
    assert Ne(x, 0) == Relational(x, 0, 'ne')
    assert Ne(x, 0) == Unequality(x, 0)
    assert Ne(x, 0) != Relational(x, 1, '!=')
    assert Ne(x, 0) != Relational(x, 1, '<>')
    assert Ne(x, 0) != Relational(x, 1, 'ne')
    assert Ne(x, 0) != Unequality(x, 1)

    assert Ge(x, 0) == Relational(x, 0, '>=')
    assert Ge(x, 0) == Relational(x, 0, 'ge')
    assert Ge(x, 0) == GreaterThan(x, 0)
    assert Ge(x, 1) != Relational(x, 0, '>=')
    assert Ge(x, 1) != Relational(x, 0, 'ge')
    assert Ge(x, 1) != GreaterThan(x, 0)
    assert (x >= 1) == Relational(x, 1, '>=')
    assert (x >= 1) == Relational(x, 1, 'ge')
    assert (x >= 1) == GreaterThan(x, 1)
    assert (x >= 0) != Relational(x, 1, '>=')
    assert (x >= 0) != Relational(x, 1, 'ge')
    assert (x >= 0) != GreaterThan(x, 1)

    assert Le(x, 0) == Relational(x, 0, '<=')
    assert Le(x, 0) == Relational(x, 0, 'le')
    assert Le(x, 0) == LessThan(x, 0)
    assert Le(x, 1) != Relational(x, 0, '<=')
    assert Le(x, 1) != Relational(x, 0, 'le')
    assert Le(x, 1) != LessThan(x, 0)
    assert (x <= 1) == Relational(x, 1, '<=')
    assert (x <= 1) == Relational(x, 1, 'le')
    assert (x <= 1) == LessThan(x, 1)
    assert (x <= 0) != Relational(x, 1, '<=')
    assert (x <= 0) != Relational(x, 1, 'le')
    assert (x <= 0) != LessThan(x, 1)

    assert Gt(x, 0) == Relational(x, 0, '>')
    assert Gt(x, 0) == Relational(x, 0, 'gt')
    assert Gt(x, 0) == StrictGreaterThan(x, 0)
    assert Gt(x, 1) != Relational(x, 0, '>')
    assert Gt(x, 1) != Relational(x, 0, 'gt')
    assert Gt(x, 1) != StrictGreaterThan(x, 0)
    assert (x > 1) == Relational(x, 1, '>')
    assert (x > 1) == Relational(x, 1, 'gt')
    assert (x > 1) == StrictGreaterThan(x, 1)
    assert (x > 0) != Relational(x, 1, '>')
    assert (x > 0) != Relational(x, 1, 'gt')
    assert (x > 0) != StrictGreaterThan(x, 1)

    assert Lt(x, 0) == Relational(x, 0, '<')
    assert Lt(x, 0) == Relational(x, 0, 'lt')
    assert Lt(x, 0) == StrictLessThan(x, 0)
    assert Lt(x, 1) != Relational(x, 0, '<')
    assert Lt(x, 1) != Relational(x, 0, 'lt')
    assert Lt(x, 1) != StrictLessThan(x, 0)
    assert (x < 1) == Relational(x, 1, '<')
    assert (x < 1) == Relational(x, 1, 'lt')
    assert (x < 1) == StrictLessThan(x, 1)
    assert (x < 0) != Relational(x, 1, '<')
    assert (x < 0) != Relational(x, 1, 'lt')
    assert (x < 0) != StrictLessThan(x, 1)

    # finally, some fuzz testing
    from sympy.core.random import randint
    for i in range(100):
        while 1:
            strtype, length = (chr, 65535) if randint(0, 1) else (chr, 255)
            relation_type = strtype(randint(0, length))
            if randint(0, 1):
                relation_type += strtype(randint(0, length))
            if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge',
                                     '<=', 'le', '>', 'gt', '<', 'lt', ':=',
                                     '+=', '-=', '*=', '/=', '%='):
                break

        raises(ValueError, lambda: Relational(x, 1, relation_type))
    assert all(Relational(x, 0, op).rel_op == '==' for op in ('eq', '=='))
    assert all(
        Relational(x, 0, op).rel_op == '!=' for op in ('ne', '<>', '!='))
    assert all(Relational(x, 0, op).rel_op == '>' for op in ('gt', '>'))
    assert all(Relational(x, 0, op).rel_op == '<' for op in ('lt', '<'))
    assert all(Relational(x, 0, op).rel_op == '>=' for op in ('ge', '>='))
    assert all(Relational(x, 0, op).rel_op == '<=' for op in ('le', '<='))
Exemplo n.º 6
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform([x, y, z], set2)) == \
        Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform([x, y, z], set1 + set2) is true
    assert SOPform([x, y, z], set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, 3, 7, 11, 15]
    dontcares = [0, 2, 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, {y: 1, z: 1}]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)


    minterms = [{y: 1, z: 1}, 1]
    dontcares = [[0, 0, 0, 0]]

    minterms = [[0, 0, 0]]
    raises(ValueError, lambda: SOPform([w, x, y, z], minterms))
    raises(ValueError, lambda: POSform([w, x, y, z], minterms))

    raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"]))

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic(A & (B | C)) == ans
    assert simplify_logic((A & B) | (A & C)) == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
        Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) is S.false
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
        == And(Equality(A, 3), Or(B, C))
    b = (~x & ~y & ~z) | (~x & ~y & z)
    e = And(A, b)
    assert simplify_logic(e) == A & ~x & ~y
    raises(ValueError, lambda: simplify_logic(A & (B | C), form='blabla'))

    # Check that expressions with nine variables or more are not simplified
    # (without the force-flag)
    a, b, c, d, e, f, g, h, j = symbols('a b c d e f g h j')
    expr = a & b & c & d & e & f & g & h & j | \
        a & b & c & d & e & f & g & h & ~j
    # This expression can be simplified to get rid of the j variables
    assert simplify_logic(expr) == expr

    # check input
    ans = SOPform([x, y], [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform([x, y], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
    assert SOPform([x], [[1]], [[0]]) is true
    assert SOPform([x], [[0]], [[1]]) is true
    assert SOPform([x], [], []) is false

    raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
    assert POSform([x], [[1]], [[0]]) is true
    assert POSform([x], [[0]], [[1]]) is true
    assert POSform([x], [], []) is false

    # check working of simplify
    assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
    assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0))
    assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1))
    assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y))
    assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1))
    assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify(
        ) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2))
    assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1)
    assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1)
    assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False
    assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify(
        ) == And(Ne(x, 1), Ne(x, 0))
Exemplo n.º 7
0
def test_PoissonProcess():
    X = PoissonProcess("X", 3)
    assert X.state_space == S.Naturals0
    assert X.index_set == Interval(0, oo)
    assert X.lamda == 3

    t, d, x, y = symbols('t d x y', positive=True)
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.distribution(t) == PoissonDistribution(3 * t)
    raises(ValueError, lambda: PoissonProcess("X", -1))
    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-5))

    assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
        Lambda((X(2), X(3)), 6**X(2) * 9**X(3) * exp(-15) /
               (factorial(X(2)) * factorial(X(3)))))

    assert X.joint_distribution(4, 6) == JointDistributionHandmade(
        Lambda((X(4), X(6)), 12**X(4) * 18**X(6) * exp(-30) /
               (factorial(X(4)) * factorial(X(6)))))

    assert P(X(t) < 1) == exp(-3 * t)
    assert P(Eq(X(t), 0),
             Contains(t, Interval.Lopen(3, 5))) == exp(-6)  # exp(-2*lamda)
    res = P(Eq(X(t), 1), Contains(t, Interval.Lopen(3, 4)))
    assert res == 3 * exp(-3)

    # Equivalent to P(Eq(X(t), 1))**4 because of non-overlapping intervals
    assert P(
        Eq(X(t), 1) & Eq(X(d), 1) & Eq(X(x), 1) & Eq(X(y), 1),
        Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3))
        & Contains(y, Interval.Lopen(3, 4))) == res**4

    # Return Probability because of overlapping intervals
    assert P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 2))
    & Contains(d, Interval.Ropen(2, 4))) == \
                Probability(Eq(X(d), 3) & Eq(X(t), 2), Contains(t, Interval.Lopen(0, 2))
                & Contains(d, Interval.Ropen(2, 4)))

    raises(ValueError, lambda: P(
        Eq(X(t), 2) & Eq(X(d), 3),
        Contains(t, Interval.Lopen(0, 4)) & Contains(d, Interval.Lopen(3, oo)))
           )  # no bound on d
    assert P(Eq(X(3), 2)) == 81 * exp(-9) / 2
    assert P(Eq(X(t), 2), Contains(t, Interval.Lopen(0,
                                                     5))) == 225 * exp(-15) / 2

    # Check that probability works correctly by adding it to 1
    res1 = P(X(t) <= 3, Contains(t, Interval.Lopen(0, 5)))
    res2 = P(X(t) > 3, Contains(t, Interval.Lopen(0, 5)))
    assert res1 == 691 * exp(-15)
    assert (res1 + res2).simplify() == 1

    # Check Not and  Or
    assert P(Not(Eq(X(t), 2) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & \
            Contains(d, Interval.Lopen(7, 8))).simplify() == -18*exp(-6) + 234*exp(-9) + 1
    assert P(Eq(X(t), 2) | Ne(X(t), 4),
             Contains(t, Interval.Ropen(2, 4))) == 1 - 36 * exp(-6)
    raises(ValueError, lambda: P(X(t) > 2, X(t) + X(d)))
    assert E(
        X(t)) == 3 * t  # property of the distribution at a given timestamp
    assert E(
        X(t)**2 + X(d) * 2 + X(y)**3,
        Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2))
        & Contains(y, Interval.Ropen(3, 4))) == 75
    assert E(X(t)**2, Contains(t, Interval.Lopen(0, 1))) == 12
    assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
    & Contains(d, Interval.Ropen(1, 2))) == \
            Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(t, Interval.Lopen(0, 1))
            & Contains(d, Interval.Ropen(1, 2)))

    # Value Error because of infinite time bound
    raises(ValueError, lambda: E(X(t)**3, Contains(t, Interval.Lopen(1, oo))))

    # Equivalent to E(X(t)**2) - E(X(d)**2) == E(X(1)**2) - E(X(1)**2) == 0
    assert E((X(t) + X(d)) * (X(t) - X(d)),
             Contains(t, Interval.Lopen(0, 1))
             & Contains(d, Interval.Lopen(1, 2))) == 0
    assert E(X(2) + x * E(X(5))) == 15 * x + 6
    assert E(x * X(1) + y) == 3 * x + y
    assert P(Eq(X(1), 2) & Eq(X(t), 3),
             Contains(t, Interval.Lopen(1, 2))) == 81 * exp(-6) / 4
    Y = PoissonProcess("Y", 6)
    Z = X + Y
    assert Z.lamda == X.lamda + Y.lamda == 9
    raises(ValueError,
           lambda: X + 5)  # should be added be only PoissonProcess instance
    N, M = Z.split(4, 5)
    assert N.lamda == 4
    assert M.lamda == 5
    raises(ValueError, lambda: Z.split(3, 2))  # 2+3 != 9

    raises(
        ValueError, lambda: P(Eq(X(t), 0),
                              Contains(t, Interval.Lopen(1, 3)) & Eq(X(1), 0)))
    # check if it handles queries with two random variables in one args
    res1 = P(Eq(N(3), N(5)))
    assert res1 == P(Eq(N(t), 0), Contains(t, Interval(3, 5)))
    res2 = P(N(3) > N(1))
    assert res2 == P((N(t) > 0), Contains(t, Interval(1, 3)))
    assert P(N(3) < N(1)) == 0  # condition is not possible
    res3 = P(N(3) <= N(1))  # holds only for Eq(N(3), N(1))
    assert res3 == P(Eq(N(t), 0), Contains(t, Interval(1, 3)))

    # tests from https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php
    X = PoissonProcess('X', 10)  # 11.1
    assert P(Eq(X(S(1) / 3), 3)
             & Eq(X(1), 10)) == exp(-10) * Rational(8000000000, 11160261)
    assert P(Eq(X(1), 1), Eq(X(S(1) / 3), 3)) == 0
    assert P(Eq(X(1), 10), Eq(X(S(1) / 3), 3)) == P(Eq(X(S(2) / 3), 7))

    X = PoissonProcess('X', 2)  # 11.2
    assert P(X(S(1) / 2) < 1) == exp(-1)
    assert P(X(3) < 1, Eq(X(1), 0)) == exp(-4)
    assert P(Eq(X(4), 3), Eq(X(2), 3)) == exp(-4)

    X = PoissonProcess('X', 3)
    assert P(Eq(X(2), 5) & Eq(X(1), 2)) == Rational(81, 4) * exp(-6)

    # check few properties
    assert P(
        X(2) <= 3,
        X(1) >= 1) == 3 * P(Eq(X(1), 0)) + 2 * P(Eq(X(1), 1)) + P(Eq(X(1), 2))
    assert P(X(2) <= 3, X(1) > 1) == 2 * P(Eq(X(1), 0)) + 1 * P(Eq(X(1), 1))
    assert P(Eq(X(2), 5) & Eq(X(1), 2)) == P(Eq(X(1), 3)) * P(Eq(X(1), 2))
    assert P(Eq(X(3), 4), Eq(X(1), 3)) == P(Eq(X(2), 1))

    #test issue 20078
    assert (2 * X(t) + 3 * X(t)).simplify() == 5 * X(t)
    assert (2 * X(t) - 3 * X(t)).simplify() == -X(t)
    assert (2 * (0.25 * X(t))).simplify() == 0.5 * X(t)
    assert (2 * X(t) * 0.25 * X(t)).simplify() == 0.5 * X(t)**2
    assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1) * X(t)**2
Exemplo n.º 8
0
def test_DiscreteMarkovChain():

    # pass only the name
    X = DiscreteMarkovChain("X")
    assert isinstance(X.state_space, Range)
    assert X.index_set == S.Naturals0
    assert isinstance(X.transition_probabilities, MatrixSymbol)
    t = symbols('t', positive=True, integer=True)
    assert isinstance(X[t], RandomIndexedSymbol)
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain(1))
    raises(NotImplementedError, lambda: X(t))
    raises(NotImplementedError, lambda: X.communication_classes())
    raises(NotImplementedError, lambda: X.canonical_form())
    raises(NotImplementedError, lambda: X.decompose())

    nz = Symbol('n', integer=True)
    TZ = MatrixSymbol('M', nz, nz)
    SZ = Range(nz)
    YZ = DiscreteMarkovChain('Y', SZ, TZ)
    assert P(Eq(YZ[2], 1), Eq(YZ[1], 0)) == TZ[0, 1]

    raises(ValueError, lambda: sample_stochastic_process(t))
    raises(ValueError, lambda: next(sample_stochastic_process(X)))
    # pass name and state_space
    # any hashable object should be a valid state
    # states should be valid as a tuple/set/list/Tuple/Range
    sym, rainy, cloudy, sunny = symbols('a Rainy Cloudy Sunny', real=True)
    state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain],
                    Tuple(S(1), exp(sym), Str('World'), sympify=False),
                    Range(-1, 5, 2), [rainy, cloudy, sunny]]
    chains = [
        DiscreteMarkovChain("Y", state_space) for state_space in state_spaces
    ]

    for i, Y in enumerate(chains):
        assert isinstance(Y.transition_probabilities, MatrixSymbol)
        assert Y.state_space == state_spaces[i] or Y.state_space == FiniteSet(
            *state_spaces[i])
        assert Y.number_of_states == 3

        with ignore_warnings(
                UserWarning):  # TODO: Restore tests once warnings are removed
            assert P(Eq(Y[2], 1), Eq(Y[0], 2),
                     evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
        assert E(Y[0]) == Expectation(Y[0])

        raises(ValueError, lambda: next(sample_stochastic_process(Y)))

    raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))
    Y = DiscreteMarkovChain("Y", Range(1, t, 2))
    assert Y.number_of_states == ceiling((t - 1) / 2)

    # pass name and transition_probabilities
    chains = [
        DiscreteMarkovChain("Y", trans_probs=Matrix([[]])),
        DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])),
        DiscreteMarkovChain("Y",
                            trans_probs=Matrix([[pi, 1 - pi], [sym, 1 - sym]]))
    ]
    for Z in chains:
        assert Z.number_of_states == Z.transition_probabilities.shape[0]
        assert isinstance(Z.transition_probabilities, ImmutableMatrix)

    # pass name, state_space and transition_probabilities
    T = Matrix([[0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]])
    TS = MatrixSymbol('T', 3, 3)
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS)
    assert Y.joint_distribution(1, Y[2],
                                3) == JointDistribution(Y[1], Y[2], Y[3])
    raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
    assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
    assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) -
            (TS[0, 2] * TS[1, 0] + TS[1, 1] * TS[1, 2] +
             TS[1, 2] * TS[2, 2])).simplify() == 0
    assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
    assert P(Eq(YS[3], 3), Eq(
        YS[1],
        1)) == TS[0, 2] * TS[1, 0] + TS[1, 1] * TS[1, 2] + TS[1, 2] * TS[2, 2]
    TO = Matrix([[0.25, 0.75, 0], [0, 0.25, 0.75], [0.75, 0, 0.25]])
    assert P(Eq(Y[3], 2),
             Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(
                 0.375, 3)
    with ignore_warnings(
            UserWarning):  ### TODO: Restore tests once warnings are removed
        assert E(Y[3], evaluate=False) == Expectation(Y[3])
        assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
    TSO = MatrixSymbol('T', 4, 4)
    raises(
        ValueError,
        lambda: str(P(Eq(YS[3], 2),
                      Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
    raises(TypeError,
           lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
    raises(
        ValueError,
        lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
    raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
    raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))

    # extended tests for probability queries
    TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    assert P(
        And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
        Eq(Probability(Eq(Y[0], 0)), Rational(1, 4))
        & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
            Probability(Eq(Y[0], 0))/4
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
             Eq(Y[1], 1)) == 0.1 * Probability(Eq(Y[0], 0))

    # testing properties of Markov chain
    TO2 = Matrix([[S.One, 0, 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
    Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
    assert Y3.fundamental_matrix() == ImmutableMatrix(
        [[176, 81, -132], [36, 141, -52], [-44, -39, 208]]) / 125
    assert Y2.is_absorbing_chain() == True
    assert Y3.is_absorbing_chain() == False
    assert Y2.canonical_form() == ([0, 1, 2], TO2)
    assert Y3.canonical_form() == ([0, 1, 2], TO3)
    assert Y2.decompose() == ([0, 1,
                               2], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3])
    assert Y3.decompose() == ([0, 1, 2], TO3, Matrix(0, 3,
                                                     []), Matrix(0, 0, []))
    TO4 = Matrix([[Rational(1, 5),
                   Rational(2, 5),
                   Rational(2, 5)], [Rational(1, 10), S.Half,
                                     Rational(2, 5)],
                  [Rational(3, 5),
                   Rational(3, 10),
                   Rational(1, 10)]])
    Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
    w = ImmutableMatrix([[Rational(11, 39),
                          Rational(16, 39),
                          Rational(4, 13)]])
    assert Y4.limiting_distribution == w
    assert Y4.is_regular() == True
    assert Y4.is_ergodic() == True
    TS1 = MatrixSymbol('T', 3, 3)
    Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
    assert Y5.limiting_distribution(w, TO4).doit() == True
    assert Y5.stationary_distribution(condition_set=True).subs(
        TS1, TO4).contains(w).doit() == S.true
    TO6 = Matrix([[S.One, 0, 0, 0, 0], [S.Half, 0, S.Half, 0, 0],
                  [0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half],
                  [0, 0, 0, 0, 1]])
    Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
    assert Y6.fundamental_matrix() == ImmutableMatrix(
        [[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One],
         [S.Half, S.One, Rational(3, 2)]])
    assert Y6.absorbing_probabilities() == ImmutableMatrix(
        [[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half],
         [Rational(1, 4), Rational(3, 4)]])
    TO7 = Matrix([[Rational(1, 2),
                   Rational(1, 4),
                   Rational(1, 4)], [Rational(1, 2), 0,
                                     Rational(1, 2)],
                  [Rational(1, 4),
                   Rational(1, 4),
                   Rational(1, 2)]])
    Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
    assert Y7.is_absorbing_chain() == False
    assert Y7.fundamental_matrix() == ImmutableMatrix(
        [[Rational(86, 75),
          Rational(1, 25),
          Rational(-14, 75)],
         [Rational(2, 25), Rational(21, 25),
          Rational(2, 25)],
         [Rational(-14, 75),
          Rational(1, 25),
          Rational(86, 75)]])

    # test for zero-sized matrix functionality
    X = DiscreteMarkovChain('X', trans_probs=Matrix([[]]))
    assert X.number_of_states == 0
    assert X.stationary_distribution() == Matrix([[]])
    assert X.communication_classes() == []
    assert X.canonical_form() == ([], Matrix([[]]))
    assert X.decompose() == ([], Matrix([[]]), Matrix([[]]), Matrix([[]]))
    assert X.is_regular() == False
    assert X.is_ergodic() == False

    # test communication_class
    # see https://drive.google.com/drive/folders/1HbxLlwwn2b3U8Lj7eb_ASIUb5vYaNIjg?usp=sharing
    # tutorial 2.pdf
    TO7 = Matrix([[0, 5, 5, 0, 0], [0, 0, 0, 10, 0], [5, 0, 5, 0, 0],
                  [0, 10, 0, 0, 0], [0, 3, 0, 3, 4]]) / 10
    Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
    tuples = Y7.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1, 3], [0, 2], [4])
    assert recurrence == (True, False, False)
    assert periods == (2, 1, 1)

    TO8 = Matrix([[0, 0, 0, 10, 0, 0], [5, 0, 5, 0, 0, 0], [0, 4, 0, 0, 0, 6],
                  [10, 0, 0, 0, 0, 0], [0, 10, 0, 0, 0, 0], [0, 0, 0, 5, 5, 0]
                  ]) / 10
    Y8 = DiscreteMarkovChain('Y', trans_probs=TO8)
    tuples = Y8.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3], [1, 2, 5, 4])
    assert recurrence == (True, False)
    assert periods == (2, 2)

    TO9 = Matrix(
        [[2, 0, 0, 3, 0, 0, 3, 2, 0, 0], [0, 10, 0, 0, 0, 0, 0, 0, 0, 0],
         [0, 2, 2, 0, 0, 0, 0, 0, 3, 3], [0, 0, 0, 3, 0, 0, 6, 1, 0, 0],
         [0, 0, 0, 0, 5, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 10, 0, 0, 0, 0],
         [4, 0, 0, 5, 0, 0, 1, 0, 0, 0], [2, 0, 0, 4, 0, 0, 2, 2, 0, 0],
         [3, 0, 1, 0, 0, 0, 0, 0, 4, 2], [0, 0, 4, 0, 0, 0, 0, 0, 3, 3]]) / 10
    Y9 = DiscreteMarkovChain('Y', trans_probs=TO9)
    tuples = Y9.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3, 6, 7], [1], [2, 8, 9], [5], [4])
    assert recurrence == (True, True, False, True, False)
    assert periods == (1, 1, 1, 1, 1)

    # test canonical form
    # see https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
    # example 11.13
    T = Matrix([[1, 0, 0, 0, 0], [S(1) / 2, 0, S(1) / 2, 0, 0],
                [0, S(1) / 2, 0, S(1) / 2, 0], [0, 0,
                                                S(1) / 2, 0,
                                                S(1) / 2], [0, 0, 0, 0,
                                                            S(1)]])
    DW = DiscreteMarkovChain('DW', [0, 1, 2, 3, 4], T)
    states, A, B, C = DW.decompose()
    assert states == [0, 4, 1, 2, 3]
    assert A == Matrix([[1, 0], [0, 1]])
    assert B == Matrix([[S(1) / 2, 0], [0, 0], [0, S(1) / 2]])
    assert C == Matrix([[0, S(1) / 2, 0], [S(1) / 2, 0, S(1) / 2],
                        [0, S(1) / 2, 0]])
    states, new_matrix = DW.canonical_form()
    assert states == [0, 4, 1, 2, 3]
    assert new_matrix == Matrix([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0],
                                 [S(1) / 2, 0, 0, S(1) / 2, 0],
                                 [0, 0, S(1) / 2, 0,
                                  S(1) / 2], [0, S(1) / 2, 0,
                                              S(1) / 2, 0]])

    # test regular and ergodic
    # https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
    T = Matrix([[0, 4, 0, 0, 0], [1, 0, 3, 0, 0], [0, 2, 0, 2, 0],
                [0, 0, 3, 0, 1], [0, 0, 0, 4, 0]]) / 4
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_regular()
    assert X.is_ergodic()
    T = Matrix([[0, 1], [1, 0]])
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_regular()
    assert X.is_ergodic()
    # http://www.math.wisc.edu/~valko/courses/331/MC2.pdf
    T = Matrix([[2, 1, 1], [2, 0, 2], [1, 1, 2]]) / 4
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_regular()
    assert X.is_ergodic()
    # https://docs.ufpr.br/~lucambio/CE222/1S2014/Kemeny-Snell1976.pdf
    T = Matrix([[1, 1], [1, 1]]) / 2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_regular()
    assert X.is_ergodic()

    # test is_absorbing_chain
    T = Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_absorbing_chain()
    # https://en.wikipedia.org/wiki/Absorbing_Markov_chain
    T = Matrix([[1, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 1], [0, 0, 0, 2]]) / 2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_absorbing_chain()
    T = Matrix([[2, 0, 0, 0, 0], [1, 0, 1, 0, 0], [0, 1, 0, 1, 0],
                [0, 0, 1, 0, 1], [0, 0, 0, 0, 2]]) / 2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_absorbing_chain()

    # test custom state space
    Y10 = DiscreteMarkovChain('Y', [1, 2, 3], TO2)
    tuples = Y10.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1], [2, 3])
    assert recurrence == (True, False)
    assert periods == (1, 1)
    assert Y10.canonical_form() == ([1, 2, 3], TO2)
    assert Y10.decompose() == ([1, 2, 3], TO2[0:1, 0:1], TO2[1:3,
                                                             0:1], TO2[1:3,
                                                                       1:3])

    # testing miscellaneous queries
    T = Matrix([[S.Half, Rational(1, 4),
                 Rational(1, 4)], [Rational(1, 3), 0,
                                   Rational(2, 3)], [S.Half, S.Half, 0]])
    X = DiscreteMarkovChain('X', [0, 1, 2], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
    assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
    raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T))

    # testing miscellaneous queries with different state space
    X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    a = X.state_space.args[0]
    c = X.state_space.args[2]
    assert (E(X[1]**2, Eq(X[0], 1)) -
            (a**2 / 3 + 2 * c**2 / 3)).simplify() == 0
    assert (variance(X[1], Eq(X[0], 1)) -
            (2 * (-a / 3 + c / 3)**2 / 3 +
             (2 * a / 3 - 2 * c / 3)**2 / 3)).simplify() == 0
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))

    #testing queries with multiple RandomIndexedSymbols
    T = Matrix([[Rational(5, 10),
                 Rational(3, 10),
                 Rational(2, 10)],
                [Rational(2, 10),
                 Rational(7, 10),
                 Rational(1, 10)],
                [Rational(3, 10),
                 Rational(3, 10),
                 Rational(4, 10)]])
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    assert P(Eq(Y[7], Y[5]), Eq(Y[2], 0)).round(5) == Float(0.44428, 5)
    assert P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) == Float(0.36, 2)
    assert P(Le(Y[5], Y[10]), Eq(Y[4], 2)).round(6) == Float(0.583120, 6)
    assert Float(P(Eq(Y[10], Y[5]), Eq(Y[4], 1)),
                 14) == Float(1 - P(Ne(Y[10], Y[5]), Eq(Y[4], 1)), 14)
    assert Float(P(Gt(Y[8], Y[9]), Eq(Y[3], 2)),
                 14) == Float(1 - P(Le(Y[8], Y[9]), Eq(Y[3], 2)), 14)
    assert Float(P(Lt(Y[1], Y[4]), Eq(Y[0], 0)),
                 14) == Float(1 - P(Ge(Y[1], Y[4]), Eq(Y[0], 0)), 14)
    assert P(Eq(Y[5], Y[10]), Eq(Y[2], 1)) == P(Eq(Y[10], Y[5]), Eq(Y[2], 1))
    assert P(Gt(Y[1], Y[2]), Eq(Y[0], 1)) == P(Lt(Y[2], Y[1]), Eq(Y[0], 1))
    assert P(Ge(Y[7], Y[6]), Eq(Y[4], 1)) == P(Le(Y[6], Y[7]), Eq(Y[4], 1))

    #test symbolic queries
    a, b, c, d = symbols('a b c d')
    T = Matrix([[Rational(1, 10),
                 Rational(4, 10),
                 Rational(5, 10)],
                [Rational(3, 10),
                 Rational(4, 10),
                 Rational(3, 10)],
                [Rational(7, 10),
                 Rational(2, 10),
                 Rational(1, 10)]])
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    query = P(Eq(Y[a], b), Eq(Y[c], d))
    assert query.subs({
        a: 10,
        b: 2,
        c: 5,
        d: 1
    }).evalf().round(4) == P(Eq(Y[10], 2), Eq(Y[5], 1)).round(4)
    assert query.subs({
        a: 15,
        b: 0,
        c: 10,
        d: 1
    }).evalf().round(4) == P(Eq(Y[15], 0), Eq(Y[10], 1)).round(4)
    query_gt = P(Gt(Y[a], b), Eq(Y[c], d))
    query_le = P(Le(Y[a], b), Eq(Y[c], d))
    assert query_gt.subs({
        a: 5,
        b: 2,
        c: 1,
        d: 0
    }).evalf() + query_le.subs({
        a: 5,
        b: 2,
        c: 1,
        d: 0
    }).evalf() == 1
    query_ge = P(Ge(Y[a], b), Eq(Y[c], d))
    query_lt = P(Lt(Y[a], b), Eq(Y[c], d))
    assert query_ge.subs({
        a: 4,
        b: 1,
        c: 0,
        d: 2
    }).evalf() + query_lt.subs({
        a: 4,
        b: 1,
        c: 0,
        d: 2
    }).evalf() == 1

    #test issue 20078
    assert (2 * Y[1] + 3 * Y[1]).simplify() == 5 * Y[1]
    assert (2 * Y[1] - 3 * Y[1]).simplify() == -Y[1]
    assert (2 * (0.25 * Y[1])).simplify() == 0.5 * Y[1]
    assert ((2 * Y[1]) * (0.25 * Y[1])).simplify() == 0.5 * Y[1]**2
    assert (Y[1]**2 + Y[1]**3).simplify() == (Y[1] + 1) * Y[1]**2
Exemplo n.º 9
0
def test_Relational():
    assert str(Rel(x, y, "<")) == "x < y"
    assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)"
    assert str(Rel(x, y, "!=")) == "Ne(x, y)"
    assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)"
    assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)"
Exemplo n.º 10
0
def test_Complement_as_relational():
    x = Symbol('x')
    expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
    assert expr.as_relational(x) == \
        And(Le(0, x), Le(x, 1), Ne(x, 2))
Exemplo n.º 11
0
def test_issue_12251():
    assert manualintegrate(x**y, x) == Piecewise(
        (x**(y + 1) / (y + 1), Ne(y, -1)), (log(x), True))
Exemplo n.º 12
0
def test_manualintegrate_inversetrig():
    # atan
    assert manualintegrate(exp(x) / (1 + exp(2 * x)), x) == atan(exp(x))
    assert manualintegrate(1 / (4 + 9 * x**2), x) == atan(3 * x / 2) / 6
    assert manualintegrate(1 / (16 + 16 * x**2), x) == atan(x) / 16
    assert manualintegrate(1 / (4 + x**2), x) == atan(x / 2) / 2
    assert manualintegrate(1 / (1 + 4 * x**2), x) == atan(2 * x) / 2
    ra = Symbol('a', real=True)
    rb = Symbol('b', real=True)
    assert manualintegrate(1/(ra + rb*x**2), x) == \
        Piecewise((atan(x/sqrt(ra/rb))/(rb*sqrt(ra/rb)), ra/rb > 0),
                  (-acoth(x/sqrt(-ra/rb))/(rb*sqrt(-ra/rb)), And(ra/rb < 0, x**2 > -ra/rb)),
                  (-atanh(x/sqrt(-ra/rb))/(rb*sqrt(-ra/rb)), And(ra/rb < 0, x**2 < -ra/rb)))
    assert manualintegrate(1/(4 + rb*x**2), x) == \
        Piecewise((atan(x/(2*sqrt(1/rb)))/(2*rb*sqrt(1/rb)), 4/rb > 0),
                  (-acoth(x/(2*sqrt(-1/rb)))/(2*rb*sqrt(-1/rb)), And(4/rb < 0, x**2 > -4/rb)),
                  (-atanh(x/(2*sqrt(-1/rb)))/(2*rb*sqrt(-1/rb)), And(4/rb < 0, x**2 < -4/rb)))
    assert manualintegrate(1/(ra + 4*x**2), x) == \
        Piecewise((atan(2*x/sqrt(ra))/(2*sqrt(ra)), ra/4 > 0),
                  (-acoth(2*x/sqrt(-ra))/(2*sqrt(-ra)), And(ra/4 < 0, x**2 > -ra/4)),
                  (-atanh(2*x/sqrt(-ra))/(2*sqrt(-ra)), And(ra/4 < 0, x**2 < -ra/4)))
    assert manualintegrate(1 / (4 + 4 * x**2), x) == atan(x) / 4

    assert manualintegrate(1 / (a + b * x**2),
                           x) == atan(x / sqrt(a / b)) / (b * sqrt(a / b))

    # asin
    assert manualintegrate(1 / sqrt(1 - x**2), x) == asin(x)
    assert manualintegrate(1 / sqrt(4 - 4 * x**2), x) == asin(x) / 2
    assert manualintegrate(3 / sqrt(1 - 9 * x**2), x) == asin(3 * x)
    assert manualintegrate(1 / sqrt(4 - 9 * x**2),
                           x) == asin(x * Rational(3, 2)) / 3

    # asinh
    assert manualintegrate(1/sqrt(x**2 + 1), x) == \
        asinh(x)
    assert manualintegrate(1/sqrt(x**2 + 4), x) == \
        asinh(x/2)
    assert manualintegrate(1/sqrt(4*x**2 + 4), x) == \
        asinh(x)/2
    assert manualintegrate(1/sqrt(4*x**2 + 1), x) == \
        asinh(2*x)/2
    assert manualintegrate(1/sqrt(ra*x**2 + 1), x) == \
        Piecewise((asin(x*sqrt(-ra))/sqrt(-ra), ra < 0), (asinh(sqrt(ra)*x)/sqrt(ra), ra > 0))
    assert manualintegrate(1/sqrt(ra + x**2), x) == \
        Piecewise((asinh(x*sqrt(1/ra)), ra > 0), (acosh(x*sqrt(-1/ra)), ra < 0))

    # acosh
    assert manualintegrate(1/sqrt(x**2 - 1), x) == \
        acosh(x)
    assert manualintegrate(1/sqrt(x**2 - 4), x) == \
        acosh(x/2)
    assert manualintegrate(1/sqrt(4*x**2 - 4), x) == \
        acosh(x)/2
    assert manualintegrate(1/sqrt(9*x**2 - 1), x) == \
        acosh(3*x)/3
    assert manualintegrate(1/sqrt(ra*x**2 - 4), x) == \
        Piecewise((acosh(sqrt(ra)*x/2)/sqrt(ra), ra > 0))
    assert manualintegrate(1/sqrt(-ra + 4*x**2), x) == \
        Piecewise((asinh(2*x*sqrt(-1/ra))/2, -ra > 0), (acosh(2*x*sqrt(1/ra))/2, -ra < 0))

    # From https://www.wikiwand.com/en/List_of_integrals_of_inverse_trigonometric_functions
    # asin
    assert manualintegrate(asin(x), x) == x * asin(x) + sqrt(1 - x**2)
    assert manualintegrate(asin(a * x), x) == Piecewise(
        ((a * x * asin(a * x) + sqrt(-a**2 * x**2 + 1)) / a, Ne(a, 0)),
        (0, True))
    assert manualintegrate(x * asin(a * x), x) == -a * Integral(
        x**2 / sqrt(-a**2 * x**2 + 1), x) / 2 + x**2 * asin(a * x) / 2
    # acos
    assert manualintegrate(acos(x), x) == x * acos(x) - sqrt(1 - x**2)
    assert manualintegrate(acos(a * x), x) == Piecewise(
        ((a * x * acos(a * x) - sqrt(-a**2 * x**2 + 1)) / a, Ne(a, 0)),
        (pi * x / 2, True))
    assert manualintegrate(x * acos(a * x), x) == a * Integral(
        x**2 / sqrt(-a**2 * x**2 + 1), x) / 2 + x**2 * acos(a * x) / 2
    # atan
    assert manualintegrate(atan(x), x) == x * atan(x) - log(x**2 + 1) / 2
    assert manualintegrate(atan(a * x), x) == Piecewise(
        ((a * x * atan(a * x) - log(a**2 * x**2 + 1) / 2) / a, Ne(a, 0)),
        (0, True))
    assert manualintegrate(
        x * atan(a * x),
        x) == -a * (x / a**2 - atan(x / sqrt(a**(-2))) /
                    (a**4 * sqrt(a**(-2)))) / 2 + x**2 * atan(a * x) / 2
    # acsc
    assert manualintegrate(
        acsc(x), x) == x * acsc(x) + Integral(1 / (x * sqrt(1 - 1 / x**2)), x)
    assert manualintegrate(
        acsc(a * x),
        x) == x * acsc(a * x) + Integral(1 / (x * sqrt(1 - 1 /
                                                       (a**2 * x**2))), x) / a
    assert manualintegrate(x * acsc(a * x),
                           x) == x**2 * acsc(a * x) / 2 + Integral(
                               1 / sqrt(1 - 1 / (a**2 * x**2)), x) / (2 * a)
    # asec
    assert manualintegrate(
        asec(x), x) == x * asec(x) - Integral(1 / (x * sqrt(1 - 1 / x**2)), x)
    assert manualintegrate(
        asec(a * x),
        x) == x * asec(a * x) - Integral(1 / (x * sqrt(1 - 1 /
                                                       (a**2 * x**2))), x) / a
    assert manualintegrate(x * asec(a * x),
                           x) == x**2 * asec(a * x) / 2 - Integral(
                               1 / sqrt(1 - 1 / (a**2 * x**2)), x) / (2 * a)
    # acot
    assert manualintegrate(acot(x), x) == x * acot(x) + log(x**2 + 1) / 2
    assert manualintegrate(acot(a * x), x) == Piecewise(
        ((a * x * acot(a * x) + log(a**2 * x**2 + 1) / 2) / a, Ne(a, 0)),
        (pi * x / 2, True))
    assert manualintegrate(
        x * acot(a * x),
        x) == a * (x / a**2 - atan(x / sqrt(a**(-2))) /
                   (a**4 * sqrt(a**(-2)))) / 2 + x**2 * acot(a * x) / 2

    # piecewise
    assert manualintegrate(1/sqrt(ra-rb*x**2), x) == \
        Piecewise((asin(x*sqrt(rb/ra))/sqrt(rb), And(-rb < 0, ra > 0)),
                  (asinh(x*sqrt(-rb/ra))/sqrt(-rb), And(-rb > 0, ra > 0)),
                  (acosh(x*sqrt(rb/ra))/sqrt(-rb), And(-rb > 0, ra < 0)))
    assert manualintegrate(1/sqrt(ra + rb*x**2), x) == \
        Piecewise((asin(x*sqrt(-rb/ra))/sqrt(-rb), And(ra > 0, rb < 0)),
                  (asinh(x*sqrt(rb/ra))/sqrt(rb), And(ra > 0, rb > 0)),
                  (acosh(x*sqrt(-rb/ra))/sqrt(rb), And(ra < 0, rb > 0)))
Exemplo n.º 13
0
def test_new_relational():
    x = Symbol("x")

    assert Eq(x, 0) == Relational(x, 0)  # None ==> Equality
    assert Eq(x, 0) == Relational(x, 0, "==")
    assert Eq(x, 0) == Relational(x, 0, "eq")
    assert Eq(x, 0) == Equality(x, 0)

    assert Eq(x, 0) != Relational(x, 1)  # None ==> Equality
    assert Eq(x, 0) != Relational(x, 1, "==")
    assert Eq(x, 0) != Relational(x, 1, "eq")
    assert Eq(x, 0) != Equality(x, 1)

    assert Eq(x, -1) == Relational(x, -1)  # None ==> Equality
    assert Eq(x, -1) == Relational(x, -1, "==")
    assert Eq(x, -1) == Relational(x, -1, "eq")
    assert Eq(x, -1) == Equality(x, -1)
    assert Eq(x, -1) != Relational(x, 1)  # None ==> Equality
    assert Eq(x, -1) != Relational(x, 1, "==")
    assert Eq(x, -1) != Relational(x, 1, "eq")
    assert Eq(x, -1) != Equality(x, 1)

    assert Ne(x, 0) == Relational(x, 0, "!=")
    assert Ne(x, 0) == Relational(x, 0, "<>")
    assert Ne(x, 0) == Relational(x, 0, "ne")
    assert Ne(x, 0) == Unequality(x, 0)
    assert Ne(x, 0) != Relational(x, 1, "!=")
    assert Ne(x, 0) != Relational(x, 1, "<>")
    assert Ne(x, 0) != Relational(x, 1, "ne")
    assert Ne(x, 0) != Unequality(x, 1)

    assert Ge(x, 0) == Relational(x, 0, ">=")
    assert Ge(x, 0) == Relational(x, 0, "ge")
    assert Ge(x, 0) == GreaterThan(x, 0)
    assert Ge(x, 1) != Relational(x, 0, ">=")
    assert Ge(x, 1) != Relational(x, 0, "ge")
    assert Ge(x, 1) != GreaterThan(x, 0)
    assert (x >= 1) == Relational(x, 1, ">=")
    assert (x >= 1) == Relational(x, 1, "ge")
    assert (x >= 1) == GreaterThan(x, 1)
    assert (x >= 0) != Relational(x, 1, ">=")
    assert (x >= 0) != Relational(x, 1, "ge")
    assert (x >= 0) != GreaterThan(x, 1)

    assert Le(x, 0) == Relational(x, 0, "<=")
    assert Le(x, 0) == Relational(x, 0, "le")
    assert Le(x, 0) == LessThan(x, 0)
    assert Le(x, 1) != Relational(x, 0, "<=")
    assert Le(x, 1) != Relational(x, 0, "le")
    assert Le(x, 1) != LessThan(x, 0)
    assert (x <= 1) == Relational(x, 1, "<=")
    assert (x <= 1) == Relational(x, 1, "le")
    assert (x <= 1) == LessThan(x, 1)
    assert (x <= 0) != Relational(x, 1, "<=")
    assert (x <= 0) != Relational(x, 1, "le")
    assert (x <= 0) != LessThan(x, 1)

    assert Gt(x, 0) == Relational(x, 0, ">")
    assert Gt(x, 0) == Relational(x, 0, "gt")
    assert Gt(x, 0) == StrictGreaterThan(x, 0)
    assert Gt(x, 1) != Relational(x, 0, ">")
    assert Gt(x, 1) != Relational(x, 0, "gt")
    assert Gt(x, 1) != StrictGreaterThan(x, 0)
    assert (x > 1) == Relational(x, 1, ">")
    assert (x > 1) == Relational(x, 1, "gt")
    assert (x > 1) == StrictGreaterThan(x, 1)
    assert (x > 0) != Relational(x, 1, ">")
    assert (x > 0) != Relational(x, 1, "gt")
    assert (x > 0) != StrictGreaterThan(x, 1)

    assert Lt(x, 0) == Relational(x, 0, "<")
    assert Lt(x, 0) == Relational(x, 0, "lt")
    assert Lt(x, 0) == StrictLessThan(x, 0)
    assert Lt(x, 1) != Relational(x, 0, "<")
    assert Lt(x, 1) != Relational(x, 0, "lt")
    assert Lt(x, 1) != StrictLessThan(x, 0)
    assert (x < 1) == Relational(x, 1, "<")
    assert (x < 1) == Relational(x, 1, "lt")
    assert (x < 1) == StrictLessThan(x, 1)
    assert (x < 0) != Relational(x, 1, "<")
    assert (x < 0) != Relational(x, 1, "lt")
    assert (x < 0) != StrictLessThan(x, 1)

    # finally, some fuzz testing
    from random import randint
    from sympy.core.compatibility import unichr

    for i in range(100):
        while 1:
            strtype, length = (unichr, 65535) if randint(0, 1) else (chr, 255)
            relation_type = strtype(randint(0, length))
            if randint(0, 1):
                relation_type += strtype(randint(0, length))
            if relation_type not in (
                "==",
                "eq",
                "!=",
                "<>",
                "ne",
                ">=",
                "ge",
                "<=",
                "le",
                ">",
                "gt",
                "<",
                "lt",
                ":=",
                "+=",
                "-=",
                "*=",
                "/=",
                "%=",
            ):
                break

        raises(ValueError, lambda: Relational(x, 1, relation_type))
    assert all(Relational(x, 0, op).rel_op == "==" for op in ("eq", "=="))
    assert all(Relational(x, 0, op).rel_op == "!=" for op in ("ne", "<>", "!="))
    assert all(Relational(x, 0, op).rel_op == ">" for op in ("gt", ">"))
    assert all(Relational(x, 0, op).rel_op == "<" for op in ("lt", "<"))
    assert all(Relational(x, 0, op).rel_op == ">=" for op in ("ge", ">="))
    assert all(Relational(x, 0, op).rel_op == "<=" for op in ("le", "<="))
Exemplo n.º 14
0
def test_reduce_poly_inequalities_real_interval():
    assert reduce_rational_inequalities(
        [[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0)
    assert reduce_rational_inequalities(
        [[Le(x**2, 0)]], x, relational=False) == FiniteSet(0)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 0)]], x, relational=False) == S.EmptySet
    assert reduce_rational_inequalities(
        [[Ge(x**2, 0)]], x, relational=False) == \
        S.Reals if x.is_real else Interval(-oo, oo)
    assert reduce_rational_inequalities(
        [[Gt(x**2, 0)]], x, relational=False) == \
        FiniteSet(0).complement(S.Reals)
    assert reduce_rational_inequalities(
        [[Ne(x**2, 0)]], x, relational=False) == \
        FiniteSet(0).complement(S.Reals)

    assert reduce_rational_inequalities(
        [[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1)
    assert reduce_rational_inequalities(
        [[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1)
    assert reduce_rational_inequalities(
        [[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True)
    assert reduce_rational_inequalities(
        [[Ge(x**2, 1)]], x, relational=False) == \
        Union(Interval(-oo, -1), Interval(1, oo))
    assert reduce_rational_inequalities(
        [[Gt(x**2, 1)]], x, relational=False) == \
        Interval(-1, 1).complement(S.Reals)
    assert reduce_rational_inequalities(
        [[Ne(x**2, 1)]], x, relational=False) == \
        FiniteSet(-1, 1).complement(S.Reals)
    assert reduce_rational_inequalities([[Eq(
        x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf()
    assert reduce_rational_inequalities(
        [[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0)
    assert reduce_rational_inequalities([[Lt(
        x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True)
    assert reduce_rational_inequalities(
        [[Ge(x**2, 1.0)]], x, relational=False) == \
        Union(Interval(-inf, -1.0), Interval(1.0, inf))
    assert reduce_rational_inequalities(
        [[Gt(x**2, 1.0)]], x, relational=False) == \
        Union(Interval(-inf, -1.0, right_open=True),
        Interval(1.0, inf, left_open=True))
    assert reduce_rational_inequalities([[Ne(
        x**2, 1.0)]], x, relational=False) == \
        FiniteSet(-1.0, 1.0).complement(S.Reals)

    s = sqrt(2)

    assert reduce_rational_inequalities([[Lt(
        x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet
    assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge(
        x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1)
    assert reduce_rational_inequalities(
        [[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False))
    assert reduce_rational_inequalities(
        [[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False))
    assert reduce_rational_inequalities(
        [[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True))
    assert reduce_rational_inequalities(
        [[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True))
    assert reduce_rational_inequalities(
        [[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False
        ) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True),
        Interval(1, s, True, True))

    assert reduce_rational_inequalities([[Lt(x**2, -1.)]], x) is S.false
Exemplo n.º 15
0
def test__solve_inequalities():
    assert reduce_inequalities(x + y < 1, symbols=[x]) == (x < 1 - y)
    assert reduce_inequalities(x + y >= 1, symbols=[x]) == (x < oo) & (x >= -y + 1)
    assert reduce_inequalities(Eq(0, x - y), symbols=[x]) == Eq(x, y)
    assert reduce_inequalities(Ne(0, x - y), symbols=[x]) == Ne(x, y)
Exemplo n.º 16
0
 (r"a \div b", a / b),
 (r"a + b", a + b),
 (r"a + b - a", _Add(a + b, -a)),
 (r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)),
 (r"(x + y) z", _Mul(_Add(x, y), z)),
 (r"\left(x + y\right) z", _Mul(_Add(x, y), z)),
 (r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
 (r"\left(  x + y\right ) z", _Mul(_Add(x, y), z)),
 (r"\left[x + y\right] z", _Mul(_Add(x, y), z)),
 (r"\left\{x + y\right\} z", _Mul(_Add(x, y), z)),
 (r"1+1", _Add(1, 1)),
 (r"0+1", _Add(0, 1)),
 (r"1*2", _Mul(1, 2)),
 (r"0*1", _Mul(0, 1)),
 (r"x = y", Eq(x, y)),
 (r"x \neq y", Ne(x, y)),
 (r"x < y", Lt(x, y)),
 (r"x > y", Gt(x, y)),
 (r"x \leq y", Le(x, y)),
 (r"x \geq y", Ge(x, y)),
 (r"x \le y", Le(x, y)),
 (r"x \ge y", Ge(x, y)),
 (r"\lfloor x \rfloor", floor(x)),
 (r"\lceil x \rceil", ceiling(x)),
 (r"\langle x |", Bra('x')),
 (r"| x \rangle", Ket('x')),
 (r"\sin \theta", sin(theta)),
 (r"\sin(\theta)", sin(theta)),
 (r"\sin^{-1} a", asin(a)),
 (r"\sin a \cos b", _Mul(sin(a), cos(b))),
 (r"\sin \cos \theta", sin(cos(theta))),
Exemplo n.º 17
0
def test_rel_ne():
    assert Relational(x, y, '!=') == Ne(x, y)
Exemplo n.º 18
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform([x, y, z],
                       set2)) == Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform([x, y, z], set1 + set2) is true
    assert SOPform([x, y, z], set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, 3, 7, 11, 15]
    dontcares = [0, 2, 5]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1], [1, 1, 1, 1]]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [{y: 1, z: 1}, 1]
    dontcares = [[0, 0, 0, 0]]

    minterms = [[0, 0, 0]]
    raises(ValueError, lambda: SOPform([w, x, y, z], minterms))
    raises(ValueError, lambda: POSform([w, x, y, z], minterms))

    raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"]))

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic(A & (B | C)) == ans
    assert simplify_logic((A & B) | (A & C)) == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
           Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) is S.false
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
           == And(Equality(A, 3), Or(B, C))
    b = (~x & ~y & ~z) | (~x & ~y & z)
    e = And(A, b)
    assert simplify_logic(e) == A & ~x & ~y

    # check input
    ans = SOPform([x, y], [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform([x, y], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
    assert SOPform([x], [[1]], [[0]]) is true
    assert SOPform([x], [[0]], [[1]]) is true
    assert SOPform([x], [], []) is false

    raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
    assert POSform([x], [[1]], [[0]]) is true
    assert POSform([x], [[0]], [[1]]) is true
    assert POSform([x], [], []) is false

    # check working of simplify
    assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
    assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0))
    assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1))
    assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y))
    assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1))
    assert And(Eq(x - 1, 0), Eq(x, z + y),
               Eq(y + x, 0)).simplify() == And(Eq(x, 1), Eq(y, -1), Eq(z, 2))
    assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1)
    assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1)
    assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False
    assert And(Ne(x - 1, 0), Ne(x + 2,
                                2)).simplify() == And(Ne(x, 1), Ne(x, 0))
Exemplo n.º 19
0
 def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
     from sympy.functions.elementary.piecewise import Piecewise
     from sympy.core.relational import Ne
     i, j = args
     return Piecewise((0, Ne(i, j)), (1, True))
Exemplo n.º 20
0
def test_simplify_relational():
    assert simplify(x * (y + 1) - x * y - x + 1 < x) == (x > 1)
    assert simplify(x * (y + 1) - x * y - x - 1 < x) == (x > -1)
    assert simplify(x < x * (y + 1) - x * y - x + 1) == (x < 1)
    r = S.One < x
    # canonical operations are not the same as simplification,
    # so if there is no simplification, canonicalization will
    # be done unless the measure forbids it
    assert simplify(r) == r.canonical
    assert simplify(r, ratio=0) != r.canonical
    # this is not a random test; in _eval_simplify
    # this will simplify to S.false and that is the
    # reason for the 'if r.is_Relational' in Relational's
    # _eval_simplify routine
    assert simplify(-(2**(pi * Rational(3, 2)) + 6**pi)**(1 / pi) + 2 *
                    (2**(pi / 2) + 3**pi)**(1 / pi) < 0) is S.false
    # canonical at least
    assert Eq(y, x).simplify() == Eq(x, y)
    assert Eq(x - 1, 0).simplify() == Eq(x, 1)
    assert Eq(x - 1, x).simplify() == S.false
    assert Eq(2 * x - 1, x).simplify() == Eq(x, 1)
    assert Eq(2 * x, 4).simplify() == Eq(x, 2)
    z = cos(1)**2 + sin(1)**2 - 1  # z.is_zero is None
    assert Eq(z * x, 0).simplify() == S.true

    assert Ne(y, x).simplify() == Ne(x, y)
    assert Ne(x - 1, 0).simplify() == Ne(x, 1)
    assert Ne(x - 1, x).simplify() == S.true
    assert Ne(2 * x - 1, x).simplify() == Ne(x, 1)
    assert Ne(2 * x, 4).simplify() == Ne(x, 2)
    assert Ne(z * x, 0).simplify() == S.false

    # No real-valued assumptions
    assert Ge(y, x).simplify() == Le(x, y)
    assert Ge(x - 1, 0).simplify() == Ge(x, 1)
    assert Ge(x - 1, x).simplify() == S.false
    assert Ge(2 * x - 1, x).simplify() == Ge(x, 1)
    assert Ge(2 * x, 4).simplify() == Ge(x, 2)
    assert Ge(z * x, 0).simplify() == S.true
    assert Ge(x, -2).simplify() == Ge(x, -2)
    assert Ge(-x, -2).simplify() == Le(x, 2)
    assert Ge(x, 2).simplify() == Ge(x, 2)
    assert Ge(-x, 2).simplify() == Le(x, -2)

    assert Le(y, x).simplify() == Ge(x, y)
    assert Le(x - 1, 0).simplify() == Le(x, 1)
    assert Le(x - 1, x).simplify() == S.true
    assert Le(2 * x - 1, x).simplify() == Le(x, 1)
    assert Le(2 * x, 4).simplify() == Le(x, 2)
    assert Le(z * x, 0).simplify() == S.true
    assert Le(x, -2).simplify() == Le(x, -2)
    assert Le(-x, -2).simplify() == Ge(x, 2)
    assert Le(x, 2).simplify() == Le(x, 2)
    assert Le(-x, 2).simplify() == Ge(x, -2)

    assert Gt(y, x).simplify() == Lt(x, y)
    assert Gt(x - 1, 0).simplify() == Gt(x, 1)
    assert Gt(x - 1, x).simplify() == S.false
    assert Gt(2 * x - 1, x).simplify() == Gt(x, 1)
    assert Gt(2 * x, 4).simplify() == Gt(x, 2)
    assert Gt(z * x, 0).simplify() == S.false
    assert Gt(x, -2).simplify() == Gt(x, -2)
    assert Gt(-x, -2).simplify() == Lt(x, 2)
    assert Gt(x, 2).simplify() == Gt(x, 2)
    assert Gt(-x, 2).simplify() == Lt(x, -2)

    assert Lt(y, x).simplify() == Gt(x, y)
    assert Lt(x - 1, 0).simplify() == Lt(x, 1)
    assert Lt(x - 1, x).simplify() == S.true
    assert Lt(2 * x - 1, x).simplify() == Lt(x, 1)
    assert Lt(2 * x, 4).simplify() == Lt(x, 2)
    assert Lt(z * x, 0).simplify() == S.false
    assert Lt(x, -2).simplify() == Lt(x, -2)
    assert Lt(-x, -2).simplify() == Gt(x, 2)
    assert Lt(x, 2).simplify() == Lt(x, 2)
    assert Lt(-x, 2).simplify() == Gt(x, -2)
Exemplo n.º 21
0
def test_ContinuousMarkovChain():
    T1 = Matrix([[S(-2), S(2), S.Zero], [S.Zero, S.NegativeOne, S.One],
                 [Rational(3, 2), Rational(3, 2),
                  S(-3)]])
    C1 = ContinuousMarkovChain('C', [0, 1, 2], T1)
    assert C1.limiting_distribution() == ImmutableMatrix(
        [[Rational(3, 19), Rational(12, 19),
          Rational(4, 19)]])

    T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero],
                 [S.Zero, S.One, -S.One]])
    C2 = ContinuousMarkovChain('C', [0, 1, 2], T2)
    A, t = C2.generator_matrix, symbols('t', positive=True)
    assert C2.transition_probabilities(A)(t) == Matrix(
        [[S.Half + exp(-2 * t) / 2, S.Half - exp(-2 * t) / 2, 0],
         [S.Half - exp(-2 * t) / 2, S.Half + exp(-2 * t) / 2, 0],
         [
             S.Half - exp(-t) + exp(-2 * t) / 2, S.Half - exp(-2 * t) / 2,
             exp(-t)
         ]])
    with ignore_warnings(
            UserWarning):  ### TODO: Restore tests once warnings are removed
        assert P(Eq(C2(1), 1), Eq(C2(0), 1),
                 evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1))
    assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2) / 2 + S.Half
    assert P(
        Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
        Eq(P(Eq(C2(1), 0)),
           S.Half)) == (Rational(1, 4) - exp(-2) / 4) * (exp(-2) / 2 + S.Half)
    assert P(
        Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) |
        (Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
        Eq(P(Eq(C2(1), 0)), Rational(1, 4))
        & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One
    assert E(C2(Rational(3, 2)),
             Eq(C2(0), 2)) == -exp(-3) / 2 + 2 * exp(Rational(-3, 2)) + S.Half
    assert variance(C2(Rational(3, 2)), Eq(
        C2(0),
        1)) == ((S.Half - exp(-3) / 2)**2 * (exp(-3) / 2 + S.Half) +
                (Rational(-1, 2) - exp(-3) / 2)**2 * (S.Half - exp(-3) / 2))
    raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half)))
    assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)),
                              S.Half)) == Probability(Eq(C2(1), 0))
    TS1 = MatrixSymbol('G', 3, 3)
    CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1)
    A = CS1.generator_matrix
    assert CS1.transition_probabilities(A)(t) == exp(t * A)

    C3 = ContinuousMarkovChain(
        'C', [Symbol('0'), Symbol('1'), Symbol('2')], T2)
    assert P(Eq(C3(1), 1), Eq(C3(0), 1)) == exp(-2) / 2 + S.Half
    assert P(Eq(C3(1), Symbol('1')), Eq(C3(0),
                                        Symbol('1'))) == exp(-2) / 2 + S.Half

    #test probability queries
    G = Matrix([[-S(1), Rational(1, 10),
                 Rational(9, 10)], [Rational(2, 5), -S(1),
                                    Rational(3, 5)],
                [Rational(1, 2), Rational(1, 2), -S(1)]])
    C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
    assert P(Eq(C(7.385), C(3.19)), Eq(C(0.862),
                                       0)).round(5) == Float(0.35469, 5)
    assert P(Gt(C(98.715), C(19.807)), Eq(C(11.314),
                                          2)).round(5) == Float(0.32452, 5)
    assert P(Le(C(5.9), C(10.112)), Eq(C(4), 1)).round(6) == Float(0.675214, 6)
    assert Float(P(Eq(C(7.32), C(2.91)), Eq(C(2.63), 1)),
                 14) == Float(1 - P(Ne(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14)
    assert Float(P(Gt(C(3.36), C(1.101)), Eq(C(0.8), 2)),
                 14) == Float(1 - P(Le(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14)
    assert Float(P(Lt(C(4.9), C(2.79)), Eq(C(1.61), 0)),
                 14) == Float(1 - P(Ge(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14)
    assert P(Eq(C(5.243), C(10.912)), Eq(C(2.174),
                                         1)) == P(Eq(C(10.912), C(5.243)),
                                                  Eq(C(2.174), 1))
    assert P(Gt(C(2.344), C(9.9)), Eq(C(1.102),
                                      1)) == P(Lt(C(9.9), C(2.344)),
                                               Eq(C(1.102), 1))
    assert P(Ge(C(7.87), C(1.008)), Eq(C(0.153),
                                       1)) == P(Le(C(1.008), C(7.87)),
                                                Eq(C(0.153), 1))

    #test symbolic queries
    a, b, c, d = symbols('a b c d')
    query = P(Eq(C(a), b), Eq(C(c), d))
    assert query.subs({
        a: 3.65,
        b: 2,
        c: 1.78,
        d: 1
    }).evalf().round(10) == P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10)
    query_gt = P(Gt(C(a), b), Eq(C(c), d))
    query_le = P(Le(C(a), b), Eq(C(c), d))
    assert query_gt.subs({
        a: 13.2,
        b: 0,
        c: 3.29,
        d: 2
    }).evalf() + query_le.subs({
        a: 13.2,
        b: 0,
        c: 3.29,
        d: 2
    }).evalf() == 1
    query_ge = P(Ge(C(a), b), Eq(C(c), d))
    query_lt = P(Lt(C(a), b), Eq(C(c), d))
    assert query_ge.subs({
        a: 7.43,
        b: 1,
        c: 1.45,
        d: 0
    }).evalf() + query_lt.subs({
        a: 7.43,
        b: 1,
        c: 1.45,
        d: 0
    }).evalf() == 1

    #test issue 20078
    assert (2 * C(1) + 3 * C(1)).simplify() == 5 * C(1)
    assert (2 * C(1) - 3 * C(1)).simplify() == -C(1)
    assert (2 * (0.25 * C(1))).simplify() == 0.5 * C(1)
    assert (2 * C(1) * 0.25 * C(1)).simplify() == 0.5 * C(1)**2
    assert (C(1)**2 + C(1)**3).simplify() == (C(1) + 1) * C(1)**2
Exemplo n.º 22
0
def test_relational_simplification():
    w, x, y, z = symbols('w x y z', real=True)
    d, e = symbols('d e', real=False)
    # Test all combinations or sign and order
    assert Or(x >= y, x < y).simplify() == S.true
    assert Or(x >= y, y > x).simplify() == S.true
    assert Or(x >= y, -x > -y).simplify() == S.true
    assert Or(x >= y, -y < -x).simplify() == S.true
    assert Or(-x <= -y, x < y).simplify() == S.true
    assert Or(-x <= -y, -x > -y).simplify() == S.true
    assert Or(-x <= -y, y > x).simplify() == S.true
    assert Or(-x <= -y, -y < -x).simplify() == S.true
    assert Or(y <= x, x < y).simplify() == S.true
    assert Or(y <= x, y > x).simplify() == S.true
    assert Or(y <= x, -x > -y).simplify() == S.true
    assert Or(y <= x, -y < -x).simplify() == S.true
    assert Or(-y >= -x, x < y).simplify() == S.true
    assert Or(-y >= -x, y > x).simplify() == S.true
    assert Or(-y >= -x, -x > -y).simplify() == S.true
    assert Or(-y >= -x, -y < -x).simplify() == S.true

    assert Or(x < y, x >= y).simplify() == S.true
    assert Or(y > x, x >= y).simplify() == S.true
    assert Or(-x > -y, x >= y).simplify() == S.true
    assert Or(-y < -x, x >= y).simplify() == S.true
    assert Or(x < y, -x <= -y).simplify() == S.true
    assert Or(-x > -y, -x <= -y).simplify() == S.true
    assert Or(y > x, -x <= -y).simplify() == S.true
    assert Or(-y < -x, -x <= -y).simplify() == S.true
    assert Or(x < y, y <= x).simplify() == S.true
    assert Or(y > x, y <= x).simplify() == S.true
    assert Or(-x > -y, y <= x).simplify() == S.true
    assert Or(-y < -x, y <= x).simplify() == S.true
    assert Or(x < y, -y >= -x).simplify() == S.true
    assert Or(y > x, -y >= -x).simplify() == S.true
    assert Or(-x > -y, -y >= -x).simplify() == S.true
    assert Or(-y < -x, -y >= -x).simplify() == S.true

    # Some other tests
    assert Or(x >= y, w < z, x <= y).simplify() == S.true
    assert And(x >= y, x < y).simplify() == S.false
    assert Or(x >= y, Eq(y, x)).simplify() == (x >= y)
    assert And(x >= y, Eq(y, x)).simplify() == Eq(x, y)
    assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \
        (Eq(x, y) & (x >= 1) & (y >= 5) & (y > z))
    assert Or(Eq(x, y), x >= y, w < y, z < y).simplify() == \
        (x >= y) | (y > z) | (w < y)
    assert And(Eq(x, y), x >= y, w < y, y >= z, z < y).simplify() == \
        Eq(x, y) & (y > z) & (w < y)
    # assert And(Eq(x, y), x >= y, w < y, y >= z, z < y).simplify(relational_minmax=True) == \
    #    And(Eq(x, y), y > Max(w, z))
    # assert Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify(relational_minmax=True) == \
    #    (Eq(x, y) | (x >= 1) | (y > Min(2, z)))
    assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \
        (Eq(x, y) & (x >= 1) & (y >= 5) & (y > z))
    assert (Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)).simplify() == \
        (Eq(x, y) & Eq(d, e) & (d >= e))
    assert And(Eq(x, y), Eq(x, -y)).simplify() == And(Eq(x, 0), Eq(y, 0))
    assert Xor(x >= y, x <= y).simplify() == Ne(x, y)
    assert And(x > 1, x < -1, Eq(x, y)).simplify() == S.false
    # From #16690
    assert And(x >= y, Eq(y, 0)).simplify() == And(x >= 0, Eq(y, 0))
Exemplo n.º 23
0
def test_issue_9778():
    assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)
    assert solveset(x**(S(3) / 5) + 1, x, S.Reals) == S.EmptySet
    assert solveset(x**3 + y, x, S.Reals) == Intersection(Interval(-oo, oo), \
        FiniteSet((-y)**(S(1)/3)*Piecewise((1, Ne(-im(y), 0)), ((-1)**(S(2)/3), -y < 0), (1, True))))
Exemplo n.º 24
0
def test_frac():
    assert isinstance(frac(x), frac)
    assert frac(oo) == AccumBounds(0, 1)
    assert frac(-oo) == AccumBounds(0, 1)
    assert frac(zoo) is nan

    assert frac(n) == 0
    assert frac(nan) is nan
    assert frac(Rational(4, 3)) == Rational(1, 3)
    assert frac(-Rational(4, 3)) == Rational(2, 3)
    assert frac(Rational(-4, 3)) == Rational(2, 3)

    r = Symbol('r', real=True)
    assert frac(I*r) == I*frac(r)
    assert frac(1 + I*r) == I*frac(r)
    assert frac(0.5 + I*r) == 0.5 + I*frac(r)
    assert frac(n + I*r) == I*frac(r)
    assert frac(n + I*k) == 0
    assert unchanged(frac, x + I*x)
    assert frac(x + I*n) == frac(x)

    assert frac(x).rewrite(floor) == x - floor(x)
    assert frac(x).rewrite(ceiling) == x + ceiling(-x)
    assert frac(y).rewrite(floor).subs(y, pi) == frac(pi)
    assert frac(y).rewrite(floor).subs(y, -E) == frac(-E)
    assert frac(y).rewrite(ceiling).subs(y, -pi) == frac(-pi)
    assert frac(y).rewrite(ceiling).subs(y, E) == frac(E)

    assert Eq(frac(y), y - floor(y))
    assert Eq(frac(y), y + ceiling(-y))

    r = Symbol('r', real=True)
    p_i = Symbol('p_i', integer=True, positive=True)
    n_i = Symbol('p_i', integer=True, negative=True)
    np_i = Symbol('np_i', integer=True, nonpositive=True)
    nn_i = Symbol('nn_i', integer=True, nonnegative=True)
    p_r = Symbol('p_r', positive=True)
    n_r = Symbol('n_r', negative=True)
    np_r = Symbol('np_r', real=True, nonpositive=True)
    nn_r = Symbol('nn_r', real=True, nonnegative=True)

    # Real frac argument, integer rhs
    assert frac(r) <= p_i
    assert not frac(r) <= n_i
    assert (frac(r) <= np_i).has(Le)
    assert (frac(r) <= nn_i).has(Le)
    assert frac(r) < p_i
    assert not frac(r) < n_i
    assert not frac(r) < np_i
    assert (frac(r) < nn_i).has(Lt)
    assert not frac(r) >= p_i
    assert frac(r) >= n_i
    assert frac(r) >= np_i
    assert (frac(r) >= nn_i).has(Ge)
    assert not frac(r) > p_i
    assert frac(r) > n_i
    assert (frac(r) > np_i).has(Gt)
    assert (frac(r) > nn_i).has(Gt)

    assert not Eq(frac(r), p_i)
    assert not Eq(frac(r), n_i)
    assert Eq(frac(r), np_i).has(Eq)
    assert Eq(frac(r), nn_i).has(Eq)

    assert Ne(frac(r), p_i)
    assert Ne(frac(r), n_i)
    assert Ne(frac(r), np_i).has(Ne)
    assert Ne(frac(r), nn_i).has(Ne)


    # Real frac argument, real rhs
    assert (frac(r) <= p_r).has(Le)
    assert not frac(r) <= n_r
    assert (frac(r) <= np_r).has(Le)
    assert (frac(r) <= nn_r).has(Le)
    assert (frac(r) < p_r).has(Lt)
    assert not frac(r) < n_r
    assert not frac(r) < np_r
    assert (frac(r) < nn_r).has(Lt)
    assert (frac(r) >= p_r).has(Ge)
    assert frac(r) >= n_r
    assert frac(r) >= np_r
    assert (frac(r) >= nn_r).has(Ge)
    assert (frac(r) > p_r).has(Gt)
    assert frac(r) > n_r
    assert (frac(r) > np_r).has(Gt)
    assert (frac(r) > nn_r).has(Gt)

    assert not Eq(frac(r), n_r)
    assert Eq(frac(r), p_r).has(Eq)
    assert Eq(frac(r), np_r).has(Eq)
    assert Eq(frac(r), nn_r).has(Eq)

    assert Ne(frac(r), p_r).has(Ne)
    assert Ne(frac(r), n_r)
    assert Ne(frac(r), np_r).has(Ne)
    assert Ne(frac(r), nn_r).has(Ne)

    # Real frac argument, +/- oo rhs
    assert frac(r) < oo
    assert frac(r) <= oo
    assert not frac(r) > oo
    assert not frac(r) >= oo

    assert not frac(r) < -oo
    assert not frac(r) <= -oo
    assert frac(r) > -oo
    assert frac(r) >= -oo

    assert frac(r) < 1
    assert frac(r) <= 1
    assert not frac(r) > 1
    assert not frac(r) >= 1

    assert not frac(r) < 0
    assert (frac(r) <= 0).has(Le)
    assert (frac(r) > 0).has(Gt)
    assert frac(r) >= 0

    # Some test for numbers
    assert frac(r) <= sqrt(2)
    assert (frac(r) <= sqrt(3) - sqrt(2)).has(Le)
    assert not frac(r) <= sqrt(2) - sqrt(3)
    assert not frac(r) >= sqrt(2)
    assert (frac(r) >= sqrt(3) - sqrt(2)).has(Ge)
    assert frac(r) >= sqrt(2) - sqrt(3)

    assert not Eq(frac(r), sqrt(2))
    assert Eq(frac(r), sqrt(3) - sqrt(2)).has(Eq)
    assert not Eq(frac(r), sqrt(2) - sqrt(3))
    assert Ne(frac(r), sqrt(2))
    assert Ne(frac(r), sqrt(3) - sqrt(2)).has(Ne)
    assert Ne(frac(r), sqrt(2) - sqrt(3))

    assert frac(p_i, evaluate=False).is_zero
    assert frac(p_i, evaluate=False).is_finite
    assert frac(p_i, evaluate=False).is_integer
    assert frac(p_i, evaluate=False).is_real
    assert frac(r).is_finite
    assert frac(r).is_real
    assert frac(r).is_zero is None
    assert frac(r).is_integer is None

    assert frac(oo).is_finite
    assert frac(oo).is_real
Exemplo n.º 25
0
def test_issue_15847():
    a = Ne(x * (x + y), x**2 + x * y)
    assert simplify(a) == False
Exemplo n.º 26
0
 ("a \\div b", a / b),
 ("a + b", a + b),
 ("a + b - a", _Add(a + b, -a)),
 ("a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)),
 ("(x + y) z", _Mul(_Add(x, y), z)),
 ("\\left(x + y\\right) z", _Mul(_Add(x, y), z)),
 ("\\left( x + y\\right ) z", _Mul(_Add(x, y), z)),
 ("\\left(  x + y\\right ) z", _Mul(_Add(x, y), z)),
 ("\\left[x + y\\right] z", _Mul(_Add(x, y), z)),
 ("\\left\\{x + y\\right\\} z", _Mul(_Add(x, y), z)),
 ("1+1", Add(1, 1, evaluate=False)),
 ("0+1", Add(0, 1, evaluate=False)),
 ("1*2", Mul(1, 2, evaluate=False)),
 ("0*1", Mul(0, 1, evaluate=False)),
 ("x = y", Eq(x, y)),
 ("x \\neq y", Ne(x, y)),
 ("x < y", Lt(x, y)),
 ("x > y", Gt(x, y)),
 ("x \\leq y", Le(x, y)),
 ("x \\geq y", Ge(x, y)),
 ("x \\le y", Le(x, y)),
 ("x \\ge y", Ge(x, y)),
 ("\\lfloor x \\rfloor", floor(x)),
 ("\\lceil x \\rceil", ceiling(x)),
 ("\\langle x |", Bra('x')),
 ("| x \\rangle", Ket('x')),
 ("\\sin \\theta", sin(theta)),
 ("\\sin(\\theta)", sin(theta)),
 ("\\sin^{-1} a", asin(a)),
 ("\\sin a \\cos b", _Mul(sin(a), cos(b))),
 ("\\sin \\cos \\theta", sin(cos(theta))),
Exemplo n.º 27
0
def test_rel_ne():
    assert Relational(x, y, '!=') == Ne(x, y)

    # issue 6116
    p = Symbol('p', positive=True)
    assert Ne(p, 0) is S.true
Exemplo n.º 28
0
def _solve_inequality(ie, s, linear=False):
    """Return the inequality with s isolated on the left, if possible.
    If the relationship is non-linear, a solution involving And or Or
    may be returned. False or True are returned if the relationship
    is never True or always True, respectively.

    If `linear` is True (default is False) an `s`-dependent expression
    will be isoloated on the left, if possible
    but it will not be solved for `s` unless the expression is linear
    in `s`. Furthermore, only "safe" operations which don't change the
    sense of the relationship are applied: no division by an unsigned
    value is attempted unless the relationship involves Eq or Ne and
    no division by a value not known to be nonzero is ever attempted.

    Examples
    ========

    >>> from sympy import Eq, Symbol
    >>> from sympy.solvers.inequalities import _solve_inequality as f
    >>> from sympy.abc import x, y

    For linear expressions, the symbol can be isolated:

    >>> f(x - 2 < 0, x)
    x < 2
    >>> f(-x - 6 < x, x)
    x > -3

    Sometimes nonlinear relationships will be False

    >>> f(x**2 + 4 < 0, x)
    False

    Or they may involve more than one region of values:

    >>> f(x**2 - 4 < 0, x)
    (-2 < x) & (x < 2)

    To restrict the solution to a relational, set linear=True
    and only the x-dependent portion will be isolated on the left:

    >>> f(x**2 - 4 < 0, x, linear=True)
    x**2 < 4

    Division of only nonzero quantities is allowed, so x cannot
    be isolated by dividing by y:

    >>> y.is_nonzero is None  # it is unknown whether it is 0 or not
    True
    >>> f(x*y < 1, x)
    x*y < 1

    And while an equality (or unequality) still holds after dividing by a
    non-zero quantity

    >>> nz = Symbol('nz', nonzero=True)
    >>> f(Eq(x*nz, 1), x)
    Eq(x, 1/nz)

    the sign must be known for other inequalities involving > or <:

    >>> f(x*nz <= 1, x)
    nz*x <= 1
    >>> p = Symbol('p', positive=True)
    >>> f(x*p <= 1, x)
    x <= 1/p

    When there are denominators in the original expression that
    are removed by expansion, conditions for them will be returned
    as part of the result:

    >>> f(x < x*(2/x - 1), x)
    (x < 1) & Ne(x, 0)
    """
    from sympy.solvers.solvers import denoms
    if s not in ie.free_symbols:
        return ie
    if ie.rhs == s:
        ie = ie.reversed
    if ie.lhs == s and s not in ie.rhs.free_symbols:
        return ie
    expr = ie.lhs - ie.rhs
    rv = None
    try:
        p = Poly(expr, s)
        if p.degree() == 0:
            rv = ie.func(p.as_expr(), 0)
        elif not linear and p.degree() > 1:
            # handle in except clause
            raise NotImplementedError
    except (PolynomialError, NotImplementedError):
        if not linear:
            try:
                return reduce_rational_inequalities([[ie]], s)
            except PolynomialError:
                return solve_univariate_inequality(ie, s)
        else:
            p = Poly(expr)

    e = expanded = p.as_expr()  # this is in exanded form
    if rv is None:
        # Do a safe inversion of e, moving non-s terms
        # to the rhs and dividing by a nonzero factor if
        # the relational is Eq/Ne; for other relationals
        # the sign must also be positive or negative
        rhs = 0
        b, ax = e.as_independent(s, as_Add=True)
        e -= b
        rhs -= b
        ef = factor_terms(e)
        a, e = ef.as_independent(s, as_Add=False)
        if (a.is_zero != False or  # don't divide by potential 0
                a.is_negative == a.is_positive == None
                and  # if sign is not known then
                ie.rel_op not in ('!=', '==')):  # reject if not Eq/Ne
            e = ef
            a = S.One
        rhs /= a
        if a.is_positive:
            rv = ie.func(e, rhs)
        else:
            rv = ie.reversed.func(e, rhs)
    # return conditions under which the value is
    # valid, too.
    conds = [rv]
    beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs)
    current_denoms = denoms(expanded)
    for d in beginning_denoms - current_denoms:
        conds.append(_solve_inequality(Ne(d, 0), s, linear=linear))
    return And(*conds)
Exemplo n.º 29
0
def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3,
                     degree_offset=0, unnecessary_permutations=None,
                     _try_heurisch=None):
    """
    A wrapper around the heurisch integration algorithm.

    Explanation
    ===========

    This method takes the result from heurisch and checks for poles in the
    denominator. For each of these poles, the integral is reevaluated, and
    the final integration result is given in terms of a Piecewise.

    Examples
    ========

    >>> from sympy import cos, symbols
    >>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper
    >>> n, x = symbols('n x')
    >>> heurisch(cos(n*x), x)
    sin(n*x)/n
    >>> heurisch_wrapper(cos(n*x), x)
    Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True))

    See Also
    ========

    heurisch
    """
    from sympy.solvers.solvers import solve, denoms
    f = sympify(f)
    if not f.has_free(x):
        return f*x

    res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset,
                   unnecessary_permutations, _try_heurisch)
    if not isinstance(res, Basic):
        return res
    # We consider each denominator in the expression, and try to find
    # cases where one or more symbolic denominator might be zero. The
    # conditions for these cases are stored in the list slns.
    slns = []
    for d in denoms(res):
        try:
            slns += solve(d, dict=True, exclude=(x,))
        except NotImplementedError:
            pass
    if not slns:
        return res
    slns = list(uniq(slns))
    # Remove the solutions corresponding to poles in the original expression.
    slns0 = []
    for d in denoms(f):
        try:
            slns0 += solve(d, dict=True, exclude=(x,))
        except NotImplementedError:
            pass
    slns = [s for s in slns if s not in slns0]
    if not slns:
        return res
    if len(slns) > 1:
        eqs = []
        for sub_dict in slns:
            eqs.extend([Eq(key, value) for key, value in sub_dict.items()])
        slns = solve(eqs, dict=True, exclude=(x,)) + slns
    # For each case listed in the list slns, we reevaluate the integral.
    pairs = []
    for sub_dict in slns:
        expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries,
                        degree_offset, unnecessary_permutations,
                        _try_heurisch)
        cond = And(*[Eq(key, value) for key, value in sub_dict.items()])
        generic = Or(*[Ne(key, value) for key, value in sub_dict.items()])
        if expr is None:
            expr = integrate(f.subs(sub_dict),x)
        pairs.append((expr, cond))
    # If there is one condition, put the generic case first. Otherwise,
    # doing so may lead to longer Piecewise formulas
    if len(pairs) == 1:
        pairs = [(heurisch(f, x, rewrite, hints, mappings, retries,
                              degree_offset, unnecessary_permutations,
                              _try_heurisch),
                              generic),
                 (pairs[0][0], True)]
    else:
        pairs.append((heurisch(f, x, rewrite, hints, mappings, retries,
                              degree_offset, unnecessary_permutations,
                              _try_heurisch),
                              True))
    return Piecewise(*pairs)
Exemplo n.º 30
0
def test_new_relational():
    x = Symbol('x')

    assert Eq(x) == Relational(x, 0)       # None ==> Equality
    assert Eq(x) == Relational(x, 0, '==')
    assert Eq(x) == Relational(x, 0, 'eq')
    assert Eq(x) == Equality(x, 0)
    assert Eq(x, -1) == Relational(x, -1)       # None ==> Equality
    assert Eq(x, -1) == Relational(x, -1, '==')
    assert Eq(x, -1) == Relational(x, -1, 'eq')
    assert Eq(x, -1) == Equality(x, -1)
    assert Eq(x) != Relational(x, 1)       # None ==> Equality
    assert Eq(x) != Relational(x, 1, '==')
    assert Eq(x) != Relational(x, 1, 'eq')
    assert Eq(x) != Equality(x, 1)
    assert Eq(x, -1) != Relational(x, 1)       # None ==> Equality
    assert Eq(x, -1) != Relational(x, 1, '==')
    assert Eq(x, -1) != Relational(x, 1, 'eq')
    assert Eq(x, -1) != Equality(x, 1)

    assert Ne(x, 0) == Relational(x, 0, '!=')
    assert Ne(x, 0) == Relational(x, 0, '<>')
    assert Ne(x, 0) == Relational(x, 0, 'ne')
    assert Ne(x, 0) == Unequality(x, 0)
    assert Ne(x, 0) != Relational(x, 1, '!=')
    assert Ne(x, 0) != Relational(x, 1, '<>')
    assert Ne(x, 0) != Relational(x, 1, 'ne')
    assert Ne(x, 0) != Unequality(x, 1)

    assert Ge(x, 0) == Relational(x, 0, '>=')
    assert Ge(x, 0) == Relational(x, 0, 'ge')
    assert Ge(x, 0) == GreaterThan(x, 0)
    assert Ge(x, 1) != Relational(x, 0, '>=')
    assert Ge(x, 1) != Relational(x, 0, 'ge')
    assert Ge(x, 1) != GreaterThan(x, 0)
    assert (x >= 1) == Relational(x, 1, '>=')
    assert (x >= 1) == Relational(x, 1, 'ge')
    assert (x >= 1) == GreaterThan(x, 1)
    assert (x >= 0) != Relational(x, 1, '>=')
    assert (x >= 0) != Relational(x, 1, 'ge')
    assert (x >= 0) != GreaterThan(x, 1)

    assert Le(x, 0) == Relational(x, 0, '<=')
    assert Le(x, 0) == Relational(x, 0, 'le')
    assert Le(x, 0) == LessThan(x, 0)
    assert Le(x, 1) != Relational(x, 0, '<=')
    assert Le(x, 1) != Relational(x, 0, 'le')
    assert Le(x, 1) != LessThan(x, 0)
    assert (x <= 1) == Relational(x, 1, '<=')
    assert (x <= 1) == Relational(x, 1, 'le')
    assert (x <= 1) == LessThan(x, 1)
    assert (x <= 0) != Relational(x, 1, '<=')
    assert (x <= 0) != Relational(x, 1, 'le')
    assert (x <= 0) != LessThan(x, 1)

    assert Gt(x, 0) == Relational(x, 0, '>')
    assert Gt(x, 0) == Relational(x, 0, 'gt')
    assert Gt(x, 0) == StrictGreaterThan(x, 0)
    assert Gt(x, 1) != Relational(x, 0, '>')
    assert Gt(x, 1) != Relational(x, 0, 'gt')
    assert Gt(x, 1) != StrictGreaterThan(x, 0)
    assert (x > 1) == Relational(x, 1, '>')
    assert (x > 1) == Relational(x, 1, 'gt')
    assert (x > 1) == StrictGreaterThan(x, 1)
    assert (x > 0) != Relational(x, 1, '>')
    assert (x > 0) != Relational(x, 1, 'gt')
    assert (x > 0) != StrictGreaterThan(x, 1)

    assert Lt(x, 0) == Relational(x, 0, '<')
    assert Lt(x, 0) == Relational(x, 0, 'lt')
    assert Lt(x, 0) == StrictLessThan(x, 0)
    assert Lt(x, 1) != Relational(x, 0, '<')
    assert Lt(x, 1) != Relational(x, 0, 'lt')
    assert Lt(x, 1) != StrictLessThan(x, 0)
    assert (x < 1) == Relational(x, 1, '<')
    assert (x < 1) == Relational(x, 1, 'lt')
    assert (x < 1) == StrictLessThan(x, 1)
    assert (x < 0) != Relational(x, 1, '<')
    assert (x < 0) != Relational(x, 1, 'lt')
    assert (x < 0) != StrictLessThan(x, 1)

    # finally, some fuzz testing
    from random import randint
    for i in range(100):
        while 1:
            if sys.version_info[0] >= 3:
                strtype, length = (chr, 65535) if randint(0, 1) else (chr, 255)
            else:
                strtype, length = (unichr, 65535) if randint(0, 1) else (chr, 255)
            relation_type = strtype( randint(0, length) )
            if randint(0, 1):
                relation_type += strtype( randint(0, length) )
            if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge',
                                     '<=', 'le', '>', 'gt', '<', 'lt'):
                break

        raises(ValueError, lambda: Relational(x, 1, relation_type))