Exemplo n.º 1
0
Arquivo: evalf.py Projeto: fxkr/sympy
def add_terms(terms, prec, target_prec):
    """
    Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
    """
    if len(terms) == 1:
        if not terms[0]:
            # XXX: this is supposed to represent a scaled zero
            return mpf_shift(fone, target_prec), -1
        return terms[0]
    max_extra_prec = 2*prec
    sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF
    for x, accuracy in terms:
        if not x:
            continue
        sign, man, exp, bc = x
        if sign:
            man = -man
        absolute_error = max(absolute_error, bc+exp-accuracy)
        delta = exp - sum_exp
        if exp >= sum_exp:
            # x much larger than existing sum?
            # first: quick test
            if (delta > max_extra_prec) and \
                ((not sum_man) or delta-bitcount(abs(sum_man)) > max_extra_prec):
                sum_man = man
                sum_exp = exp
            else:
                sum_man += (man << delta)
        else:
            delta = -delta
            # x much smaller than existing sum?
            if delta-bc > max_extra_prec:
                if not sum_man:
                    sum_man, sum_exp = man, exp
            else:
                sum_man = (sum_man << delta) + man
                sum_exp = exp
    if absolute_error == MINUS_INF:
        return None, None
    if not sum_man:
        # XXX: this is supposed to represent a scaled zero
        return mpf_shift(fone, absolute_error), -1
    if sum_man < 0:
        sum_sign = 1
        sum_man = -sum_man
    else:
        sum_sign = 0
    sum_bc = bitcount(sum_man)
    sum_accuracy = sum_exp + sum_bc - absolute_error
    r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
        round_nearest), sum_accuracy
    #print "returning", to_str(r[0],50), r[1]
    return r
Exemplo n.º 2
0
def add_terms(terms, prec, target_prec):
    """
    Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
    """
    if len(terms) == 1:
        if not terms[0]:
            # XXX: this is supposed to represent a scaled zero
            return mpf_shift(fone, target_prec), -1
        return terms[0]
    max_extra_prec = 2 * prec
    sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF
    for x, accuracy in terms:
        if not x:
            continue
        sign, man, exp, bc = x
        if sign:
            man = -man
        absolute_error = max(absolute_error, bc + exp - accuracy)
        delta = exp - sum_exp
        if exp >= sum_exp:
            # x much larger than existing sum?
            # first: quick test
            if (delta > max_extra_prec) and \
                ((not sum_man) or delta-bitcount(abs(sum_man)) > max_extra_prec):
                sum_man = man
                sum_exp = exp
            else:
                sum_man += (man << delta)
        else:
            delta = -delta
            # x much smaller than existing sum?
            if delta - bc > max_extra_prec:
                if not sum_man:
                    sum_man, sum_exp = man, exp
            else:
                sum_man = (sum_man << delta) + man
                sum_exp = exp
    if absolute_error == MINUS_INF:
        return None, None
    if not sum_man:
        # XXX: this is supposed to represent a scaled zero
        return mpf_shift(fone, absolute_error), -1
    if sum_man < 0:
        sum_sign = 1
        sum_man = -sum_man
    else:
        sum_sign = 0
    sum_bc = bitcount(sum_man)
    sum_accuracy = sum_exp + sum_bc - absolute_error
    r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
                  round_nearest), sum_accuracy
    #print "returning", to_str(r[0],50), r[1]
    return r
Exemplo n.º 3
0
Arquivo: evalf.py Projeto: fxkr/sympy
def finalize_complex(re, im, prec):
    assert re and im
    if re == fzero and im == fzero:
        raise ValueError("got complex zero with unknown accuracy")
    size_re = fastlog(re)
    size_im = fastlog(im)
    # Convert fzeros to scaled zeros
    if re == fzero:
        re = mpf_shift(fone, size_im-prec)
        size_re = fastlog(re)
    elif im == fzero:
        im = mpf_shift(fone, size_re-prec)
        size_im = fastlog(im)
    if size_re > size_im:
        re_acc = prec
        im_acc = prec + min(-(size_re - size_im), 0)
    else:
        im_acc = prec
        re_acc = prec + min(-(size_im - size_re), 0)
    return re, im, re_acc, im_acc
Exemplo n.º 4
0
def finalize_complex(re, im, prec):
    assert re and im
    if re == fzero and im == fzero:
        raise ValueError("got complex zero with unknown accuracy")
    size_re = fastlog(re)
    size_im = fastlog(im)
    # Convert fzeros to scaled zeros
    if re == fzero:
        re = mpf_shift(fone, size_im - prec)
        size_re = fastlog(re)
    elif im == fzero:
        im = mpf_shift(fone, size_re - prec)
        size_im = fastlog(im)
    if size_re > size_im:
        re_acc = prec
        im_acc = prec + min(-(size_re - size_im), 0)
    else:
        im_acc = prec
        re_acc = prec + min(-(size_im - size_re), 0)
    return re, im, re_acc, im_acc
Exemplo n.º 5
0
def scaled_zero(mag, sign=1):
    """Return an mpf representing a power of two with magnitude ``mag``
    and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
    remove the sign from within the list that it was initially wrapped
    in.

    Examples
    ========

    >>> from sympy.core.evalf import scaled_zero
    >>> from sympy import Float
    >>> z, p = scaled_zero(100)
    >>> z, p
    (([0], 1, 100, 1), -1)
    >>> ok = scaled_zero(z)
    >>> ok
    (0, 1, 100, 1)
    >>> Float(ok)
    1.26765060022823e+30
    >>> Float(ok, p)
    0.e+30
    >>> ok, p = scaled_zero(100, -1)
    >>> Float(scaled_zero(ok), p)
    -0.e+30
    """
    if type(mag) is tuple and len(mag) == 4 and iszero(mag, scaled=True):
        return (mag[0][0],) + mag[1:]
    elif isinstance(mag, SYMPY_INTS):
        if sign not in [-1, 1]:
            raise ValueError("sign must be +/-1")
        rv, p = mpf_shift(fone, mag), -1
        s = 0 if sign == 1 else 1
        rv = ([s],) + rv[1:]
        return rv, p
    else:
        raise ValueError("scaled zero expects int or scaled_zero tuple.")
Exemplo n.º 6
0
def scaled_zero(mag, sign=1):
    """Return an mpf representing a power of two with magnitude ``mag``
    and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
    remove the sign from within the list that it was initially wrapped
    in.

    Examples
    ========

    >>> from sympy.core.evalf import scaled_zero
    >>> from sympy import Float
    >>> z, p = scaled_zero(100)
    >>> z, p
    (([0], 1, 100, 1), -1)
    >>> ok = scaled_zero(z)
    >>> ok
    (0, 1, 100, 1)
    >>> Float(ok)
    1.26765060022823e+30
    >>> Float(ok, p)
    0.e+30
    >>> ok, p = scaled_zero(100, -1)
    >>> Float(scaled_zero(ok), p)
    -0.e+30
    """
    if type(mag) is tuple and len(mag) == 4 and iszero(mag, scaled=True):
        return (mag[0][0],) + mag[1:]
    elif isinstance(mag, SYMPY_INTS):
        if sign not in [-1, 1]:
            raise ValueError('sign must be +/-1')
        rv, p = mpf_shift(fone, mag), -1
        s = 0 if sign == 1 else 1
        rv = ([s],) + rv[1:]
        return rv, p
    else:
        raise ValueError('scaled zero expects int or scaled_zero tuple.')
Exemplo n.º 7
0
Arquivo: evalf.py Projeto: fxkr/sympy
def do_integral(expr, prec, options):
    func = expr.args[0]
    x, xlow, xhigh = expr.args[1]
    orig = mp.prec

    oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
    options['maxprec'] = min(oldmaxprec, 2*prec)

    try:
        mp.prec = prec+5
        xlow = as_mpmath(xlow, prec+15, options)
        xhigh = as_mpmath(xhigh, prec+15, options)

        # Integration is like summation, and we can phone home from
        # the integrand function to update accuracy summation style
        # Note that this accuracy is inaccurate, since it fails
        # to account for the variable quadrature weights,
        # but it is better than nothing

        have_part = [False, False]
        max_real_term = [MINUS_INF]
        max_imag_term = [MINUS_INF]

        def f(t):
            re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs':{x:t}})

            have_part[0] = re or have_part[0]
            have_part[1] = im or have_part[1]

            max_real_term[0] = max(max_real_term[0], fastlog(re))
            max_imag_term[0] = max(max_imag_term[0], fastlog(im))

            if im:
                return mpc(re or fzero, im)
            return mpf(re or fzero)

        if options.get('quad') == 'osc':
            A = C.Wild('A', exclude=[x])
            B = C.Wild('B', exclude=[x])
            D = C.Wild('D')
            m = func.match(C.cos(A*x+B)*D)
            if not m:
                m = func.match(C.sin(A*x+B)*D)
            if not m:
                raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
                  "or cos(A*x+B)*f(x) is required for oscillatory quadrature")
            period = as_mpmath(2*S.Pi/m[A], prec+15, options)
            result = quadosc(f, [xlow, xhigh], period=period)
            # XXX: quadosc does not do error detection yet
            quadrature_error = MINUS_INF
        else:
            result, quadrature_error = quadts(f, [xlow, xhigh], error=1)
            quadrature_error = fastlog(quadrature_error._mpf_)

    finally:
        options['maxprec'] = oldmaxprec
        mp.prec = orig

    if have_part[0]:
        re = result.real._mpf_
        if re == fzero:
            re = mpf_shift(fone, min(-prec,-max_real_term[0],-quadrature_error))
            re_acc = -1
        else:
            re_acc = -max(max_real_term[0]-fastlog(re)-prec, quadrature_error)
    else:
        re, re_acc = None, None

    if have_part[1]:
        im = result.imag._mpf_
        if im == fzero:
            im = mpf_shift(fone, min(-prec,-max_imag_term[0],-quadrature_error))
            im_acc = -1
        else:
            im_acc = -max(max_imag_term[0]-fastlog(im)-prec, quadrature_error)
    else:
        im, im_acc = None, None

    result = re, im, re_acc, im_acc
    return result
Exemplo n.º 8
0
def do_integral(expr, prec, options):
    func = expr.args[0]
    x, xlow, xhigh = expr.args[1]
    orig = mp.prec

    oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
    options['maxprec'] = min(oldmaxprec, 2 * prec)

    try:
        mp.prec = prec + 5
        xlow = as_mpmath(xlow, prec + 15, options)
        xhigh = as_mpmath(xhigh, prec + 15, options)

        # Integration is like summation, and we can phone home from
        # the integrand function to update accuracy summation style
        # Note that this accuracy is inaccurate, since it fails
        # to account for the variable quadrature weights,
        # but it is better than nothing

        have_part = [False, False]
        max_real_term = [MINUS_INF]
        max_imag_term = [MINUS_INF]

        def f(t):
            re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})

            have_part[0] = re or have_part[0]
            have_part[1] = im or have_part[1]

            max_real_term[0] = max(max_real_term[0], fastlog(re))
            max_imag_term[0] = max(max_imag_term[0], fastlog(im))

            if im:
                return mpc(re or fzero, im)
            return mpf(re or fzero)

        if options.get('quad') == 'osc':
            A = C.Wild('A', exclude=[x])
            B = C.Wild('B', exclude=[x])
            D = C.Wild('D')
            m = func.match(C.cos(A * x + B) * D)
            if not m:
                m = func.match(C.sin(A * x + B) * D)
            if not m:
                raise ValueError(
                    "An integrand of the form sin(A*x+B)*f(x) "
                    "or cos(A*x+B)*f(x) is required for oscillatory quadrature"
                )
            period = as_mpmath(2 * S.Pi / m[A], prec + 15, options)
            result = quadosc(f, [xlow, xhigh], period=period)
            # XXX: quadosc does not do error detection yet
            quadrature_error = MINUS_INF
        else:
            result, quadrature_error = quadts(f, [xlow, xhigh], error=1)
            quadrature_error = fastlog(quadrature_error._mpf_)

    finally:
        options['maxprec'] = oldmaxprec
        mp.prec = orig

    if have_part[0]:
        re = result.real._mpf_
        if re == fzero:
            re = mpf_shift(fone,
                           min(-prec, -max_real_term[0], -quadrature_error))
            re_acc = -1
        else:
            re_acc = -max(max_real_term[0] - fastlog(re) - prec,
                          quadrature_error)
    else:
        re, re_acc = None, None

    if have_part[1]:
        im = result.imag._mpf_
        if im == fzero:
            im = mpf_shift(fone,
                           min(-prec, -max_imag_term[0], -quadrature_error))
            im_acc = -1
        else:
            im_acc = -max(max_imag_term[0] - fastlog(im) - prec,
                          quadrature_error)
    else:
        im, im_acc = None, None

    result = re, im, re_acc, im_acc
    return result