def Test_Reciprocal_Frame(): Print_Function() coords = symbols('x y z') (ex, ey, ez, grad) = MV.setup('ex ey ez', metric='[1,1,1]', coords=coords) mfvar = (u, v) = symbols('u v') eu = ex + ey ev = ex - ey (eu_r, ev_r) = ReciprocalFrame([eu, ev]) oprint('Frame', (eu, ev), 'Reciprocal Frame', (eu_r, ev_r)) print('eu.eu_r =', eu | eu_r) print('eu.ev_r =', eu | ev_r) print('ev.eu_r =', ev | eu_r) print('ev.ev_r =', ev | ev_r) eu = ex + ey + ez ev = ex - ey (eu_r, ev_r) = ReciprocalFrame([eu, ev]) oprint('Frame', (eu, ev), 'Reciprocal Frame', (eu_r, ev_r)) print('eu.eu_r =', eu | eu_r) print('eu.ev_r =', eu | ev_r) print('ev.eu_r =', ev | eu_r) print('ev.ev_r =', ev | ev_r) return
def Test_Reciprocal_Frame(): Print_Function() coords = symbols('x y z') (ex,ey,ez,grad) = MV.setup('ex ey ez',metric='[1,1,1]',coords=coords) mfvar = (u,v) = symbols('u v') eu = ex+ey ev = ex-ey (eu_r,ev_r) = ReciprocalFrame([eu,ev]) oprint('Frame',(eu,ev),'Reciprocal Frame',(eu_r,ev_r)) print 'eu.eu_r =',eu|eu_r print 'eu.ev_r =',eu|ev_r print 'ev.eu_r =',ev|eu_r print 'ev.ev_r =',ev|ev_r eu = ex+ey+ez ev = ex-ey (eu_r,ev_r) = ReciprocalFrame([eu,ev]) oprint('Frame',(eu,ev),'Reciprocal Frame',(eu_r,ev_r)) print 'eu.eu_r =',eu|eu_r print 'eu.ev_r =',eu|ev_r print 'ev.eu_r =',ev|eu_r print 'ev.ev_r =',ev|ev_r return
def Distorted_manifold_with_scalar_function(): Print_Function() coords = symbols('x y z') (ex, ey, ez, grad) = MV.setup('ex ey ez', metric='[1,1,1]', coords=coords) mfvar = (u, v) = symbols('u v') X = 2 * u * ex + 2 * v * ey + (u**3 + v**3 / 2) * ez MF = Manifold(X, mfvar, I=MV.I) (eu, ev) = MF.Basis() g = (v + 1) * log(u) dg = MF.Grad(g) print('g =', g) print('dg =', dg) print('dg(1,0) =', dg.subs({u: 1, v: 0})) G = u * eu + v * ev dG = MF.Grad(G) print('G =', G) print('P(G) =', MF.Proj(G)) print('zcoef =', simplify(2 * (u**2 + v**2) * (-4 * u**2 - 4 * v**2 - 1))) print('dG =', dG) print('P(dG) =', MF.Proj(dG)) PS = u * v * eu ^ ev print('PS =', PS) print('dPS =', MF.Grad(PS)) print('P(dPS) =', MF.Proj(MF.Grad(PS))) return
def Distorted_manifold_with_scalar_function(): Print_Function() coords = symbols('x y z') (ex,ey,ez,grad) = MV.setup('ex ey ez',metric='[1,1,1]',coords=coords) mfvar = (u,v) = symbols('u v') X = 2*u*ex+2*v*ey+(u**3+v**3/2)*ez MF = Manifold(X,mfvar,I=MV.I) (eu,ev) = MF.Basis() g = (v+1)*log(u) dg = MF.Grad(g) print 'g =',g print 'dg =',dg print 'dg(1,0) =',dg.subs({u:1,v:0}) G = u*eu+v*ev dG = MF.Grad(G) print 'G =',G print 'P(G) =',MF.Proj(G) print 'zcoef =',simplify(2*(u**2 + v**2)*(-4*u**2 - 4*v**2 - 1)) print 'dG =',dG print 'P(dG) =',MF.Proj(dG) PS = u*v*eu^ev print 'PS =',PS print 'dPS =',MF.Grad(PS) print 'P(dPS) =',MF.Proj(MF.Grad(PS)) return
def Plot_Mobius_Strip_Manifold(): Print_Function() coords = symbols('x y z') (ex,ey,ez,grad) = MV.setup('ex ey ez',metric='[1,1,1]',coords=coords) mfvar = (u,v) = symbols('u v') X = (cos(u)+v*cos(u/2)*cos(u))*ex+(sin(u)+v*cos(u/2)*sin(u))*ey+v*sin(u/2)*ez MF = Manifold(X,mfvar,True,I=MV.I) MF.Plot2DSurface([0.0,6.28,48],[-0.3,0.3,12],surf=False,skip=[4,4],tan=0.15) return
def Plot_Mobius_Strip_Manifold(): coords = symbols('x y z') (ex, ey, ez, grad) = MV.setup('ex ey ez', metric='[1,1,1]', coords=coords) mfvar = (u, v) = symbols('u v') X = (cos(u) + v * cos(u / 2) * cos(u)) * ex + ( sin(u) + v * cos(u / 2) * sin(u)) * ey + v * sin(u / 2) * ez MF = Manifold(X, mfvar, True, I=MV.I) MF.Plot2DSurface([0.0, 6.28, 48], [-0.3, 0.3, 12], surf=False, skip=[4, 4], tan=0.15) return
def Simple_manifold_with_scalar_function_derivative(): Print_Function() coords = (x,y,z) = symbols('x y z') basis = (e1, e2, e3, grad) = MV.setup('e_1 e_2 e_3',metric='[1,1,1]',coords=coords) # Define surface mfvar = (u,v) = symbols('u v') X = u*e1+v*e2+(u**2+v**2)*e3 print X MF = Manifold(X,mfvar) # Define field on the surface. g = (v+1)*log(u) # Method 1: Using old Manifold routines. VectorDerivative = (MF.rbasis[0]/MF.E_sq)*diff(g,u) + (MF.rbasis[1]/MF.E_sq)*diff(g,v) print 'Vector derivative =', VectorDerivative.subs({u:1,v:0}) # Method 2: Using new Manifold routines. dg = MF.Grad(g) print 'Vector derivative =', dg.subs({u:1,v:0}) return
def Simple_manifold_with_scalar_function_derivative(): coords = (x, y, z) = symbols('x y z') basis = (e1, e2, e3, grad) = MV.setup('e_1 e_2 e_3', metric='[1,1,1]', coords=coords) # Define surface mfvar = (u, v) = symbols('u v') X = u * e1 + v * e2 + (u**2 + v**2) * e3 print X MF = Manifold(X, mfvar) # Define field on the surface. g = (v + 1) * log(u) # Method 1: Using old Manifold routines. VectorDerivative = (MF.rbasis[0] / MF.E_sq) * diff( g, u) + (MF.rbasis[1] / MF.E_sq) * diff(g, v) print 'Vector derivative =', VectorDerivative.subs({u: 1, v: 0}) # Method 2: Using new Manifold routines. dg = MF.Grad(g) print 'Vector derivative =', dg.subs({u: 1, v: 0}) return