Exemplo n.º 1
0
def smith_normal_form(m, domain=None):
    '''
    Return the Smith Normal Form of a matrix `m` over the ring `domain`.
    This will only work if the ring is a principal ideal domain.

    Examples
    ========

    >>> from sympy.polys.solvers import RawMatrix as Matrix
    >>> from sympy.polys.domains import ZZ
    >>> from sympy.matrices.normalforms import smith_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> setattr(m, "ring", ZZ)
    >>> print(smith_normal_form(m))
    Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])

    '''
    invs = invariant_factors(m, domain=domain)
    smf = diag(*invs)
    n = len(invs)
    if m.rows > n:
        smf = smf.row_insert(m.rows, zeros(m.rows - n, m.cols))
    elif m.cols > n:
        smf = smf.col_insert(m.cols, zeros(m.rows, m.cols - n))
    return smf
Exemplo n.º 2
0
def smith_normal_form(m, domain = None):
    '''
    Return the Smith Normal Form of a matrix `m` over the ring `domain`.
    This will only work if the ring is a principal ideal domain.

    Examples
    ========

    >>> from sympy.polys.solvers import RawMatrix as Matrix
    >>> from sympy.polys.domains import ZZ
    >>> from sympy.matrices.normalforms import smith_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> setattr(m, "ring", ZZ)
    >>> print(smith_normal_form(m))
    Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])

    '''
    invs = invariant_factors(m, domain=domain)
    smf = diag(*invs)
    n = len(invs)
    if m.rows > n:
        smf = smf.row_insert(m.rows, zeros(m.rows-n, m.cols))
    elif m.cols > n:
        smf = smf.col_insert(m.cols, zeros(m.rows, m.cols-n))
    return smf
Exemplo n.º 3
0
    def get_submatrix(self, matrix):
        r"""
        Returns
        =======

        macaulay_submatrix: Matrix
            The Macaulay denominator matrix. Columns that are non reduced are kept.
            The row which contains one of the a_{i}s is dropped. a_{i}s
            are the coefficients of x_i ^ {d_i}.
        """
        reduced, non_reduced = self.get_reduced_nonreduced()

        # if reduced == [], then det(matrix) should be 1
        if reduced == []:
            return diag([1])

        # reduced != []
        reduction_set = [v ** self.degrees[i] for i, v
                         in enumerate(self.variables)]

        ais = list([self.polynomials[i].coeff(reduction_set[i])
                    for i in range(self.n)])

        reduced_matrix = matrix[:, reduced]
        keep = []
        for row in range(reduced_matrix.rows):
            check = [ai in reduced_matrix[row, :] for ai in ais]
            if True not in check:
                keep.append(row)

        return matrix[keep, non_reduced]
Exemplo n.º 4
0
 def as_explicit(self):
     from sympy.matrices.dense import diag
     return diag(*list(self._vector.as_explicit()))
Exemplo n.º 5
0
def test_replace_arrays_partial_derivative():

    x, y, z, t = symbols("x y z t")

    # d(A^i)/d(A_j) = d(g^ik A_k)/d(A_j) = g^ik delta_jk
    expr = PartialDerivative(A(i), A(-j))
    assert expr.get_free_indices() == [i, j]
    assert expr.get_indices() == [i, j]
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, [i, j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, [i, j]) == Array([[1, 0], [0, -1]])
    assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, 1)}, [i, j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, -1)}, [i, j]) == Array([[1, 0], [0, -1]])

    expr = PartialDerivative(A(i), A(j))
    assert expr.get_free_indices() == [i, -j]
    assert expr.get_indices() == [i, -j]
    assert expr.replace_with_arrays({A(i): [x, y]}, [i, -j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, [i, -j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, [i, -j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, 1)}, [i, -j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, -1)}, [i, -j]) == Array([[1, 0], [0, 1]])

    expr = PartialDerivative(A(-i), A(-j))
    assert expr.get_free_indices() == [-i, j]
    assert expr.get_indices() == [-i, j]
    assert expr.replace_with_arrays({A(-i): [x, y]}, [-i, j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, 1)}, [-i, j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, -1)}, [-i, j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, [-i, j]) == Array([[1, 0], [0, 1]])
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, [-i, j]) == Array([[1, 0], [0, 1]])

    expr = PartialDerivative(A(i), A(i))
    assert expr.get_free_indices() == []
    assert expr.get_indices() == [L_0, -L_0]
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, []) == 2
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, []) == 2

    expr = PartialDerivative(A(-i), A(-i))
    assert expr.get_free_indices() == []
    assert expr.get_indices() == [-L_0, L_0]
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, []) == 2
    assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, []) == 2

    expr = PartialDerivative(H(i, j) + H(j, i), A(i))
    assert expr.get_indices() == [L_0, j, -L_0]
    assert expr.get_free_indices() == [j]

    expr = PartialDerivative(H(i, j) + H(j, i), A(k))*B(-i)
    assert expr.get_indices() == [L_0, j, -k, -L_0]
    assert expr.get_free_indices() == [j, -k]

    expr = PartialDerivative(A(i)*(H(-i, j) + H(j, -i)), A(j))
    assert expr.get_indices() == [L_0, -L_0, L_1, -L_1]
    assert expr.get_free_indices() == []

    expr = A(j)*A(-j) + expr
    assert expr.get_indices() == [L_0, -L_0, L_1, -L_1]
    assert expr.get_free_indices() == []

    expr = A(i)*(B(j)*PartialDerivative(C(-j), D(i)) + C(j)*PartialDerivative(D(-j), B(i)))
    assert expr.get_indices() == [L_0, L_1, -L_1, -L_0]
    assert expr.get_free_indices() == []

    expr = A(i)*PartialDerivative(C(-j), D(i))
    assert expr.get_indices() == [L_0, -j, -L_0]
    assert expr.get_free_indices() == [-j]
Exemplo n.º 6
0
def test_H2():
    TP = sympy.diffgeom.TensorProduct
    R2 = sympy.diffgeom.rn.R2
    y = R2.y
    dy = R2.dy
    dx = R2.dx
    g = (TP(dx, dx) + TP(dy, dy)) * y**(-2)
    automat = twoform_to_matrix(g)
    mat = diag(y**(-2), y**(-2))
    assert mat == automat

    gamma1 = metric_to_Christoffel_1st(g)
    assert gamma1[0, 0, 0] == 0
    assert gamma1[0, 0, 1] == -y**(-3)
    assert gamma1[0, 1, 0] == -y**(-3)
    assert gamma1[0, 1, 1] == 0

    assert gamma1[1, 1, 1] == -y**(-3)
    assert gamma1[1, 1, 0] == 0
    assert gamma1[1, 0, 1] == 0
    assert gamma1[1, 0, 0] == y**(-3)

    gamma2 = metric_to_Christoffel_2nd(g)
    assert gamma2[0, 0, 0] == 0
    assert gamma2[0, 0, 1] == -y**(-1)
    assert gamma2[0, 1, 0] == -y**(-1)
    assert gamma2[0, 1, 1] == 0

    assert gamma2[1, 1, 1] == -y**(-1)
    assert gamma2[1, 1, 0] == 0
    assert gamma2[1, 0, 1] == 0
    assert gamma2[1, 0, 0] == y**(-1)

    Rm = metric_to_Riemann_components(g)
    assert Rm[0, 0, 0, 0] == 0
    assert Rm[0, 0, 0, 1] == 0
    assert Rm[0, 0, 1, 0] == 0
    assert Rm[0, 0, 1, 1] == 0

    assert Rm[0, 1, 0, 0] == 0
    assert Rm[0, 1, 0, 1] == -y**(-2)
    assert Rm[0, 1, 1, 0] == y**(-2)
    assert Rm[0, 1, 1, 1] == 0

    assert Rm[1, 0, 0, 0] == 0
    assert Rm[1, 0, 0, 1] == y**(-2)
    assert Rm[1, 0, 1, 0] == -y**(-2)
    assert Rm[1, 0, 1, 1] == 0

    assert Rm[1, 1, 0, 0] == 0
    assert Rm[1, 1, 0, 1] == 0
    assert Rm[1, 1, 1, 0] == 0
    assert Rm[1, 1, 1, 1] == 0

    Ric = metric_to_Ricci_components(g)
    assert Ric[0, 0] == -y**(-2)
    assert Ric[0, 1] == 0
    assert Ric[1, 0] == 0
    assert Ric[0, 0] == -y**(-2)

    assert Ric == ImmutableDenseNDimArray([-y**(-2), 0, 0, -y**(-2)], (2, 2))

    ## scalar curvature is -2
    #TODO - it would be nice to have index contraction built-in
    R = (Ric[0, 0] + Ric[1, 1]) * y**2
    assert R == -2

    ## Gauss curvature is -1
    assert R / 2 == -1