Exemplo n.º 1
0
def test_R3():
    a, b, c = symbols('a b c', positive=True)
    m = Matrix([[a], [b], [c]])
    assert m == R3_c.coord_tuple_transform_to(R3_r, R3_r.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify)
    #TODO assert m == R3_r.coord_tuple_transform_to(R3_c, R3_c.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify)
    assert m == R3_s.coord_tuple_transform_to(R3_r, R3_r.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify)
    #TODO assert m == R3_r.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify)
    assert m == R3_s.coord_tuple_transform_to(R3_c, R3_c.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify)
Exemplo n.º 2
0
def main():
    a, b, c = symbols('a b c', real=True)
    x, y, z = R3_r.coord_functions()
    dx, dy, dz = R3_r.base_oneforms()
    ex, ey, ez = R3_r.base_vectors()

    fx = a* x * y * z
    fy = b * x ** 2 * z
    fz = -3 * x**2 * y
    omega = fx * dx + fy * dy + fz * dz
    print_latex(omega)

    domega = Differential(omega)
    print_latex(domega)

    print_latex(domega(ey, ez)) # for WedgeProduct(dy, dz)
    print_latex(domega(ez, ex)) # for WedgeProduct(dz, dx)
    print_latex(domega(ex, ey)) # for WedgeProduct(dx, dy)