Exemplo n.º 1
0
def test_DiagonalMatrix():
    assert D.shape == (n, n)
    assert D[1, 2] == 0
    assert D[1, 1] == X[1, 1]
    i = Symbol('i')
    j = Symbol('j')
    x = MatrixSymbol('x', 3, 3)
    ij = DiagonalMatrix(x)[i, j]
    assert ij != 0
    assert ij.subs({i:0, j:0}) == x[0, 0]
    assert ij.subs({i:0, j:1}) == 0
    assert ij.subs({i:1, j:1}) == x[1, 1]
Exemplo n.º 2
0
def test_DiagonalMatrix():
    x = MatrixSymbol('x', n, m)
    D = DiagonalMatrix(x)
    assert D.diagonal_length is None
    assert D.shape == (n, m)

    x = MatrixSymbol('x', n, n)
    D = DiagonalMatrix(x)
    assert D.diagonal_length == n
    assert D.shape == (n, n)
    assert D[1, 2] == 0
    assert D[1, 1] == x[1, 1]
    i = Symbol('i')
    j = Symbol('j')
    x = MatrixSymbol('x', 3, 3)
    ij = DiagonalMatrix(x)[i, j]
    assert ij != 0
    assert ij.subs({i:0, j:0}) == x[0, 0]
    assert ij.subs({i:0, j:1}) == 0
    assert ij.subs({i:1, j:1}) == x[1, 1]
    assert ask(Q.diagonal(D))  # affirm that D is diagonal

    x = MatrixSymbol('x', n, 3)
    D = DiagonalMatrix(x)
    assert D.diagonal_length == 3
    assert D.shape == (n, 3)
    assert D[2, m] == KroneckerDelta(2, m)*x[2, m]
    assert D[3, m] == 0
    raises(IndexError, lambda: D[m, 3])

    x = MatrixSymbol('x', 3, n)
    D = DiagonalMatrix(x)
    assert D.diagonal_length == 3
    assert D.shape == (3, n)
    assert D[m, 2] == KroneckerDelta(m, 2)*x[m, 2]
    assert D[m, 3] == 0
    raises(IndexError, lambda: D[3, m])

    x = MatrixSymbol('x', n, m)
    D = DiagonalMatrix(x)
    assert D.diagonal_length is None
    assert D.shape == (n, m)
    assert D[m, 4] != 0

    x = MatrixSymbol('x', 3, 4)
    assert [DiagonalMatrix(x)[i] for i in range(12)] == [
        x[0, 0], 0, 0, 0, 0, x[1, 1], 0, 0, 0, 0, x[2, 2], 0]

    # shape is retained, issue 12427
    assert (
        DiagonalMatrix(MatrixSymbol('x', 3, 4))*
        DiagonalMatrix(MatrixSymbol('x', 4, 2))).shape == (3, 2)
Exemplo n.º 3
0
def test_NumPyPrinter():
    from sympy.core.function import Lambda
    from sympy.matrices.expressions.adjoint import Adjoint
    from sympy.matrices.expressions.diagonal import (DiagMatrix,
                                                     DiagonalMatrix,
                                                     DiagonalOf)
    from sympy.matrices.expressions.funcmatrix import FunctionMatrix
    from sympy.matrices.expressions.hadamard import HadamardProduct
    from sympy.matrices.expressions.kronecker import KroneckerProduct
    from sympy.matrices.expressions.special import (OneMatrix, ZeroMatrix)
    from sympy.abc import a, b
    p = NumPyPrinter()
    assert p.doprint(sign(x)) == 'numpy.sign(x)'
    A = MatrixSymbol("A", 2, 2)
    B = MatrixSymbol("B", 2, 2)
    C = MatrixSymbol("C", 1, 5)
    D = MatrixSymbol("D", 3, 4)
    assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
    assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
    assert p.doprint(Identity(3)) == "numpy.eye(3)"

    u = MatrixSymbol('x', 2, 1)
    v = MatrixSymbol('y', 2, 1)
    assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
    assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'

    assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))"
    assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))"
    assert p.doprint(FunctionMatrix(4, 5, Lambda((a, b), a + b))) == \
        "numpy.fromfunction(lambda a, b: a + b, (4, 5))"
    assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)"
    assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)"
    assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))"
    assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))"
    assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)"
    assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))"

    # Workaround for numpy negative integer power errors
    assert p.doprint(x**-1) == 'x**(-1.0)'
    assert p.doprint(x**-2) == 'x**(-2.0)'

    expr = Pow(2, -1, evaluate=False)
    assert p.doprint(expr) == "2**(-1.0)"

    assert p.doprint(S.Exp1) == 'numpy.e'
    assert p.doprint(S.Pi) == 'numpy.pi'
    assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma'
    assert p.doprint(S.NaN) == 'numpy.nan'
    assert p.doprint(S.Infinity) == 'numpy.PINF'
    assert p.doprint(S.NegativeInfinity) == 'numpy.NINF'
def test_identify_removable_identity_matrices():

    D = DiagonalMatrix(MatrixSymbol("D", k, k))

    cg = ArrayContraction(ArrayTensorProduct(A, B, I), (1, 2, 4, 5))
    expected = ArrayContraction(ArrayTensorProduct(A, B), (1, 2))
    assert identify_removable_identity_matrices(cg) == expected

    cg = ArrayContraction(ArrayTensorProduct(A, B, C, I), (1, 3, 5, 6, 7))
    expected = ArrayContraction(ArrayTensorProduct(A, B, C), (1, 3, 5))
    assert identify_removable_identity_matrices(cg) == expected

    # Tests with diagonal matrices:

    cg = ArrayContraction(ArrayTensorProduct(A, B, D), (1, 2, 4, 5))
    ret = identify_removable_identity_matrices(cg)
    expected = ArrayContraction(ArrayTensorProduct(A, B, D), (1, 4), (2, 5))
    assert ret == expected

    cg = ArrayContraction(ArrayTensorProduct(A, B, D, M, N), (1, 2, 4, 5, 6, 8))
    ret = identify_removable_identity_matrices(cg)
    assert ret == cg
Exemplo n.º 5
0
def test_diagonal():
    assert ask(Q.diagonal(X + Z.T + Identity(2)),
               Q.diagonal(X) & Q.diagonal(Z)) is True
    assert ask(Q.diagonal(ZeroMatrix(3, 3)))
    assert ask(Q.diagonal(OneMatrix(1, 1))) is True
    assert ask(Q.diagonal(OneMatrix(3, 3))) is False
    assert ask(Q.lower_triangular(X) & Q.upper_triangular(X), Q.diagonal(X))
    assert ask(Q.diagonal(X), Q.lower_triangular(X) & Q.upper_triangular(X))
    assert ask(Q.symmetric(X), Q.diagonal(X))
    assert ask(Q.triangular(X), Q.diagonal(X))
    assert ask(Q.diagonal(C0x0))
    assert ask(Q.diagonal(A1x1))
    assert ask(Q.diagonal(A1x1 + B1x1))
    assert ask(Q.diagonal(A1x1 * B1x1))
    assert ask(Q.diagonal(V1.T * V2))
    assert ask(Q.diagonal(V1.T * (X + Z) * V1))
    assert ask(Q.diagonal(MatrixSlice(Y, (0, 1), (1, 2)))) is True
    assert ask(Q.diagonal(V1.T * (V1 + V2))) is True
    assert ask(Q.diagonal(X**3), Q.diagonal(X))
    assert ask(Q.diagonal(Identity(3)))
    assert ask(Q.diagonal(DiagMatrix(V1)))
    assert ask(Q.diagonal(DiagonalMatrix(X)))
Exemplo n.º 6
0
def test_DiagonalMatrix():
    x = MatrixSymbol('x', n, m)
    D = DiagonalMatrix(x)
    assert D.diagonal_length is None
    assert D.shape == (n, m)

    x = MatrixSymbol('x', n, n)
    D = DiagonalMatrix(x)
    assert D.diagonal_length == n
    assert D.shape == (n, n)
    assert D[1, 2] == 0
    assert D[1, 1] == x[1, 1]
    i = Symbol('i')
    j = Symbol('j')
    x = MatrixSymbol('x', 3, 3)
    ij = DiagonalMatrix(x)[i, j]
    assert ij != 0
    assert ij.subs({i: 0, j: 0}) == x[0, 0]
    assert ij.subs({i: 0, j: 1}) == 0
    assert ij.subs({i: 1, j: 1}) == x[1, 1]
    assert ask(Q.diagonal(D))  # affirm that D is diagonal

    x = MatrixSymbol('x', n, 3)
    D = DiagonalMatrix(x)
    assert D.diagonal_length == 3
    assert D.shape == (n, 3)
    assert D[2, m] == KroneckerDelta(2, m) * x[2, m]
    assert D[3, m] == 0
    raises(IndexError, lambda: D[m, 3])

    x = MatrixSymbol('x', 3, n)
    D = DiagonalMatrix(x)
    assert D.diagonal_length == 3
    assert D.shape == (3, n)
    assert D[m, 2] == KroneckerDelta(m, 2) * x[m, 2]
    assert D[m, 3] == 0
    raises(IndexError, lambda: D[3, m])

    x = MatrixSymbol('x', n, m)
    D = DiagonalMatrix(x)
    assert D.diagonal_length is None
    assert D.shape == (n, m)
    assert D[m, 4] != 0

    x = MatrixSymbol('x', 3, 4)
    assert [DiagonalMatrix(x)[i] for i in range(12)
            ] == [x[0, 0], 0, 0, 0, 0, x[1, 1], 0, 0, 0, 0, x[2, 2], 0]

    # shape is retained, issue 12427
    assert (DiagonalMatrix(MatrixSymbol('x', 3, 4)) *
            DiagonalMatrix(MatrixSymbol('x', 4, 2))).shape == (3, 2)
Exemplo n.º 7
0
#import pythonista
from sympy.matrices.expressions import MatrixSymbol
from sympy.matrices.expressions.diagonal import DiagonalMatrix, DiagonalOf
from sympy import Symbol, ask, Q

n = Symbol('n')
x = MatrixSymbol('x', n, 1)
X = MatrixSymbol('X', n, n)
D = DiagonalMatrix(x)
d = DiagonalOf(X)


def test_DiagonalMatrix():
    assert D.shape == (n, n)
    assert D[1, 2] == 0
    assert D[1, 1] == x[1, 0]


def test_DiagonalMatrix_Assumptions():
    assert ask(Q.diagonal(D))


def test_DiagonalOf():
    assert d.shape == (n, 1)
    assert d[2, 0] == X[2, 2]
Exemplo n.º 8
0
from sympy.matrices.expressions import MatrixSymbol
from sympy.matrices.expressions.diagonal import DiagonalMatrix, DiagonalOf
from sympy import Symbol, ask, Q

n = Symbol('n')
X = MatrixSymbol('X', n, n)
D = DiagonalMatrix(X)
d = DiagonalOf(X)

def test_DiagonalMatrix():
    assert D.shape == (n, n)
    assert D[1, 2] == 0
    assert D[1, 1] == X[1, 1]
    i = Symbol('i')
    j = Symbol('j')
    x = MatrixSymbol('x', 3, 3)
    ij = DiagonalMatrix(x)[i, j]
    assert ij != 0
    assert ij.subs({i:0, j:0}) == x[0, 0]
    assert ij.subs({i:0, j:1}) == 0
    assert ij.subs({i:1, j:1}) == x[1, 1]

def test_DiagonalMatrix_Assumptions():
    assert ask(Q.diagonal(D))

def test_DiagonalOf():
    assert d.shape == (n, 1)
    assert d[2, 0] == X[2, 2]