Exemplo n.º 1
0
def hypsum(expr, n, start, prec):
    """
    Sum a rapidly convergent infinite hypergeometric series with
    given general term, e.g. e = hypsum(1/factorial(n), n). The
    quotient between successive terms must be a quotient of integer
    polynomials.
    """
    from sympy import hypersimp, lambdify

    if start:
        expr = expr.subs(n, n + start)
    hs = hypersimp(expr, n)
    if hs is None:
        raise NotImplementedError("a hypergeometric series is required")
    num, den = hs.as_numer_denom()

    func1 = lambdify(n, num)
    func2 = lambdify(n, den)

    h, g, p = check_convergence(num, den, n)

    if h < 0:
        raise ValueError("Sum diverges like (n!)^%i" % (-h))

    # Direct summation if geometric or faster
    if h > 0 or (h == 0 and abs(g) > 1):
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec) // term.q
        s = term
        k = 1
        while abs(term) > 5:
            term *= MPZ(func1(k - 1))
            term //= MPZ(func2(k - 1))
            s += term
            k += 1
        return from_man_exp(s, -prec)
    else:
        alt = g < 0
        if abs(g) < 1:
            raise ValueError("Sum diverges like (%i)^n" % abs(1 / g))
        if p < 1 or (p == 1 and not alt):
            raise ValueError("Sum diverges like n^%i" % (-p))
        # We have polynomial convergence: use Richardson extrapolation
        # Need to use at least quad precision because a lot of cancellation
        # might occur in the extrapolation process
        prec2 = 4 * prec
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec2) // term.q

        def summand(k, _term=[term]):
            if k:
                k = int(k)
                _term[0] *= MPZ(func1(k - 1))
                _term[0] //= MPZ(func2(k - 1))
            return make_mpf(from_man_exp(_term[0], -prec2))

        with workprec(prec):
            v = nsum(summand, [0, mpmath_inf], method="richardson")

        return v._mpf_
Exemplo n.º 2
0
def _a(n, j, prec):
    """Compute the inner sum in the HRR formula."""
    if j == 1:
        return fone
    s = fzero
    pi = pi_fixed(prec)
    for h in xrange(1, j):
        if igcd(h, j) != 1:
            continue
        # & with mask to compute fractional part of fixed-point number
        one = 1 << prec
        onemask = one - 1
        half = one >> 1
        g = 0
        if j >= 3:
            for k in xrange(1, j):
                t = h*k*one//j
                if t > 0:
                    frac = t & onemask
                else:
                    frac = -((-t) & onemask)
                g += k*(frac - half)
        g = ((g - 2*h*n*one)*pi//j) >> prec
        s = mpf_add(s, mpf_cos(from_man_exp(g, -prec), prec), prec)
    return s
Exemplo n.º 3
0
 def summand(k, _term=[term]):
     if k:
         k = int(k)
         _term[0] *= MPZ(func1(k - 1))
         _term[0] //= MPZ(func2(k - 1))
     return make_mpf(from_man_exp(_term[0], -prec2))
Exemplo n.º 4
0
 def _as_mpf_val(self, prec):
     return mlib.from_man_exp(mlib.catalan_fixed(prec+10), -prec-10)
Exemplo n.º 5
0
 def _as_mpf_val(self, prec):
     return mlib.from_man_exp(mlib.libhyper.euler_fixed(
         prec+10), -prec-10)
Exemplo n.º 6
0
 def summand(k, _term=[term]):
     if k:
         k = int(k)
         _term[0] *= MPZ(func1(k - 1))
         _term[0] //= MPZ(func2(k - 1))
     return make_mpf(from_man_exp(_term[0], -prec2))
Exemplo n.º 7
0
def hypsum(expr, n, start, prec):
    """
    Sum a rapidly convergent infinite hypergeometric series with
    given general term, e.g. e = hypsum(1/factorial(n), n). The
    quotient between successive terms must be a quotient of integer
    polynomials.
    """
    from sympy import hypersimp, lambdify

    if start:
        expr = expr.subs(n, n + start)
    hs = hypersimp(expr, n)
    if hs is None:
        raise NotImplementedError("a hypergeometric series is required")
    num, den = hs.as_numer_denom()

    func1 = lambdify(n, num)
    func2 = lambdify(n, den)

    h, g, p = check_convergence(num, den, n)

    if h < 0:
        raise ValueError("Sum diverges like (n!)^%i" % (-h))

    # Direct summation if geometric or faster
    if h > 0 or (h == 0 and abs(g) > 1):
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec) // term.q
        s = term
        k = 1
        while abs(term) > 5:
            term *= MPZ(func1(k - 1))
            term //= MPZ(func2(k - 1))
            s += term
            k += 1
        return from_man_exp(s, -prec)
    else:
        alt = g < 0
        if abs(g) < 1:
            raise ValueError("Sum diverges like (%i)^n" % abs(1 / g))
        if p < 1 or (p == 1 and not alt):
            raise ValueError("Sum diverges like n^%i" % (-p))
        # We have polynomial convergence: use Richardson extrapolation
        # Need to use at least quad precision because a lot of cancellation
        # might occur in the extrapolation process
        prec2 = 4 * prec
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec2) // term.q

        def summand(k, _term=[term]):
            if k:
                k = int(k)
                _term[0] *= MPZ(func1(k - 1))
                _term[0] //= MPZ(func2(k - 1))
            return make_mpf(from_man_exp(_term[0], -prec2))

        orig = mp.prec
        try:
            mp.prec = prec
            v = nsum(summand, [0, mpmath_inf], method='richardson')
        finally:
            mp.prec = orig
        return v._mpf_
Exemplo n.º 8
0
def hypsum(expr, n, start, prec):
    """
    Sum a rapidly convergent infinite hypergeometric series with
    given general term, e.g. e = hypsum(1/factorial(n), n). The
    quotient between successive terms must be a quotient of integer
    polynomials.
    """
    from sympy import hypersimp, lambdify

    if prec == float('inf'):
        raise NotImplementedError('does not support inf prec')

    if start:
        expr = expr.subs(n, n + start)
    hs = hypersimp(expr, n)
    if hs is None:
        raise NotImplementedError("a hypergeometric series is required")
    num, den = hs.as_numer_denom()

    func1 = lambdify(n, num)
    func2 = lambdify(n, den)

    h, g, p = check_convergence(num, den, n)

    if h < 0:
        raise ValueError("Sum diverges like (n!)^%i" % (-h))

    term = expr.subs(n, 0)
    if not term.is_Rational:
        raise NotImplementedError("Non rational term functionality is not implemented.")

    # Direct summation if geometric or faster
    if h > 0 or (h == 0 and abs(g) > 1):
        term = (MPZ(term.p) << prec) // term.q
        s = term
        k = 1
        while abs(term) > 5:
            term *= MPZ(func1(k - 1))
            term //= MPZ(func2(k - 1))
            s += term
            k += 1
        return from_man_exp(s, -prec)
    else:
        alt = g < 0
        if abs(g) < 1:
            raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
        if p < 1 or (p == 1 and not alt):
            raise ValueError("Sum diverges like n^%i" % (-p))
        # We have polynomial convergence: use Richardson extrapolation
        vold = None
        ndig = prec_to_dps(prec)
        while True:
            # Need to use at least quad precision because a lot of cancellation
            # might occur in the extrapolation process; we check the answer to
            # make sure that the desired precision has been reached, too.
            prec2 = 4*prec
            term0 = (MPZ(term.p) << prec2) // term.q

            def summand(k, _term=[term0]):
                if k:
                    k = int(k)
                    _term[0] *= MPZ(func1(k - 1))
                    _term[0] //= MPZ(func2(k - 1))
                return make_mpf(from_man_exp(_term[0], -prec2))

            with workprec(prec):
                v = nsum(summand, [0, mpmath_inf], method='richardson')
            vf = C.Float(v, ndig)
            if vold is not None and vold == vf:
                break
            prec += prec  # double precision each time
            vold = vf

        return v._mpf_