Exemplo n.º 1
0
	def rotateVectorAroundNormal(point, n, angle, turnAroundPoint = [0.0, 0.0, 0.0]):
		p = matrices.Matrix(4, 1,(point[0],point[1],point[2],1.0))
		mul = matrices.Matrix((
				[n[0]*n[0] + (n[1]*n[1] + n[2]*n[2])*math.cos(angle), n[0]*n[1]*(1.0-math.cos(angle)) - n[2]*math.sin(angle), n[0]*n[2]*(1.0-math.cos(angle)) + n[1]*math.sin(angle), 0.0],
				[n[0]*n[1]*(1.0 - math.cos(angle)) + n[2]*math.sin(angle), n[1]*n[1] + (n[0]*n[0] + n[2]*n[2])*math.cos(angle), n[1]*n[2]*(1.0-math.cos(angle)) - n[0]*math.sin(angle), 0.0],
				[n[0]*n[2]*(1.0 - math.cos(angle)) - n[1]*math.sin(angle), n[1]*n[2]*(1.0 - math.cos(angle)) - n[0]*math.sin(angle), n[2]*n[2] + (n[0]*n[0]+n[1]*n[1])*math.cos(angle), 0.0],
				[0.0, 0.0, 0.0, 1.0]))
		res =  mul.multiply(p)
		return res[:3]
Exemplo n.º 2
0
def generate_Sx_Sy_Sz_operators(atom_list, Sa_list, Sb_list, Sn_list):
    """Generates Sx, Sy and Sz operators"""
    Sx_list = []
    Sy_list = []
    Sz_list = []
    N = len(atom_list)
    S = sp.Symbol('S', commutative=True)

    for i in range(N):
        rotmat = sp.Matrix(atom_list[i].spinRmatrix)
        loc_vect = spm.Matrix([Sa_list[i], Sb_list[i], Sn_list[i]])
        loc_vect = loc_vect.reshape(3, 1)
        glo_vect = rotmat * loc_vect

        Sx = sp.powsimp(glo_vect[0].expand())
        Sy = sp.powsimp(glo_vect[1].expand())
        Sz = sp.powsimp(glo_vect[2].expand())

        Sx_list.append(Sx)
        Sy_list.append(Sy)
        Sz_list.append(Sz)

    #Unit vector markers
    kapxhat = sp.Symbol('kapxhat', commutative=False)  #spm.Matrix([1,0,0])#
    kapyhat = sp.Symbol('kapyhat', commutative=False)  #spm.Matrix([0,1,0])#
    kapzhat = sp.Symbol('kapzhat', commutative=False)  #spm.Matrix([0,0,1])#

    Sx_list.append(kapxhat)
    Sy_list.append(kapyhat)
    Sz_list.append(kapzhat)
    print "Operators Generated: Sx, Sy, Sz"
    return (Sx_list, Sy_list, Sz_list)
Exemplo n.º 3
0
def inner_prod(vect1, vect2, ten=spm.Matrix([[1, 0, 0], [0, 1, 0], [0, 0,
                                                                    1]])):
    # For column vectors -  make sure vectors match eachother as well as # of rows in tensor
    if vect1.shape == vect2.shape == (3, 1) == (ten.lines, 1):
        return (vect1.T * ten * vect2)[0]
    # For row vectors -  make sure vectors match eachother as well as # of cols in tensor
    elif vect1.shape == vect2.shape == (1, 3) == (1, ten.cols):
        return (vect1 * ten * vect2.T)[0]
    # Everything else
    else:
        return None
Exemplo n.º 4
0
def run_cross_section(interactionfile, spinfile):
    start = clock()

    # Generate Inputs
    atom_list, jnums, jmats, N_atoms_uc = readFiles(interactionfile, spinfile)
    atom1 = atom(pos=[0.00, 0, 0],
                 neighbors=[1],
                 interactions=[0],
                 int_cell=[0],
                 atomicNum=26,
                 valence=3)
    atom2 = atom(pos=[0.25, 0, 0],
                 neighbors=[0, 2],
                 interactions=[0],
                 int_cell=[0],
                 atomicNum=26,
                 valence=3)
    atom3 = atom(pos=[0.50, 0, 0],
                 neighbors=[1, 3],
                 interactions=[0],
                 int_cell=[0],
                 atomicNum=26,
                 valence=3)
    atom4 = atom(pos=[0.75, 0, 0],
                 neighbors=[2],
                 interactions=[0],
                 int_cell=[0],
                 atomicNum=26,
                 valence=3)
    #    atom_list,N_atoms_uc = ([atom1, atom2, atom3, atom4],1)
    N_atoms = len(atom_list)

    print N_atoms
    if 1:
        kx = sp.Symbol('kx', real=True, commutative=True)
        ky = sp.Symbol('ky', real=True, commutative=True)
        kz = sp.Symbol('kz', real=True, commutative=True)
        k = spm.Matrix([kx, ky, kz])

    (b, bd) = generate_b_bd_operators(atom_list)
    #    list_print(b)
    (a, ad) = generate_a_ad_operators(atom_list, k, b, bd)
    list_print(a)
    (Sp, Sm) = generate_Sp_Sm_operators(atom_list, a, ad)
    list_print(Sp)
    (Sa, Sb, Sn) = generate_Sa_Sb_Sn_operators(atom_list, Sp, Sm)
    #    list_print(Sa)
    (Sx, Sy, Sz) = generate_Sx_Sy_Sz_operators(atom_list, Sa, Sb, Sn)
    list_print(Sx)
    print ''

    #Ham = generate_Hamiltonian(N_atoms, atom_list, b, bd)
    ops = generate_possible_combinations(atom_list, [Sx, Sy, Sz])
    #    list_print(ops)
    ops = holstein(atom_list, ops)
    #    list_print(ops)
    ops = apply_commutation(atom_list, ops)
    #    list_print(ops)
    ops = replace_bdb(atom_list, ops)
    #    list_print(ops)

    ops = reduce_options(atom_list, ops)
    list_print(ops)

    # Old Method
    #cross_sect = generate_cross_section(atom_list, ops, 1, real, recip)
    #print '\n', cross_sect

    if 1:
        aa = bb = cc = np.array([2.0 * np.pi], 'Float64')
        alpha = beta = gamma = np.array([np.pi / 2.0], 'Float64')
        vect1 = np.array([[1, 0, 0]])
        vect2 = np.array([[0, 0, 1]])
        lattice = Lattice(aa, bb, cc, alpha, beta, gamma,
                          Orientation(vect1, vect2))
        data = {}
        data['kx'] = 1.
        data['ky'] = 0.
        data['kz'] = 0.
        direction = data

        temperature = 100.0
        min = 0
        max = 2 * sp.pi
        steps = 25

        tau_list = []
        for i in range(1):
            tau_list.append(np.array([0, 0, 0], 'Float64'))

        h_list = np.linspace(0, 2, 100)
        k_list = np.zeros(h_list.shape)
        l_list = np.zeros(h_list.shape)
        w_list = np.linspace(-4, 4, 100)

        efixed = 14.7  #meV
        eief = True
        eval_cross_section(interactionfile, spinfile, lattice, ops, tau_list,
                           h_list, k_list, l_list, w_list, data, temperature,
                           min, max, steps, eief, efixed)

    end = clock()
    print "\nFinished %i atoms in %.2f seconds" % (N_atoms, end - start)
Exemplo n.º 5
0
def generate_cross_section(atom_list, arg, q, real_list, recip_list):
    """Generates the Cross-Section Formula for the one magnon case"""
    N = len(atom_list)
    gam = 1.913  #sp.Symbol('gamma', commutative = True)
    r = sp.Symbol('r0', commutative=True)
    h = 1.  # 1.05457148*10**(-34) #sp.Symbol('hbar', commutative = True)
    k = sp.Symbol('k', commutative=True)
    kp = sp.Symbol('kp', commutative=True)
    g = sp.Symbol('g', commutative=True)
    F = sp.Function('F')

    def FF(arg):
        F = sp.Function('F')
        if arg.shape == (3, 1) or arg.shape == (1, 3):
            return sp.Symbol("%r" % (F(arg.tolist()), ), commutative=False)

    kap = spm.Matrix([
        sp.Symbol('kapx', commutative=False),
        sp.Symbol('kapy', commutative=False),
        sp.Symbol('kapz', commutative=False)
    ])
    t = sp.Symbol('t', commutative=True)
    w = sp.Symbol('w', commutative=True)
    W = sp.Symbol('W', commutative=False)
    kappa = sp.Symbol('kappa', commutative=False)
    tau = sp.Symbol('tau', commutative=False)

    # Wilds for sub_in method
    A = sp.Wild('A', exclude=[0])
    B = sp.Wild('B', exclude=[0])
    C = sp.Wild('C')
    D = sp.Wild('D')

    front_constant = (gam * r)**2 / (2 * pi * h) * (kp / k) * N
    front_func = (1. / 2.) * g  #*F(k)
    vanderwaals = exp(-2 * W)

    temp2 = []
    temp3 = []
    temp4 = []

    # Grabs the unit vectors from the back of the lists.
    unit_vect = []
    kapx = sp.Symbol('kapxhat', )
    kapy = sp.Symbol('kapyhat', commutative=False)
    kapz = sp.Symbol('kapzhat', commutative=False)
    for i in range(len(arg)):
        unit_vect.append(arg[i].pop())
#    for ele in unit_vect:
#        ele = ele.subs(kapx,spm.Matrix([1,0,0]))
#        ele = ele.subs(kapy,spm.Matrix([0,1,0]))
#        ele = ele.subs(kapz,spm.Matrix([0,0,1]))
# This is were the heart of the calculation comes in.
# First the exponentials are turned into delta functions:
    for i in range(len(arg)):
        for j in range(N):
            arg[i][j] = sp.powsimp(arg[i][j], deep=True, combine='all')
            arg[i][j] = arg[i][j] * exp(-I * w * t) * exp(
                I * inner_prod(spm.Matrix(atom_list[j].pos).T, kap))
            arg[i][j] = sp.powsimp(arg[i][j], deep=True, combine='all')
            arg[i][j] = sub_in(arg[i][j], exp(I * t * A + I * t * B + C),
                               sp.DiracDelta(A * t + B * t +
                                             C / I))  #*sp.DiracDelta(C))
            arg[i][j] = sub_in(
                arg[i][j], sp.DiracDelta(A * t + B * t + C),
                sp.DiracDelta(A * h + B * h) * sp.DiracDelta(C + tau))
            arg[i][j] = sub_in(arg[i][j], sp.DiracDelta(-A - B),
                               sp.DiracDelta(A + B))
            print arg[i][j]
    print "Applied: Delta Function Conversion"

    #    for ele in arg:
    #        for subele in ele:
    #            temp2.append(subele)
    #        temp3.append(sum(temp2))
    #
    #    for i in range(len(temp3)):
    #        temp4.append(unit_vect[i] * temp3[i])

    for k in range(len(arg)):
        temp4.append(arg[k][q])
    dif = (front_func**2 * front_constant * vanderwaals * sum(temp4)
           )  #.expand()#sp.simplify(sum(temp4))).expand()

    print "Complete: Cross-section Calculation"
    return dif
Exemplo n.º 6
0
import sympy as sy
import sympy.matrices as syma

d = 2

rho = sy.Symbol("rho")
rhouvec = [sy.Symbol("rho" + chr(ord("u") + i)) for i in range(d)]
uvec = [rhou_i / rho for rhou_i in rhouvec]
E = sy.Symbol("E")
p = sy.Symbol("p")
gamma = sy.Symbol("gamma")

p_solved = sy.solve(
    -E + p / (gamma - 1) + rho / 2 * sum(uvec[i]**2 for i in range(d)), p)[0]
print p_solved

flux_rho = syma.Matrix(1, d, [rho * uvec[i] for i in range(d)])
flux_E = syma.Matrix(1, d, [(E + p_solved) * uvec[i] for i in range(d)])
flux_rho_u = syma.Matrix(1, d, [(E + p_solved) * uvec[i] for i in range(d)])

print flux_E
Exemplo n.º 7
0
def P(tp, pi, ti):
    p0 = smm.Matrix([1, 0, 0])
    R_i = R(0, -ti, -pi) * R_z(tp)
    return R_i * p0
Exemplo n.º 8
0
def R_z(alpha):
    return smm.Matrix([[sm.cos(alpha), -sm.sin(alpha), 0],
                       [sm.sin(alpha), sm.cos(alpha), 0], [0, 0, 1]])
Exemplo n.º 9
0
def R_y(alpha):
    return smm.Matrix([[sm.cos(alpha), 0, sm.sin(alpha)], [0, 1, 0],
                       [-sm.sin(alpha), 0, sm.cos(alpha)]])
Exemplo n.º 10
0
def R_x(alpha):
    return smm.Matrix([[1, 0, 0], [0, sm.cos(alpha), -sm.sin(alpha)],
                       [0, sm.sin(alpha), sm.cos(alpha)]])
Exemplo n.º 11
0
import mpmath
import sys

import numpy as np
import matplotlib.pyplot as plt

init_printing(use_unicode=True, wrap_line=False)
sys.modules['sympy.mpmath'] = mpmath

component = 'VH'

a, b, c, d, p, t = sm.symbols(r'a b c d \phi \theta')

# symbol matrices
# si
A_1 = smm.Matrix([[a, 0, 0], [0, a, 0], [0, 0, a]])

E1 = smm.Matrix([[b, 0, 0], [0, b, 0], [0, 0, -2 * b]])

E2 = smm.Matrix([[-sm.sqrt(3) * b, 0, 0], [0, sm.sqrt(3) * b, 0], [0, 0, 0]])

T_2x = smm.Matrix([[0, 0, 0], [0, 0, d], [0, d, 0]])

T_2y = smm.Matrix([[0, 0, d], [0, 0, 0], [d, 0, 0]])

T_2z = smm.Matrix([[0, d, 0], [d, 0, 0], [0, 0, 0]])

# grf/hbn
A1g = smm.Matrix([[a, 0, 0], [0, a, 0], [0, 0, b]])

E2g1 = smm.Matrix([[0, -d, 0], [-d, 0, 0], [0, 0, 0]])