Exemplo n.º 1
0
def _sqrt_match(p):
    """Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to
    matching, sqrt(r) also has then maximal sqrt_depth among addends of p.

    Examples
    ========
    >>> from sympy.functions.elementary.miscellaneous import sqrt
    >>> from sympy.simplify.sqrtdenest import _sqrt_match
    >>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) +  2*sqrt(1+sqrt(5)))
    [1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)]
    """

    p = _mexpand(p)
    if p.is_Number:
        res = (p, S.Zero, S.Zero)
    elif p.is_Add:
        pargs = list(p.args)
        # to make the process canonical, the argument is included in the tuple
        # so when the max is selected, it will be the largest arg having a
        # given depth
        v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)]
        nmax = max(v)
        if nmax[0] == 0:
            res = []
        else:
            depth, _, i = nmax
            r = pargs.pop(i)
            a = Add._from_args(pargs)
            b = S.One
            if r.is_Mul:
                bv = []
                rv = []
                for x in r.args:
                    if sqrt_depth(x) < depth:
                        bv.append(x)
                    else:
                        rv.append(x)

                b = Mul._from_args(bv)
                r = Mul._from_args(rv)
            res = (a, b, r**2)
    else:
        b, r = p.as_coeff_Mul()
        if is_sqrt(r):
            res = (S.Zero, b, r**2)
        else:
            res = []
    return list(res)
Exemplo n.º 2
0
def _sqrt_symbolic_denest(a, b, r):
    """Given an expression, sqrt(a + b*sqrt(b)), return the denested
    expression or None.

    Algorithm:
    If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in ``a`` with
    (y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and
    (cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as
    sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2).

    Examples
    ========

    >>> from sympy.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest
    >>> from sympy import sqrt, Symbol
    >>> from sympy.abc import x

    >>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55
    >>> _sqrt_symbolic_denest(a, b, r)
    sqrt(-2*sqrt(29) + 11) + sqrt(5)

    If the expression is numeric, it will be simplified:

    >>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2)
    >>> sqrtdenest(sqrt((w**2).expand()))
    1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3)))

    Otherwise, it will only be simplified if assumptions allow:

    >>> w = w.subs(sqrt(3), sqrt(x + 3))
    >>> sqrtdenest(sqrt((w**2).expand()))
    sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2)

    Notice that the argument of the sqrt is a square. If x is made positive
    then the sqrt of the square is resolved:

    >>> _.subs(x, Symbol('x', positive=True))
    sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2)
    """

    a, b, r = map(sympify, (a, b, r))
    rval = _sqrt_match(r)
    if not rval:
        return None
    ra, rb, rr = rval
    if rb:
        y = Dummy('y', positive=True)
        try:
            newa = Poly(a.subs(sqrt(rr), (y**2 - ra)/rb), y)
        except PolynomialError:
            return None
        if newa.degree() == 2:
            ca, cb, cc = newa.all_coeffs()
            cb += b
            if _mexpand(cb**2 - 4*ca*cc).equals(0):
                z = sqrt(ca*(sqrt(r) + cb/(2*ca))**2)
                if z.is_number:
                    z = _mexpand(Mul._from_args(z.as_content_primitive()))
                return z
Exemplo n.º 3
0
def sub_pre(e):
    """ Replace y - x with -(x - y) if -1 can be extracted from y - x.
    """
    reps = [a for a in e.atoms(Add) if a.could_extract_minus_sign()]

    # make it canonical
    reps.sort(key=default_sort_key)

    e = e.xreplace(dict((a, Mul._from_args([S.NegativeOne, -a])) for a in reps))
    # repeat again for persisting Adds but mark these with a leading 1, -1
    # e.g. y - x -> 1*-1*(x - y)
    if isinstance(e, Basic):
        negs = {}
        for a in sorted(e.atoms(Add), key=default_sort_key):
            if a in reps or a.could_extract_minus_sign():
                negs[a] = Mul._from_args([S.One, S.NegativeOne, -a])
        e = e.xreplace(negs)
    return e
Exemplo n.º 4
0
def sub_post(e):
    """ Replace 1*-1*x with -x.
    """
    replacements = []
    for node in preorder_traversal(e):
        if isinstance(node, Mul) and \
            node.args[0] is S.One and node.args[1] is S.NegativeOne:
            replacements.append((node, -Mul._from_args(node.args[2:])))
    for node, replacement in replacements:
        e = e.xreplace({node: replacement})

    return e
Exemplo n.º 5
0
def extract_commutative(kron):
    c_part = []
    nc_part = []
    for arg in kron.args:
        c, nc = arg.args_cnc()
        c_part.extend(c)
        nc_part.append(Mul._from_args(nc))

    c_part = Mul(*c_part)
    if c_part != 1:
        return c_part*KroneckerProduct(*nc_part)
    return kron
Exemplo n.º 6
0
def __trigsimp(expr, deep=False):
    """recursive helper for trigsimp"""
    from sympy.simplify.fu import TR10i

    if _trigpat is None:
        _trigpats()
    a, b, c, d, matchers_division, matchers_add, \
    matchers_identity, artifacts = _trigpat

    if expr.is_Mul:
        # do some simplifications like sin/cos -> tan:
        if not expr.is_commutative:
            com, nc = expr.args_cnc()
            expr = _trigsimp(Mul._from_args(com), deep)*Mul._from_args(nc)
        else:
            for i, (pattern, simp, ok1, ok2) in enumerate(matchers_division):
                if not _dotrig(expr, pattern):
                    continue

                newexpr = _match_div_rewrite(expr, i)
                if newexpr is not None:
                    if newexpr != expr:
                        expr = newexpr
                        break
                    else:
                        continue

                # use SymPy matching instead
                res = expr.match(pattern)
                if res and res.get(c, 0):
                    if not res[c].is_integer:
                        ok = ok1.subs(res)
                        if not ok.is_positive:
                            continue
                        ok = ok2.subs(res)
                        if not ok.is_positive:
                            continue
                    # if "a" contains any of trig or hyperbolic funcs with
                    # argument "b" then skip the simplification
                    if any(w.args[0] == res[b] for w in res[a].atoms(
                            TrigonometricFunction, HyperbolicFunction)):
                        continue
                    # simplify and finish:
                    expr = simp.subs(res)
                    break  # process below

    if expr.is_Add:
        args = []
        for term in expr.args:
            if not term.is_commutative:
                com, nc = term.args_cnc()
                nc = Mul._from_args(nc)
                term = Mul._from_args(com)
            else:
                nc = S.One
            term = _trigsimp(term, deep)
            for pattern, result in matchers_identity:
                res = term.match(pattern)
                if res is not None:
                    term = result.subs(res)
                    break
            args.append(term*nc)
        if args != expr.args:
            expr = Add(*args)
            expr = min(expr, expand(expr), key=count_ops)
        if expr.is_Add:
            for pattern, result in matchers_add:
                if not _dotrig(expr, pattern):
                    continue
                expr = TR10i(expr)
                if expr.has(HyperbolicFunction):
                    res = expr.match(pattern)
                    # if "d" contains any trig or hyperbolic funcs with
                    # argument "a" or "b" then skip the simplification;
                    # this isn't perfect -- see tests
                    if res is None or not (a in res and b in res) or any(
                        w.args[0] in (res[a], res[b]) for w in res[d].atoms(
                            TrigonometricFunction, HyperbolicFunction)):
                        continue
                    expr = result.subs(res)
                    break

        # Reduce any lingering artifacts, such as sin(x)**2 changing
        # to 1 - cos(x)**2 when sin(x)**2 was "simpler"
        for pattern, result, ex in artifacts:
            if not _dotrig(expr, pattern):
                continue
            # Substitute a new wild that excludes some function(s)
            # to help influence a better match. This is because
            # sometimes, for example, 'a' would match sec(x)**2
            a_t = Wild('a', exclude=[ex])
            pattern = pattern.subs(a, a_t)
            result = result.subs(a, a_t)

            m = expr.match(pattern)
            was = None
            while m and was != expr:
                was = expr
                if m[a_t] == 0 or \
                        -m[a_t] in m[c].args or m[a_t] + m[c] == 0:
                    break
                if d in m and m[a_t]*m[d] + m[c] == 0:
                    break
                expr = result.subs(m)
                m = expr.match(pattern)
                m.setdefault(c, S.Zero)

    elif expr.is_Mul or expr.is_Pow or deep and expr.args:
        expr = expr.func(*[_trigsimp(a, deep) for a in expr.args])

    try:
        if not expr.has(*_trigs):
            raise TypeError
        e = expr.atoms(exp)
        new = expr.rewrite(exp, deep=deep)
        if new == e:
            raise TypeError
        fnew = factor(new)
        if fnew != new:
            new = sorted([new, factor(new)], key=count_ops)[0]
        # if all exp that were introduced disappeared then accept it
        if not (new.atoms(exp) - e):
            expr = new
    except TypeError:
        pass

    return expr
Exemplo n.º 7
0
def apart(f, x=None, full=False, **options):
    """
    Compute partial fraction decomposition of a rational function.

    Given a rational function ``f`` compute partial fraction decomposition
    of ``f``. Two algorithms are available: one is based on undetermined
    coefficients method and the other is Bronstein's full partial fraction
    decomposition algorithm.

    Examples
    ========

    >>> from sympy.polys.partfrac import apart
    >>> from sympy.abc import x, y

    By default, using the undetermined coefficients method:

    >>> apart(y/(x + 2)/(x + 1), x)
    -y/(x + 2) + y/(x + 1)

    You can choose Bronstein's algorithm by setting ``full=True``:

    >>> apart(y/(x**2 + x + 1), x)
    y/(x**2 + x + 1)
    >>> apart(y/(x**2 + x + 1), x, full=True)
    RootSum(_w**2 + _w + 1, Lambda(_a, (-2*_a*y/3 - y/3)/(-_a + x)))

    See Also
    ========

    apart_list, assemble_partfrac_list
    """
    allowed_flags(options, [])

    f = sympify(f)

    if f.is_Atom:
        return f
    else:
        P, Q = f.as_numer_denom()

    _options = options.copy()
    options = set_defaults(options, extension=True)
    try:
        (P, Q), opt = parallel_poly_from_expr((P, Q), x, **options)
    except PolynomialError as msg:
        if f.is_commutative:
            raise PolynomialError(msg)
        # non-commutative
        if f.is_Mul:
            c, nc = f.args_cnc(split_1=False)
            nc = Mul(*[apart(i, x=x, full=full, **_options) for i in nc])
            if c:
                c = apart(Mul._from_args(c), x=x, full=full, **_options)
                return c*nc
            else:
                return nc
        elif f.is_Add:
            c = []
            nc = []
            for i in f.args:
                if i.is_commutative:
                    c.append(i)
                else:
                    try:
                        nc.append(apart(i, x=x, full=full, **_options))
                    except NotImplementedError:
                        nc.append(i)
            return apart(Add(*c), x=x, full=full, **_options) + Add(*nc)
        else:
            reps = []
            pot = preorder_traversal(f)
            pot.next()
            for e in pot:
                try:
                    reps.append((e, apart(e, x=x, full=full, **_options)))
                    pot.skip()  # this was handled successfully
                except NotImplementedError:
                    pass
            return f.xreplace(dict(reps))

    if P.is_multivariate:
        fc = f.cancel()
        if fc != f:
            return apart(fc, x=x, full=full, **_options)

        raise NotImplementedError(
            "multivariate partial fraction decomposition")

    common, P, Q = P.cancel(Q)

    poly, P = P.div(Q, auto=True)
    P, Q = P.rat_clear_denoms(Q)

    if Q.degree() <= 1:
        partial = P/Q
    else:
        if not full:
            partial = apart_undetermined_coeffs(P, Q)
        else:
            partial = apart_full_decomposition(P, Q)

    terms = S.Zero

    for term in Add.make_args(partial):
        if term.has(RootSum):
            terms += term
        else:
            terms += factor(term)

    return common*(poly.as_expr() + terms)
Exemplo n.º 8
0
def _sqrt_match(p):
    """Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to
    matching, sqrt(r) also has then maximal sqrt_depth among addends of p.

    Examples
    ========

    >>> from sympy.functions.elementary.miscellaneous import sqrt
    >>> from sympy.simplify.sqrtdenest import _sqrt_match
    >>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) +  2*sqrt(1+sqrt(5)))
    [1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)]
    """
    from sympy.simplify.simplify import split_surds

    p = _mexpand(p)
    if p.is_Number:
        res = (p, S.Zero, S.Zero)
    elif p.is_Add:
        pargs = sorted(p.args, key=default_sort_key)
        if all((x**2).is_Rational for x in pargs):
            r, b, a = split_surds(p)
            res = a, b, r
            return list(res)
        # to make the process canonical, the argument is included in the tuple
        # so when the max is selected, it will be the largest arg having a
        # given depth
        v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)]
        nmax = max(v, key=default_sort_key)
        if nmax[0] == 0:
            res = []
        else:
            # select r
            depth, _, i = nmax
            r = pargs.pop(i)
            v.pop(i)
            b = S.One
            if r.is_Mul:
                bv = []
                rv = []
                for x in r.args:
                    if sqrt_depth(x) < depth:
                        bv.append(x)
                    else:
                        rv.append(x)
                b = Mul._from_args(bv)
                r = Mul._from_args(rv)
            # collect terms comtaining r
            a1 = []
            b1 = [b]
            for x in v:
                if x[0] < depth:
                    a1.append(x[1])
                else:
                    x1 = x[1]
                    if x1 == r:
                        b1.append(1)
                    else:
                        if x1.is_Mul:
                            x1args = list(x1.args)
                            if r in x1args:
                                x1args.remove(r)
                                b1.append(Mul(*x1args))
                            else:
                                a1.append(x[1])
                        else:
                            a1.append(x[1])
            a = Add(*a1)
            b = Add(*b1)
            #a = Add._from_args(pargs)
            res = (a, b, r**2)
    else:
        b, r = p.as_coeff_Mul()
        if is_sqrt(r):
            res = (S.Zero, b, r**2)
        else:
            res = []
    return list(res)
Exemplo n.º 9
0
    def rule_gamma(expr, level=0):
        """ Simplify products of gamma functions further. """

        if expr.is_Atom:
            return expr

        def gamma_rat(x):
            # helper to simplify ratios of gammas
            was = x.count(gamma)
            xx = x.replace(gamma, lambda n: _rf(1, (n - 1).expand()
                ).replace(_rf, lambda a, b: gamma(a + b)/gamma(a)))
            if xx.count(gamma) < was:
                x = xx
            return x

        def gamma_factor(x):
            # return True if there is a gamma factor in shallow args
            if isinstance(x, gamma):
                return True
            if x.is_Add or x.is_Mul:
                return any(gamma_factor(xi) for xi in x.args)
            if x.is_Pow and (x.exp.is_integer or x.base.is_positive):
                return gamma_factor(x.base)
            return False

        # recursion step
        if level == 0:
            expr = expr.func(*[rule_gamma(x, level + 1) for x in expr.args])
            level += 1

        if not expr.is_Mul:
            return expr

        # non-commutative step
        if level == 1:
            args, nc = expr.args_cnc()
            if not args:
                return expr
            if nc:
                return rule_gamma(Mul._from_args(args), level + 1)*Mul._from_args(nc)
            level += 1

        # pure gamma handling, not factor absorption
        if level == 2:
            T, F = sift(expr.args, gamma_factor, binary=True)
            gamma_ind = Mul(*F)
            d = Mul(*T)

            nd, dd = d.as_numer_denom()
            for ipass in range(2):
                args = list(ordered(Mul.make_args(nd)))
                for i, ni in enumerate(args):
                    if ni.is_Add:
                        ni, dd = Add(*[
                            rule_gamma(gamma_rat(a/dd), level + 1) for a in ni.args]
                            ).as_numer_denom()
                        args[i] = ni
                        if not dd.has(gamma):
                            break
                nd = Mul(*args)
                if ipass ==  0 and not gamma_factor(nd):
                    break
                nd, dd = dd, nd  # now process in reversed order
            expr = gamma_ind*nd/dd
            if not (expr.is_Mul and (gamma_factor(dd) or gamma_factor(nd))):
                return expr
            level += 1

        # iteration until constant
        if level == 3:
            while True:
                was = expr
                expr = rule_gamma(expr, 4)
                if expr == was:
                    return expr

        numer_gammas = []
        denom_gammas = []
        numer_others = []
        denom_others = []
        def explicate(p):
            if p is S.One:
                return None, []
            b, e = p.as_base_exp()
            if e.is_Integer:
                if isinstance(b, gamma):
                    return True, [b.args[0]]*e
                else:
                    return False, [b]*e
            else:
                return False, [p]

        newargs = list(ordered(expr.args))
        while newargs:
            n, d = newargs.pop().as_numer_denom()
            isg, l = explicate(n)
            if isg:
                numer_gammas.extend(l)
            elif isg is False:
                numer_others.extend(l)
            isg, l = explicate(d)
            if isg:
                denom_gammas.extend(l)
            elif isg is False:
                denom_others.extend(l)

        # =========== level 2 work: pure gamma manipulation =========

        if not as_comb:
            # Try to reduce the number of gamma factors by applying the
            # reflection formula gamma(x)*gamma(1-x) = pi/sin(pi*x)
            for gammas, numer, denom in [(
                numer_gammas, numer_others, denom_others),
                    (denom_gammas, denom_others, numer_others)]:
                new = []
                while gammas:
                    g1 = gammas.pop()
                    if g1.is_integer:
                        new.append(g1)
                        continue
                    for i, g2 in enumerate(gammas):
                        n = g1 + g2 - 1
                        if not n.is_Integer:
                            continue
                        numer.append(S.Pi)
                        denom.append(sin(S.Pi*g1))
                        gammas.pop(i)
                        if n > 0:
                            for k in range(n):
                                numer.append(1 - g1 + k)
                        elif n < 0:
                            for k in range(-n):
                                denom.append(-g1 - k)
                        break
                    else:
                        new.append(g1)
                # /!\ updating IN PLACE
                gammas[:] = new

            # Try to reduce the number of gammas by using the duplication
            # theorem to cancel an upper and lower: gamma(2*s)/gamma(s) =
            # 2**(2*s + 1)/(4*sqrt(pi))*gamma(s + 1/2). Although this could
            # be done with higher argument ratios like gamma(3*x)/gamma(x),
            # this would not reduce the number of gammas as in this case.
            for ng, dg, no, do in [(numer_gammas, denom_gammas, numer_others,
                                    denom_others),
                                   (denom_gammas, numer_gammas, denom_others,
                                    numer_others)]:

                while True:
                    for x in ng:
                        for y in dg:
                            n = x - 2*y
                            if n.is_Integer:
                                break
                        else:
                            continue
                        break
                    else:
                        break
                    ng.remove(x)
                    dg.remove(y)
                    if n > 0:
                        for k in range(n):
                            no.append(2*y + k)
                    elif n < 0:
                        for k in range(-n):
                            do.append(2*y - 1 - k)
                    ng.append(y + S(1)/2)
                    no.append(2**(2*y - 1))
                    do.append(sqrt(S.Pi))

            # Try to reduce the number of gamma factors by applying the
            # multiplication theorem (used when n gammas with args differing
            # by 1/n mod 1 are encountered).
            #
            # run of 2 with args differing by 1/2
            #
            # >>> gammasimp(gamma(x)*gamma(x+S.Half))
            # 2*sqrt(2)*2**(-2*x - 1/2)*sqrt(pi)*gamma(2*x)
            #
            # run of 3 args differing by 1/3 (mod 1)
            #
            # >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(2)/3))
            # 6*3**(-3*x - 1/2)*pi*gamma(3*x)
            # >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(5)/3))
            # 2*3**(-3*x - 1/2)*pi*(3*x + 2)*gamma(3*x)
            #
            def _run(coeffs):
                # find runs in coeffs such that the difference in terms (mod 1)
                # of t1, t2, ..., tn is 1/n
                u = list(uniq(coeffs))
                for i in range(len(u)):
                    dj = ([((u[j] - u[i]) % 1, j) for j in range(i + 1, len(u))])
                    for one, j in dj:
                        if one.p == 1 and one.q != 1:
                            n = one.q
                            got = [i]
                            get = list(range(1, n))
                            for d, j in dj:
                                m = n*d
                                if m.is_Integer and m in get:
                                    get.remove(m)
                                    got.append(j)
                                    if not get:
                                        break
                            else:
                                continue
                            for i, j in enumerate(got):
                                c = u[j]
                                coeffs.remove(c)
                                got[i] = c
                            return one.q, got[0], got[1:]

            def _mult_thm(gammas, numer, denom):
                # pull off and analyze the leading coefficient from each gamma arg
                # looking for runs in those Rationals

                # expr -> coeff + resid -> rats[resid] = coeff
                rats = {}
                for g in gammas:
                    c, resid = g.as_coeff_Add()
                    rats.setdefault(resid, []).append(c)

                # look for runs in Rationals for each resid
                keys = sorted(rats, key=default_sort_key)
                for resid in keys:
                    coeffs = list(sorted(rats[resid]))
                    new = []
                    while True:
                        run = _run(coeffs)
                        if run is None:
                            break

                        # process the sequence that was found:
                        # 1) convert all the gamma functions to have the right
                        #    argument (could be off by an integer)
                        # 2) append the factors corresponding to the theorem
                        # 3) append the new gamma function

                        n, ui, other = run

                        # (1)
                        for u in other:
                            con = resid + u - 1
                            for k in range(int(u - ui)):
                                numer.append(con - k)

                        con = n*(resid + ui)  # for (2) and (3)

                        # (2)
                        numer.append((2*S.Pi)**(S(n - 1)/2)*
                                     n**(S(1)/2 - con))
                        # (3)
                        new.append(con)

                    # restore resid to coeffs
                    rats[resid] = [resid + c for c in coeffs] + new

                # rebuild the gamma arguments
                g = []
                for resid in keys:
                    g += rats[resid]
                # /!\ updating IN PLACE
                gammas[:] = g

            for l, numer, denom in [(numer_gammas, numer_others, denom_others),
                                    (denom_gammas, denom_others, numer_others)]:
                _mult_thm(l, numer, denom)

        # =========== level >= 2 work: factor absorption =========

        if level >= 2:
            # Try to absorb factors into the gammas: x*gamma(x) -> gamma(x + 1)
            # and gamma(x)/(x - 1) -> gamma(x - 1)
            # This code (in particular repeated calls to find_fuzzy) can be very
            # slow.
            def find_fuzzy(l, x):
                if not l:
                    return
                S1, T1 = compute_ST(x)
                for y in l:
                    S2, T2 = inv[y]
                    if T1 != T2 or (not S1.intersection(S2) and
                                    (S1 != set() or S2 != set())):
                        continue
                    # XXX we want some simplification (e.g. cancel or
                    # simplify) but no matter what it's slow.
                    a = len(cancel(x/y).free_symbols)
                    b = len(x.free_symbols)
                    c = len(y.free_symbols)
                    # TODO is there a better heuristic?
                    if a == 0 and (b > 0 or c > 0):
                        return y

            # We thus try to avoid expensive calls by building the following
            # "invariants": For every factor or gamma function argument
            #   - the set of free symbols S
            #   - the set of functional components T
            # We will only try to absorb if T1==T2 and (S1 intersect S2 != emptyset
            # or S1 == S2 == emptyset)
            inv = {}

            def compute_ST(expr):
                if expr in inv:
                    return inv[expr]
                return (expr.free_symbols, expr.atoms(Function).union(
                        set(e.exp for e in expr.atoms(Pow))))

            def update_ST(expr):
                inv[expr] = compute_ST(expr)
            for expr in numer_gammas + denom_gammas + numer_others + denom_others:
                update_ST(expr)

            for gammas, numer, denom in [(
                numer_gammas, numer_others, denom_others),
                    (denom_gammas, denom_others, numer_others)]:
                new = []
                while gammas:
                    g = gammas.pop()
                    cont = True
                    while cont:
                        cont = False
                        y = find_fuzzy(numer, g)
                        if y is not None:
                            numer.remove(y)
                            if y != g:
                                numer.append(y/g)
                                update_ST(y/g)
                            g += 1
                            cont = True
                        y = find_fuzzy(denom, g - 1)
                        if y is not None:
                            denom.remove(y)
                            if y != g - 1:
                                numer.append((g - 1)/y)
                                update_ST((g - 1)/y)
                            g -= 1
                            cont = True
                    new.append(g)
                # /!\ updating IN PLACE
                gammas[:] = new

        # =========== rebuild expr ==================================

        return Mul(*[gamma(g) for g in numer_gammas]) \
            / Mul(*[gamma(g) for g in denom_gammas]) \
            * Mul(*numer_others) / Mul(*denom_others)
Exemplo n.º 10
0
    def rule_gamma(expr, level=0):
        """ Simplify products of gamma functions further. """

        if expr.is_Atom:
            return expr

        def gamma_rat(x):
            # helper to simplify ratios of gammas
            was = x.count(gamma)
            xx = x.replace(
                gamma, lambda n: _rf(1, (n - 1).expand()).replace(
                    _rf, lambda a, b: gamma(a + b) / gamma(a)))
            if xx.count(gamma) < was:
                x = xx
            return x

        def gamma_factor(x):
            # return True if there is a gamma factor in shallow args
            if isinstance(x, gamma):
                return True
            if x.is_Add or x.is_Mul:
                return any(gamma_factor(xi) for xi in x.args)
            if x.is_Pow and (x.exp.is_integer or x.base.is_positive):
                return gamma_factor(x.base)
            return False

        # recursion step
        if level == 0:
            expr = expr.func(*[rule_gamma(x, level + 1) for x in expr.args])
            level += 1

        if not expr.is_Mul:
            return expr

        # non-commutative step
        if level == 1:
            args, nc = expr.args_cnc()
            if not args:
                return expr
            if nc:
                return rule_gamma(Mul._from_args(args),
                                  level + 1) * Mul._from_args(nc)
            level += 1

        # pure gamma handling, not factor absorption
        if level == 2:
            T, F = sift(expr.args, gamma_factor, binary=True)
            gamma_ind = Mul(*F)
            d = Mul(*T)

            nd, dd = d.as_numer_denom()
            for ipass in range(2):
                args = list(ordered(Mul.make_args(nd)))
                for i, ni in enumerate(args):
                    if ni.is_Add:
                        ni, dd = Add(*[
                            rule_gamma(gamma_rat(a / dd), level + 1)
                            for a in ni.args
                        ]).as_numer_denom()
                        args[i] = ni
                        if not dd.has(gamma):
                            break
                nd = Mul(*args)
                if ipass == 0 and not gamma_factor(nd):
                    break
                nd, dd = dd, nd  # now process in reversed order
            expr = gamma_ind * nd / dd
            if not (expr.is_Mul and (gamma_factor(dd) or gamma_factor(nd))):
                return expr
            level += 1

        # iteration until constant
        if level == 3:
            while True:
                was = expr
                expr = rule_gamma(expr, 4)
                if expr == was:
                    return expr

        numer_gammas = []
        denom_gammas = []
        numer_others = []
        denom_others = []

        def explicate(p):
            if p is S.One:
                return None, []
            b, e = p.as_base_exp()
            if e.is_Integer:
                if isinstance(b, gamma):
                    return True, [b.args[0]] * e
                else:
                    return False, [b] * e
            else:
                return False, [p]

        newargs = list(ordered(expr.args))
        while newargs:
            n, d = newargs.pop().as_numer_denom()
            isg, l = explicate(n)
            if isg:
                numer_gammas.extend(l)
            elif isg is False:
                numer_others.extend(l)
            isg, l = explicate(d)
            if isg:
                denom_gammas.extend(l)
            elif isg is False:
                denom_others.extend(l)

        # =========== level 2 work: pure gamma manipulation =========

        if not as_comb:
            # Try to reduce the number of gamma factors by applying the
            # reflection formula gamma(x)*gamma(1-x) = pi/sin(pi*x)
            for gammas, numer, denom in [
                (numer_gammas, numer_others, denom_others),
                (denom_gammas, denom_others, numer_others)
            ]:
                new = []
                while gammas:
                    g1 = gammas.pop()
                    if g1.is_integer:
                        new.append(g1)
                        continue
                    for i, g2 in enumerate(gammas):
                        n = g1 + g2 - 1
                        if not n.is_Integer:
                            continue
                        numer.append(S.Pi)
                        denom.append(sin(S.Pi * g1))
                        gammas.pop(i)
                        if n > 0:
                            for k in range(n):
                                numer.append(1 - g1 + k)
                        elif n < 0:
                            for k in range(-n):
                                denom.append(-g1 - k)
                        break
                    else:
                        new.append(g1)
                # /!\ updating IN PLACE
                gammas[:] = new

            # Try to reduce the number of gammas by using the duplication
            # theorem to cancel an upper and lower: gamma(2*s)/gamma(s) =
            # 2**(2*s + 1)/(4*sqrt(pi))*gamma(s + 1/2). Although this could
            # be done with higher argument ratios like gamma(3*x)/gamma(x),
            # this would not reduce the number of gammas as in this case.
            for ng, dg, no, do in [
                (numer_gammas, denom_gammas, numer_others, denom_others),
                (denom_gammas, numer_gammas, denom_others, numer_others)
            ]:

                while True:
                    for x in ng:
                        for y in dg:
                            n = x - 2 * y
                            if n.is_Integer:
                                break
                        else:
                            continue
                        break
                    else:
                        break
                    ng.remove(x)
                    dg.remove(y)
                    if n > 0:
                        for k in range(n):
                            no.append(2 * y + k)
                    elif n < 0:
                        for k in range(-n):
                            do.append(2 * y - 1 - k)
                    ng.append(y + S(1) / 2)
                    no.append(2**(2 * y - 1))
                    do.append(sqrt(S.Pi))

            # Try to reduce the number of gamma factors by applying the
            # multiplication theorem (used when n gammas with args differing
            # by 1/n mod 1 are encountered).
            #
            # run of 2 with args differing by 1/2
            #
            # >>> gammasimp(gamma(x)*gamma(x+S.Half))
            # 2*sqrt(2)*2**(-2*x - 1/2)*sqrt(pi)*gamma(2*x)
            #
            # run of 3 args differing by 1/3 (mod 1)
            #
            # >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(2)/3))
            # 6*3**(-3*x - 1/2)*pi*gamma(3*x)
            # >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(5)/3))
            # 2*3**(-3*x - 1/2)*pi*(3*x + 2)*gamma(3*x)
            #
            def _run(coeffs):
                # find runs in coeffs such that the difference in terms (mod 1)
                # of t1, t2, ..., tn is 1/n
                u = list(uniq(coeffs))
                for i in range(len(u)):
                    dj = ([((u[j] - u[i]) % 1, j)
                           for j in range(i + 1, len(u))])
                    for one, j in dj:
                        if one.p == 1 and one.q != 1:
                            n = one.q
                            got = [i]
                            get = list(range(1, n))
                            for d, j in dj:
                                m = n * d
                                if m.is_Integer and m in get:
                                    get.remove(m)
                                    got.append(j)
                                    if not get:
                                        break
                            else:
                                continue
                            for i, j in enumerate(got):
                                c = u[j]
                                coeffs.remove(c)
                                got[i] = c
                            return one.q, got[0], got[1:]

            def _mult_thm(gammas, numer, denom):
                # pull off and analyze the leading coefficient from each gamma arg
                # looking for runs in those Rationals

                # expr -> coeff + resid -> rats[resid] = coeff
                rats = {}
                for g in gammas:
                    c, resid = g.as_coeff_Add()
                    rats.setdefault(resid, []).append(c)

                # look for runs in Rationals for each resid
                keys = sorted(rats, key=default_sort_key)
                for resid in keys:
                    coeffs = list(sorted(rats[resid]))
                    new = []
                    while True:
                        run = _run(coeffs)
                        if run is None:
                            break

                        # process the sequence that was found:
                        # 1) convert all the gamma functions to have the right
                        #    argument (could be off by an integer)
                        # 2) append the factors corresponding to the theorem
                        # 3) append the new gamma function

                        n, ui, other = run

                        # (1)
                        for u in other:
                            con = resid + u - 1
                            for k in range(int(u - ui)):
                                numer.append(con - k)

                        con = n * (resid + ui)  # for (2) and (3)

                        # (2)
                        numer.append(
                            (2 * S.Pi)**(S(n - 1) / 2) * n**(S(1) / 2 - con))
                        # (3)
                        new.append(con)

                    # restore resid to coeffs
                    rats[resid] = [resid + c for c in coeffs] + new

                # rebuild the gamma arguments
                g = []
                for resid in keys:
                    g += rats[resid]
                # /!\ updating IN PLACE
                gammas[:] = g

            for l, numer, denom in [(numer_gammas, numer_others, denom_others),
                                    (denom_gammas, denom_others, numer_others)
                                    ]:
                _mult_thm(l, numer, denom)

        # =========== level >= 2 work: factor absorption =========

        if level >= 2:
            # Try to absorb factors into the gammas: x*gamma(x) -> gamma(x + 1)
            # and gamma(x)/(x - 1) -> gamma(x - 1)
            # This code (in particular repeated calls to find_fuzzy) can be very
            # slow.
            def find_fuzzy(l, x):
                if not l:
                    return
                S1, T1 = compute_ST(x)
                for y in l:
                    S2, T2 = inv[y]
                    if T1 != T2 or (not S1.intersection(S2) and
                                    (S1 != set() or S2 != set())):
                        continue
                    # XXX we want some simplification (e.g. cancel or
                    # simplify) but no matter what it's slow.
                    a = len(cancel(x / y).free_symbols)
                    b = len(x.free_symbols)
                    c = len(y.free_symbols)
                    # TODO is there a better heuristic?
                    if a == 0 and (b > 0 or c > 0):
                        return y

            # We thus try to avoid expensive calls by building the following
            # "invariants": For every factor or gamma function argument
            #   - the set of free symbols S
            #   - the set of functional components T
            # We will only try to absorb if T1==T2 and (S1 intersect S2 != emptyset
            # or S1 == S2 == emptyset)
            inv = {}

            def compute_ST(expr):
                if expr in inv:
                    return inv[expr]
                return (expr.free_symbols, expr.atoms(Function).union(
                    set(e.exp for e in expr.atoms(Pow))))

            def update_ST(expr):
                inv[expr] = compute_ST(expr)

            for expr in numer_gammas + denom_gammas + numer_others + denom_others:
                update_ST(expr)

            for gammas, numer, denom in [
                (numer_gammas, numer_others, denom_others),
                (denom_gammas, denom_others, numer_others)
            ]:
                new = []
                while gammas:
                    g = gammas.pop()
                    cont = True
                    while cont:
                        cont = False
                        y = find_fuzzy(numer, g)
                        if y is not None:
                            numer.remove(y)
                            if y != g:
                                numer.append(y / g)
                                update_ST(y / g)
                            g += 1
                            cont = True
                        y = find_fuzzy(denom, g - 1)
                        if y is not None:
                            denom.remove(y)
                            if y != g - 1:
                                numer.append((g - 1) / y)
                                update_ST((g - 1) / y)
                            g -= 1
                            cont = True
                    new.append(g)
                # /!\ updating IN PLACE
                gammas[:] = new

        # =========== rebuild expr ==================================

        return Mul(*[gamma(g) for g in numer_gammas]) \
            / Mul(*[gamma(g) for g in denom_gammas]) \
            * Mul(*numer_others) / Mul(*denom_others)
Exemplo n.º 11
0
    def _print_Mul(self, expr):

        prec = precedence(expr)

        # Check for unevaluated Mul. In this case we need to make sure the
        # identities are visible, multiple Rational factors are not combined
        # etc so we display in a straight-forward form that fully preserves all
        # args and their order.
        args = expr.args
        if args[0] is S.One or any(
                isinstance(a, Number) or a.is_Pow and all(ai.is_Integer
                                                          for ai in a.args)
                for a in args[1:]):
            d, n = sift(args,
                        lambda x: isinstance(x, Pow) and bool(
                            x.exp.as_coeff_Mul()[0] < 0),
                        binary=True)
            for i, di in enumerate(d):
                if di.exp.is_Number:
                    e = -di.exp
                else:
                    dargs = list(di.exp.args)
                    dargs[0] = -dargs[0]
                    e = Mul._from_args(dargs)
                d[i] = Pow(di.base, e, evaluate=False) if e - 1 else di.base

            pre = []
            # don't parenthesize first factor if negative
            if n and n[0].could_extract_minus_sign():
                pre = [str(n.pop(0))]

            nfactors = pre + [
                self.parenthesize(a, prec, strict=False) for a in n
            ]
            if not nfactors:
                nfactors = ['1']

            # don't parenthesize first of denominator unless singleton
            if len(d) > 1 and d[0].could_extract_minus_sign():
                pre = [str(d.pop(0))]
            else:
                pre = []
            dfactors = pre + [
                self.parenthesize(a, prec, strict=False) for a in d
            ]

            n = '*'.join(nfactors)
            d = '*'.join(dfactors)
            if len(dfactors) > 1:
                return '%s/(%s)' % (n, d)
            elif dfactors:
                return '%s/%s' % (n, d)
            return n

        c, e = expr.as_coeff_Mul()
        if c < 0:
            expr = _keep_coeff(-c, e)
            sign = "-"
        else:
            sign = ""

        a = []  # items in the numerator
        b = []  # items that are in the denominator (if any)

        pow_paren = [
        ]  # Will collect all pow with more than one base element and exp = -1

        if self.order not in ('old', 'none'):
            args = expr.as_ordered_factors()
        else:
            # use make_args in case expr was something like -x -> x
            args = Mul.make_args(expr)

        # Gather args for numerator/denominator
        def apow(i):
            b, e = i.as_base_exp()
            eargs = list(Mul.make_args(e))
            if eargs[0] is S.NegativeOne:
                eargs = eargs[1:]
            else:
                eargs[0] = -eargs[0]
            e = Mul._from_args(eargs)
            if isinstance(i, Pow):
                return i.func(b, e, evaluate=False)
            return i.func(e, evaluate=False)

        for item in args:
            if (item.is_commutative and isinstance(item, Pow)
                    and bool(item.exp.as_coeff_Mul()[0] < 0)):
                if item.exp is not S.NegativeOne:
                    b.append(apow(item))
                else:
                    if (len(item.args[0].args) != 1
                            and isinstance(item.base, (Mul, Pow))):
                        # To avoid situations like #14160
                        pow_paren.append(item)
                    b.append(item.base)
            elif item.is_Rational and item is not S.Infinity:
                if item.p != 1:
                    a.append(Rational(item.p))
                if item.q != 1:
                    b.append(Rational(item.q))
            else:
                a.append(item)

        a = a or [S.One]

        a_str = [self.parenthesize(x, prec, strict=False) for x in a]
        b_str = [self.parenthesize(x, prec, strict=False) for x in b]

        # To parenthesize Pow with exp = -1 and having more than one Symbol
        for item in pow_paren:
            if item.base in b:
                b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]

        if not b:
            return sign + '*'.join(a_str)
        elif len(b) == 1:
            return sign + '*'.join(a_str) + "/" + b_str[0]
        else:
            return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
def __trigsimp(expr, deep=False):
    """recursive helper for trigsimp"""
    from sympy.simplify.fu import TR10i

    if _trigpat is None:
        _trigpats()
    a, b, c, d, matchers_division, matchers_add, \
    matchers_identity, artifacts = _trigpat

    if expr.is_Mul:
        # do some simplifications like sin/cos -> tan:
        if not expr.is_commutative:
            com, nc = expr.args_cnc()
            expr = _trigsimp(Mul._from_args(com), deep) * Mul._from_args(nc)
        else:
            for i, (pattern, simp, ok1, ok2) in enumerate(matchers_division):
                if not _dotrig(expr, pattern):
                    continue

                newexpr = _match_div_rewrite(expr, i)
                if newexpr is not None:
                    if newexpr != expr:
                        expr = newexpr
                        break
                    else:
                        continue

                # use SymPy matching instead
                res = expr.match(pattern)
                if res and res.get(c, 0):
                    if not res[c].is_integer:
                        ok = ok1.subs(res)
                        if not ok.is_positive:
                            continue
                        ok = ok2.subs(res)
                        if not ok.is_positive:
                            continue
                    # if "a" contains any of trig or hyperbolic funcs with
                    # argument "b" then skip the simplification
                    if any(w.args[0] == res[b] for w in res[a].atoms(
                            TrigonometricFunction, HyperbolicFunction)):
                        continue
                    # simplify and finish:
                    expr = simp.subs(res)
                    break  # process below

    if expr.is_Add:
        args = []
        for term in expr.args:
            if not term.is_commutative:
                com, nc = term.args_cnc()
                nc = Mul._from_args(nc)
                term = Mul._from_args(com)
            else:
                nc = S.One
            term = _trigsimp(term, deep)
            for pattern, result in matchers_identity:
                res = term.match(pattern)
                if res is not None:
                    term = result.subs(res)
                    break
            args.append(term * nc)
        if args != expr.args:
            expr = Add(*args)
            expr = min(expr, expand(expr), key=count_ops)
        if expr.is_Add:
            for pattern, result in matchers_add:
                if not _dotrig(expr, pattern):
                    continue
                expr = TR10i(expr)
                if expr.has(HyperbolicFunction):
                    res = expr.match(pattern)
                    # if "d" contains any trig or hyperbolic funcs with
                    # argument "a" or "b" then skip the simplification;
                    # this isn't perfect -- see tests
                    if res is None or not (a in res and b in res) or any(
                            w.args[0] in (res[a], res[b])
                            for w in res[d].atoms(TrigonometricFunction,
                                                  HyperbolicFunction)):
                        continue
                    expr = result.subs(res)
                    break

        # Reduce any lingering artifacts, such as sin(x)**2 changing
        # to 1 - cos(x)**2 when sin(x)**2 was "simpler"
        for pattern, result, ex in artifacts:
            if not _dotrig(expr, pattern):
                continue
            # Substitute a new wild that excludes some function(s)
            # to help influence a better match. This is because
            # sometimes, for example, 'a' would match sec(x)**2
            a_t = Wild('a', exclude=[ex])
            pattern = pattern.subs(a, a_t)
            result = result.subs(a, a_t)

            m = expr.match(pattern)
            was = None
            while m and was != expr:
                was = expr
                if m[a_t] == 0 or \
                        -m[a_t] in m[c].args or m[a_t] + m[c] == 0:
                    break
                if d in m and m[a_t] * m[d] + m[c] == 0:
                    break
                expr = result.subs(m)
                m = expr.match(pattern)
                m.setdefault(c, S.Zero)

    elif expr.is_Mul or expr.is_Pow or deep and expr.args:
        expr = expr.func(*[_trigsimp(a, deep) for a in expr.args])

    try:
        if not expr.has(*_trigs):
            raise TypeError
        e = expr.atoms(exp)
        new = expr.rewrite(exp, deep=deep)
        if new == e:
            raise TypeError
        fnew = factor(new)
        if fnew != new:
            new = sorted([new, factor(new)], key=count_ops)[0]
        # if all exp that were introduced disappeared then accept it
        if not (new.atoms(exp) - e):
            expr = new
    except TypeError:
        pass

    return expr
Exemplo n.º 13
0
def _sqrt_match(p):
    """Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to
    matching, sqrt(r) also has then maximal sqrt_depth among addends of p.

    Examples
    ========

    >>> from sympy.functions.elementary.miscellaneous import sqrt
    >>> from sympy.simplify.sqrtdenest import _sqrt_match
    >>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) +  2*sqrt(1+sqrt(5)))
    [1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)]
    """
    from sympy.simplify.radsimp import split_surds

    p = _mexpand(p)
    if p.is_Number:
        res = (p, S.Zero, S.Zero)
    elif p.is_Add:
        pargs = sorted(p.args, key=default_sort_key)
        sqargs = [x**2 for x in pargs]
        if all(sq.is_Rational and sq.is_positive for sq in sqargs):
            r, b, a = split_surds(p)
            res = a, b, r
            return list(res)
        # to make the process canonical, the argument is included in the tuple
        # so when the max is selected, it will be the largest arg having a
        # given depth
        v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)]
        nmax = max(v, key=default_sort_key)
        if nmax[0] == 0:
            res = []
        else:
            # select r
            depth, _, i = nmax
            r = pargs.pop(i)
            v.pop(i)
            b = S.One
            if r.is_Mul:
                bv = []
                rv = []
                for x in r.args:
                    if sqrt_depth(x) < depth:
                        bv.append(x)
                    else:
                        rv.append(x)
                b = Mul._from_args(bv)
                r = Mul._from_args(rv)
            # collect terms comtaining r
            a1 = []
            b1 = [b]
            for x in v:
                if x[0] < depth:
                    a1.append(x[1])
                else:
                    x1 = x[1]
                    if x1 == r:
                        b1.append(1)
                    else:
                        if x1.is_Mul:
                            x1args = list(x1.args)
                            if r in x1args:
                                x1args.remove(r)
                                b1.append(Mul(*x1args))
                            else:
                                a1.append(x[1])
                        else:
                            a1.append(x[1])
            a = Add(*a1)
            b = Add(*b1)
            res = (a, b, r**2)
    else:
        b, r = p.as_coeff_Mul()
        if is_sqrt(r):
            res = (S.Zero, b, r**2)
        else:
            res = []
    return list(res)