Exemplo n.º 1
0
def test_prde_no_cancel():
    # b large
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**2, x), Poly(1, x)], 2, DE) == \
        ([Poly(x**2 - 2*x + 2, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
                                                        [0, 1, 0, -1]], x))
    assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**3, x), Poly(1, x)], 3, DE) == \
        ([Poly(x**3 - 3*x**2 + 6*x - 6, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
                                                                 [0, 1, 0, -1]], x))
    assert prde_no_cancel_b_large(Poly(x, x), [Poly(x**2, x), Poly(1, x)], 1, DE) == \
        ([Poly(x, x, domain='ZZ'), Poly(0, x, domain='ZZ')], Matrix([[1, -1,  0,  0],
                                                                    [1,  0, -1,  0],
                                                                    [0,  1,  0, -1]], x))
    # b small
    # XXX: Is there a better example of a monomial with D.degree() > 2?
    DE = DifferentialExtension(
        extension={'D': [Poly(1, x), Poly(t**3 + 1, t)]})

    # My original q was t**4 + t + 1, but this solution implies q == t**4
    # (c1 = 4), with some of the ci for the original q equal to 0.
    G = [
        Poly(t**6, t),
        Poly(x * t**5, t),
        Poly(t**3, t),
        Poly(x * t**2, t),
        Poly(1 + x, t)
    ]
    R = QQ.frac_field(x)[t]
    assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \
        ([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (Rational(-11, 12) - x**3/24)*t + x/24, t),
        Poly(x/3*t**3 - x**2/6*t**2 + (Rational(-1, 3) + x**3/6)*t - x/6, t), Poly(t, t),
        Poly(0, t), Poly(0, t)], Matrix([[1, 0,              -1, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 1, Rational(-1, 4), 0, 0,  0,  0,  0,  0,  0],
                                         [0, 0,               0, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 0,               0, 1, 0,  0,  0,  0,  0,  0],
                                         [0, 0,               0, 0, 1,  0,  0,  0,  0,  0],
                                         [1, 0,               0, 0, 0, -1,  0,  0,  0,  0],
                                         [0, 1,               0, 0, 0,  0, -1,  0,  0,  0],
                                         [0, 0,               1, 0, 0,  0,  0, -1,  0,  0],
                                         [0, 0,               0, 1, 0,  0,  0,  0, -1,  0],
                                         [0, 0,               0, 0, 1,  0,  0,  0,  0, -1]], ring=R))

    # TODO: Add test for deg(b) <= 0 with b small
    DE = DifferentialExtension(
        extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
    b = Poly(-1 / x**2, t, field=True)  # deg(b) == 0
    q = [Poly(x**i * t**j, t, field=True) for i in range(2) for j in range(3)]
    h, A = prde_no_cancel_b_small(b, q, 3, DE)
    V = A.nullspace()
    R = QQ.frac_field(x)[t]
    assert len(V) == 1
    assert V[0] == Matrix([Rational(-1, 2), 0, 0, 1, 0, 0] * 3, ring=R)
    assert (Matrix([h]) * V[0][6:, :])[0] == Poly(x**2 / 2, t, domain='QQ(x)')
    assert (Matrix([q]) * V[0][:6, :])[0] == Poly(x - S.Half,
                                                  t,
                                                  domain='QQ(x)')
Exemplo n.º 2
0
def test_prde_no_cancel():
    # b large
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**2, x), Poly(1, x)], 2, DE) == \
        ([Poly(x**2 - 2*x + 2, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
                                                        [0, 1, 0, -1]]))
    assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**3, x), Poly(1, x)], 3, DE) == \
        ([Poly(x**3 - 3*x**2 + 6*x - 6, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
                                                                 [0, 1, 0, -1]]))
    # b small
    # XXX: Is there a better example of a monomial with D.degree() > 2?
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**3 + 1, t)]})

    # My original q was t**4 + t + 1, but this solution implies q == t**4
    # (c1 = 4), with some of the ci for the original q equal to 0.
    G = [Poly(t**6, t), Poly(x*t**5, t), Poly(t**3, t), Poly(x*t**2, t), Poly(1 + x, t)]
    assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \
        ([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (-S(11)/12 - x**3/24)*t + x/24, t),
        Poly(x/3*t**3 - x**2/6*t**2 + (-S(1)/3 + x**3/6)*t - x/6, t), Poly(t, t),
        Poly(0, t), Poly(0, t)], Matrix([[1, 0,      -1, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 1, -S(1)/4, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 0,       0, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 0,       0, 1, 0,  0,  0,  0,  0,  0],
                                         [0, 0,       0, 0, 1,  0,  0,  0,  0,  0],
                                         [1, 0,       0, 0, 0, -1,  0,  0,  0,  0],
                                         [0, 1,       0, 0, 0,  0, -1,  0,  0,  0],
                                         [0, 0,       1, 0, 0,  0,  0, -1,  0,  0],
                                         [0, 0,       0, 1, 0,  0,  0,  0, -1,  0],
                                         [0, 0,       0, 0, 1,  0,  0,  0,  0, -1]]))
Exemplo n.º 3
0
def test_prde_no_cancel():
    # b large
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**2, x), Poly(1, x)], 2, DE) == \
        ([Poly(x**2 - 2*x + 2, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
                                                        [0, 1, 0, -1]]))
    assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**3, x), Poly(1, x)], 3, DE) == \
        ([Poly(x**3 - 3*x**2 + 6*x - 6, x), Poly(1, x)], Matrix([[1, 0, -1, 0],
                                                                 [0, 1, 0, -1]]))
    assert prde_no_cancel_b_large(Poly(x, x), [Poly(x**2, x), Poly(1, x)], 1, DE) == \
        ([Poly(x, x, domain='ZZ'), Poly(0, x, domain='ZZ')], Matrix([[1, -1,  0,  0],
                                                                    [1,  0, -1,  0],
                                                                    [0,  1,  0, -1]]))
    # b small
    # XXX: Is there a better example of a monomial with D.degree() > 2?
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**3 + 1, t)]})

    # My original q was t**4 + t + 1, but this solution implies q == t**4
    # (c1 = 4), with some of the ci for the original q equal to 0.
    G = [Poly(t**6, t), Poly(x*t**5, t), Poly(t**3, t), Poly(x*t**2, t), Poly(1 + x, t)]
    assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \
        ([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (-S(11)/12 - x**3/24)*t + x/24, t),
        Poly(x/3*t**3 - x**2/6*t**2 + (-S(1)/3 + x**3/6)*t - x/6, t), Poly(t, t),
        Poly(0, t), Poly(0, t)], Matrix([[1, 0,      -1, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 1, -S(1)/4, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 0,       0, 0, 0,  0,  0,  0,  0,  0],
                                         [0, 0,       0, 1, 0,  0,  0,  0,  0,  0],
                                         [0, 0,       0, 0, 1,  0,  0,  0,  0,  0],
                                         [1, 0,       0, 0, 0, -1,  0,  0,  0,  0],
                                         [0, 1,       0, 0, 0,  0, -1,  0,  0,  0],
                                         [0, 0,       1, 0, 0,  0,  0, -1,  0,  0],
                                         [0, 0,       0, 1, 0,  0,  0,  0, -1,  0],
                                         [0, 0,       0, 0, 1,  0,  0,  0,  0, -1]]))

    # TODO: Add test for deg(b) <= 0 with b small
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
    b = Poly(-1/x**2, t, field=True)  # deg(b) == 0
    q = [Poly(x**i*t**j, t, field=True) for i in range(2) for j in range(3)]
    h, A = prde_no_cancel_b_small(b, q, 3, DE)
    V = A.nullspace()
    assert len(V) == 1
    assert V[0] == Matrix([-S(1)/2, 0, 0, 1, 0, 0]*3)
    assert (Matrix([h])*V[0][6:, :])[0] == Poly(x**2/2, t, domain='ZZ(x)')
    assert (Matrix([q])*V[0][:6, :])[0] == Poly(x - S(1)/2, t, domain='QQ(x)')
Exemplo n.º 4
0
def solve_poly_rde(b, cQ, n, DE, parametric=False):
    """
    Solve a Polynomial Risch Differential Equation with degree bound n.

    This constitutes step 4 of the outline given in the rde.py docstring.

    For parametric=False, cQ is c, a Poly; for parametric=True, cQ is Q ==
    [q1, ..., qm], a list of Polys.
    """
    from sympy.integrals.prde import (prde_no_cancel_b_large,
                                      prde_no_cancel_b_small)

    # No cancellation
    if not b.is_zero and (DE.case == 'base'
                          or b.degree(DE.t) > max(0,
                                                  DE.d.degree(DE.t) - 1)):

        if parametric:
            return prde_no_cancel_b_large(b, cQ, n, DE)
        return no_cancel_b_large(b, cQ, n, DE)

    elif (b.is_zero or b.degree(DE.t) < DE.d.degree(DE.t) - 1) and \
            (DE.case == 'base' or DE.d.degree(DE.t) >= 2):

        if parametric:
            return prde_no_cancel_b_small(b, cQ, n, DE)

        R = no_cancel_b_small(b, cQ, n, DE)

        if isinstance(R, Poly):
            return R
        else:
            # XXX: Might k be a field? (pg. 209)
            h, b0, c0 = R
            with DecrementLevel(DE):
                b0, c0 = b0.as_poly(DE.t), c0.as_poly(DE.t)
                assert b0 is not None  # See above comment
                assert c0 is not None
                y = solve_poly_rde(b0, c0, n, DE).as_poly(DE.t)
            return h + y

    elif DE.d.degree(DE.t) >= 2 and b.degree(DE.t) == DE.d.degree(DE.t) - 1 and \
            n > -b.as_poly(DE.t).LC()/DE.d.as_poly(DE.t).LC():

        # TODO: Is this check necessary, and if so, what should it do if it fails?
        # b comes from the first element returned from spde()
        assert b.as_poly(DE.t).LC().is_number

        if parametric:
            raise NotImplementedError("prde_no_cancel_b_equal() is not yet "
                                      "implemented.")

        R = no_cancel_equal(b, cQ, n, DE)

        if isinstance(R, Poly):
            return R
        else:
            h, m, C = R
            # XXX: Or should it be rischDE()?
            y = solve_poly_rde(b, C, m, DE)
            return h + y

    else:
        # Cancellation
        if b.is_zero:
            raise NotImplementedError(
                "Remaining cases for Poly (P)RDE are "
                "not yet implemented (is_deriv_in_field() required).")
        else:
            if DE.case == 'exp':
                if parametric:
                    raise NotImplementedError(
                        "Parametric RDE cancellation "
                        "hyperexponential case is not yet implemented.")
                return cancel_exp(b, cQ, n, DE)

            elif DE.case == 'primitive':
                if parametric:
                    raise NotImplementedError(
                        "Parametric RDE cancellation "
                        "primitive case is not yet implemented.")
                return cancel_primitive(b, cQ, n, DE)

            else:
                raise NotImplementedError(
                    "Other Poly (P)RDE cancellation "
                    "cases are not yet implemented (%s)." % case)

        if parametric:
            raise NotImplementedError("Remaining cases for Poly PRDE not yet "
                                      "implemented.")
        raise NotImplementedError("Remaining cases for Poly RDE not yet "
                                  "implemented.")
Exemplo n.º 5
0
def solve_poly_rde(b, cQ, n, DE, parametric=False):
    """
    Solve a Polynomial Risch Differential Equation with degree bound n.

    This constitutes step 4 of the outline given in the rde.py docstring.

    For parametric=False, cQ is c, a Poly; for parametric=True, cQ is Q ==
    [q1, ..., qm], a list of Polys.
    """
    from sympy.integrals.prde import (prde_no_cancel_b_large,
        prde_no_cancel_b_small)

    # No cancellation
    if not b.is_zero and (DE.case == 'base' or
            b.degree(DE.t) > max(0, DE.d.degree(DE.t) - 1)):

        if parametric:
            return prde_no_cancel_b_large(b, cQ, n, DE)
        return no_cancel_b_large(b, cQ, n, DE)

    elif (b.is_zero or b.degree(DE.t) < DE.d.degree(DE.t) - 1) and \
            (DE.case == 'base' or DE.d.degree(DE.t) >= 2):

        if parametric:
            return prde_no_cancel_b_small(b, cQ, n, DE)

        R = no_cancel_b_small(b, cQ, n, DE)

        if isinstance(R, Poly):
            return R
        else:
            # XXX: Might k be a field? (pg. 209)
            h, b0, c0 = R
            with DecrementLevel(DE):
                b0, c0 = b0.as_poly(DE.t), c0.as_poly(DE.t)
                assert b0 is not None  # See above comment
                assert c0 is not None
                y = solve_poly_rde(b0, c0, n, DE).as_poly(DE.t)
            return h + y

    elif DE.d.degree(DE.t) >= 2 and b.degree(DE.t) == DE.d.degree(DE.t) - 1 and \
            n > -b.as_poly(DE.t).LC()/DE.d.as_poly(DE.t).LC():

        # TODO: Is this check necessary, and if so, what should it do if it fails?
        # b comes from the first element returned from spde()
        assert b.as_poly(DE.t).LC().is_number

        if parametric:
            raise NotImplementedError("prde_no_cancel_b_equal() is not yet "
                "implemented.")

        R = no_cancel_equal(b, cQ, n, DE)

        if isinstance(R, Poly):
            return R
        else:
            h, m, C = R
            # XXX: Or should it be rischDE()?
            y = solve_poly_rde(b, C, m, DE)
            return h + y

    else:
        # Cancellation
        if b.is_zero:
            raise NotImplementedError("Remaining cases for Poly (P)RDE are "
            "not yet implemented (is_deriv_in_field() required).")
        else:
            if DE.case == 'exp':
                if parametric:
                    raise NotImplementedError("Parametric RDE cancellation "
                        "hyperexponential case is not yet implemented.")
                return cancel_exp(b, cQ, n, DE)

            elif DE.case == 'primitive':
                if parametric:
                    raise NotImplementedError("Parametric RDE cancellation "
                        "primitive case is not yet implemented.")
                return cancel_primitive(b, cQ, n, DE)

            else:
                raise NotImplementedError("Other Poly (P)RDE cancellation "
                    "cases are not yet implemented (%s)." % case)

        if parametric:
            raise NotImplementedError("Remaining cases for Poly PRDE not yet "
                "implemented.")
        raise NotImplementedError("Remaining cases for Poly RDE not yet "
            "implemented.")