Exemplo n.º 1
0
def test_dmp_raise():
    assert dmp_raise([], 2, 0, ZZ) == [[[]]]
    assert dmp_raise([[1]], 0, 1, ZZ) == [[1]]

    assert dmp_raise([[1, 2, 3], [], [2, 3]], 2, 1, ZZ) == [
        [[[1]], [[2]], [[3]]],
        [[[]]],
        [[[2]], [[3]]],
    ]
Exemplo n.º 2
0
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
    """Wang/EEZ: Parallel Hensel lifting algorithm. """
    S, n, v = [f], len(A), u-1

    H = list(H)

    for i, a in enumerate(reversed(A[1:])):
        s = dmp_eval_in(S[0], a, n-i, u-i, K)
        S.insert(0, dmp_ground_trunc(s, p, v-i, K))

    d = max(dmp_degree_list(f, u)[1:])

    for j, s, a in zip(xrange(2, n+2), S, A):
        G, w = list(H), j-1

        I, J = A[:j-2], A[j-1:]

        for i, (h, lc) in enumerate(zip(H, LC)):
            lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w-1, K)
            H[i] = [lc] + dmp_raise(h[1:], 1, w-1, K)

        m = dmp_nest([K.one, -a], w, K)
        M = dmp_one(w, K)

        c = dmp_sub(s, dmp_expand(H, w, K), w, K)

        dj = dmp_degree_in(s, w, w)

        for k in xrange(0, dj):
            if dmp_zero_p(c, w):
                break

            M = dmp_mul(M, m, w, K)
            C = dmp_diff_eval_in(c, k+1, a, w, w, K)

            if not dmp_zero_p(C, w-1):
                C = dmp_quo_ground(C, K.factorial(k+1), w-1, K)
                T = dmp_zz_diophantine(G, C, I, d, p, w-1, K)

                for i, (h, t) in enumerate(zip(H, T)):
                    h = dmp_add_mul(h, dmp_raise(t, 1, w-1, K), M, w, K)
                    H[i] = dmp_ground_trunc(h, p, w, K)

                h = dmp_sub(s, dmp_expand(H, w, K), w, K)
                c = dmp_ground_trunc(h, p, w, K)

    if dmp_expand(H, u, K) != f:
        raise ExtraneousFactors # pragma: no cover
    else:
        return H
Exemplo n.º 3
0
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
    """Wang/EEZ: Parallel Hensel lifting algorithm. """
    S, n, v = [f], len(A), u - 1

    H = list(H)

    for i, a in enumerate(reversed(A[1:])):
        s = dmp_eval_in(S[0], a, n - i, u - i, K)
        S.insert(0, dmp_ground_trunc(s, p, v - i, K))

    d = max(dmp_degree_list(f, u)[1:])

    for j, s, a in zip(xrange(2, n + 2), S, A):
        G, w = list(H), j - 1

        I, J = A[:j - 2], A[j - 1:]

        for i, (h, lc) in enumerate(zip(H, LC)):
            lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w - 1, K)
            H[i] = [lc] + dmp_raise(h[1:], 1, w - 1, K)

        m = dmp_nest([K.one, -a], w, K)
        M = dmp_one(w, K)

        c = dmp_sub(s, dmp_expand(H, w, K), w, K)

        dj = dmp_degree_in(s, w, w)

        for k in xrange(0, dj):
            if dmp_zero_p(c, w):
                break

            M = dmp_mul(M, m, w, K)
            C = dmp_diff_eval_in(c, k + 1, a, w, w, K)

            if not dmp_zero_p(C, w - 1):
                C = dmp_quo_ground(C, K.factorial(k + 1), w - 1, K)
                T = dmp_zz_diophantine(G, C, I, d, p, w - 1, K)

                for i, (h, t) in enumerate(zip(H, T)):
                    h = dmp_add_mul(h, dmp_raise(t, 1, w - 1, K), M, w, K)
                    H[i] = dmp_ground_trunc(h, p, w, K)

                h = dmp_sub(s, dmp_expand(H, w, K), w, K)
                c = dmp_ground_trunc(h, p, w, K)

    if dmp_expand(H, u, K) != f:
        raise ExtraneousFactors  # pragma: no cover
    else:
        return H
def dmp_sqf_norm(f, u, K):
    """
    Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> from sympy import I

    >>> K = QQ.algebraic_field(I)
    >>> R, x, y = ring("x,y", K)
    >>> _, X, Y = ring("x,y", QQ)

    >>> s, f, r = R.dmp_sqf_norm(x*y + y**2)

    >>> s == 1
    True
    >>> f == x*y + y**2 + K([QQ(-1), QQ(0)])*y
    True
    >>> r == X**2*Y**2 + 2*X*Y**3 + Y**4 + Y**2
    True

    """
    if not u:
        return dup_sqf_norm(f, K)

    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
    F = dmp_raise([K.one, -K.unit], u, 0, K)

    s = 0

    while True:
        h, _ = dmp_inject(f, u, K, front=True)
        r = dmp_resultant(g, h, u + 1, K.dom)

        if dmp_sqf_p(r, u, K.dom):
            break
        else:
            f, s = dmp_compose(f, F, u, K), s + 1

    return s, f, r
Exemplo n.º 5
0
def dmp_sqf_norm(f, u, K):
    """
    Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> from sympy import I

    >>> K = QQ.algebraic_field(I)
    >>> R, x, y = ring("x,y", K)
    >>> _, X, Y = ring("x,y", QQ)

    >>> s, f, r = R.dmp_sqf_norm(x*y + y**2)

    >>> s == 1
    True
    >>> f == x*y + y**2 + K([QQ(-1), QQ(0)])*y
    True
    >>> r == X**2*Y**2 + 2*X*Y**3 + Y**4 + Y**2
    True

    """
    if not u:
        return dup_sqf_norm(f, K)

    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
    F = dmp_raise([K.one, -K.unit], u, 0, K)

    s = 0

    while True:
        h, _ = dmp_inject(f, u, K, front=True)
        r = dmp_resultant(g, h, u + 1, K.dom)

        if dmp_sqf_p(r, u, K.dom):
            break
        else:
            f, s = dmp_compose(f, F, u, K), s + 1

    return s, f, r
Exemplo n.º 6
0
def dmp_fateman_poly_F_1(n, K):
    """Fateman's GCD benchmark: trivial GCD """
    u = [K(1), K(0)]

    for i in range(0, n):
        u = [dmp_one(i, K), u]

    v = [K(1), K(0), K(0)]

    for i in range(0, n):
        v = [dmp_one(i, K), dmp_zero(i), v]

    m = n - 1

    U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
    V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)

    f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]

    W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
    Y = dmp_raise(f, m, 1, K)

    F = dmp_mul(U, V, n, K)
    G = dmp_mul(W, Y, n, K)

    H = dmp_one(n, K)

    return F, G, H
Exemplo n.º 7
0
def dmp_ext_factor(f, u, K):
    """Factor multivariate polynomials over algebraic number fields. """
    if not u:
        return dup_ext_factor(f, K)

    lc = dmp_ground_LC(f, u, K)
    f = dmp_ground_monic(f, u, K)

    if all([ d <= 0 for d in dmp_degree_list(f, u) ]):
        return lc, []

    f, F = dmp_sqf_part(f, u, K), f
    s, g, r = dmp_sqf_norm(f, u, K)

    factors = dmp_factor_list_include(r, u, K.dom)

    if len(factors) == 1:
        coeff, factors = lc, [f]
    else:
        H = dmp_raise([K.one, s*K.unit], u, 0, K)

        for i, (factor, _) in enumerate(factors):
            h = dmp_convert(factor, u, K.dom, K)
            h, _, g = dmp_inner_gcd(h, g, u, K)
            h = dmp_compose(h, H, u, K)
            factors[i] = h

    return lc, dmp_trial_division(F, factors, u, K)
Exemplo n.º 8
0
def dmp_fateman_poly_F_1(n, K):
    """Fateman's GCD benchmark: trivial GCD """
    u = [K(1), K(0)]

    for i in xrange(0, n):
        u = [dmp_one(i, K), u]

    v = [K(1), K(0), K(0)]

    for i in xrange(0, n):
        v = [dmp_one(i, K), dmp_zero(i), v]

    m = n - 1

    U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
    V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)

    f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]

    W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
    Y = dmp_raise(f, m, 1, K)

    F = dmp_mul(U, V, n, K)
    G = dmp_mul(W, Y, n, K)

    H = dmp_one(n, K)

    return F, G, H
Exemplo n.º 9
0
def dmp_ext_factor(f, u, K):
    """Factor multivariate polynomials over algebraic number fields. """
    if not u:
        return dup_ext_factor(f, K)

    lc = dmp_ground_LC(f, u, K)
    f = dmp_ground_monic(f, u, K)

    if all(d <= 0 for d in dmp_degree_list(f, u)):
        return lc, []

    f, F = dmp_sqf_part(f, u, K), f
    s, g, r = dmp_sqf_norm(f, u, K)

    factors = dmp_factor_list_include(r, u, K.dom)

    if len(factors) == 1:
        coeff, factors = lc, [f]
    else:
        H = dmp_raise([K.one, s * K.unit], u, 0, K)

        for i, (factor, _) in enumerate(factors):
            h = dmp_convert(factor, u, K.dom, K)
            h, _, g = dmp_inner_gcd(h, g, u, K)
            h = dmp_compose(h, H, u, K)
            factors[i] = h

    return lc, dmp_trial_division(F, factors, u, K)
Exemplo n.º 10
0
def dmp_sqf_norm(f, u, K):
    """
    Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    Examples
    ========

    >>> from sympy import I
    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.sqfreetools import dmp_sqf_norm

    >>> K = QQ.algebraic_field(I)

    >>> s, f, r = dmp_sqf_norm([[K(1), K(0)], [K(1), K(0), K(0)]], 1, K)

    >>> s == 1
    True
    >>> f == [[K(1), K(0)], [K(1), K([QQ(-1), QQ(0)]), K(0)]]
    True
    >>> r == [[1, 0, 0], [2, 0, 0, 0], [1, 0, 1, 0, 0]]
    True

    """
    if not u:
        return dup_sqf_norm(f, K)

    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
    F = dmp_raise([K.one, -K.unit], u, 0, K)

    s = 0

    while True:
        h, _ = dmp_inject(f, u, K, front=True)
        r = dmp_resultant(g, h, u + 1, K.dom)

        if dmp_sqf_p(r, u, K.dom):
            break
        else:
            f, s = dmp_compose(f, F, u, K), s + 1

    return s, f, r
Exemplo n.º 11
0
def dmp_sqf_norm(f, u, K):
    """
    Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    Examples
    ========

    >>> from sympy import I
    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.sqfreetools import dmp_sqf_norm

    >>> K = QQ.algebraic_field(I)

    >>> s, f, r = dmp_sqf_norm([[K(1), K(0)], [K(1), K(0), K(0)]], 1, K)

    >>> s == 1
    True
    >>> f == [[K(1), K(0)], [K(1), K([QQ(-1), QQ(0)]), K(0)]]
    True
    >>> r == [[1, 0, 0], [2, 0, 0, 0], [1, 0, 1, 0, 0]]
    True

    """
    if not u:
        return dup_sqf_norm(f, K)

    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
    F = dmp_raise([K.one, -K.unit], u, 0, K)

    s = 0

    while True:
        h, _ = dmp_inject(f, u, K, front=True)
        r = dmp_resultant(g, h, u + 1, K.dom)

        if dmp_sqf_p(r, u, K.dom):
            break
        else:
            f, s = dmp_compose(f, F, u, K), s + 1

    return s, f, r
def dmp_norm(f, u, K):
    """
    Norm of ``f`` in ``K[X1, ..., Xn]``, often not square-free.
    """
    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
    h, _ = dmp_inject(f, u, K, front=True)

    return dmp_resultant(g, h, u + 1, K.dom)
Exemplo n.º 13
0
def dmp_norm(f, u, K):
    """
    Norm of ``f`` in ``K[X1, ..., Xn]``, often not square-free.
    """
    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
    h, _ = dmp_inject(f, u, K, front=True)

    return dmp_resultant(g, h, u + 1, K.dom)
def dup_sqf_norm(f, K):
    """
    Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> from sympy import sqrt

    >>> K = QQ.algebraic_field(sqrt(3))
    >>> R, x = ring("x", K)
    >>> _, X = ring("x", QQ)

    >>> s, f, r = R.dup_sqf_norm(x**2 - 2)

    >>> s == 1
    True
    >>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1
    True
    >>> r == X**4 - 10*X**2 + 1
    True

    """
    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)

    while True:
        h, _ = dmp_inject(f, 0, K, front=True)
        r = dmp_resultant(g, h, 1, K.dom)

        if dup_sqf_p(r, K.dom):
            break
        else:
            f, s = dup_shift(f, -K.unit, K), s + 1

    return s, f, r
Exemplo n.º 15
0
def dup_sqf_norm(f, K):
    """
    Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> from sympy import sqrt

    >>> K = QQ.algebraic_field(sqrt(3))
    >>> R, x = ring("x", K)
    >>> _, X = ring("x", QQ)

    >>> s, f, r = R.dup_sqf_norm(x**2 - 2)

    >>> s == 1
    True
    >>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1
    True
    >>> r == X**4 - 10*X**2 + 1
    True

    """
    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)

    while True:
        h, _ = dmp_inject(f, 0, K, front=True)
        r = dmp_resultant(g, h, 1, K.dom)

        if dup_sqf_p(r, K.dom):
            break
        else:
            f, s = dup_shift(f, -K.unit, K), s + 1

    return s, f, r
Exemplo n.º 16
0
def dup_sqf_norm(f, K):
    """
    Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    **Examples**

    >>> from sympy import sqrt
    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.sqfreetools import dup_sqf_norm

    >>> K = QQ.algebraic_field(sqrt(3))

    >>> s, f, r = dup_sqf_norm([K(1), K(0), K(-2)], K)

    >>> s == 1
    True
    >>> f == [K(1), K([QQ(-2), QQ(0)]), K(1)]
    True
    >>> r == [1, 0, -10, 0, 1]
    True

    """
    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)

    while True:
        h, _ = dmp_inject(f, 0, K, front=True)
        r = dmp_resultant(g, h, 1, K.dom)

        if dup_sqf_p(r, K.dom):
            break
        else:
            f, s = dup_shift(f, -K.unit, K), s+1

    return s, f, r
Exemplo n.º 17
0
def test_dmp_raise():
    assert dmp_raise([], 2, 0, ZZ) == [[[]]]
    assert dmp_raise([[1]], 0, 1, ZZ) == [[1]]

    assert dmp_raise([[1,2,3], [], [2,3]], 2, 1, ZZ) == \
        [[[[1]],[[2]],[[3]]], [[[]]], [[[2]],[[3]]]]
Exemplo n.º 18
0
def dmp_zz_diophantine(F, c, A, d, p, u, K):
    """Wang/EEZ: Solve multivariate Diophantine equations. """
    if not A:
        S = [ [] for _ in F ]
        n = dup_degree(c)

        for i, coeff in enumerate(c):
            if not coeff:
                continue

            T = dup_zz_diophantine(F, n-i, p, K)

            for j, (s, t) in enumerate(zip(S, T)):
                t = dup_mul_ground(t, coeff, K)
                S[j] = dup_trunc(dup_add(s, t, K), p, K)
    else:
        n = len(A)
        e = dmp_expand(F, u, K)

        a, A = A[-1], A[:-1]
        B, G = [], []

        for f in F:
            B.append(dmp_quo(e, f, u, K))
            G.append(dmp_eval_in(f, a, n, u, K))

        C = dmp_eval_in(c, a, n, u, K)

        v = u - 1

        S = dmp_zz_diophantine(G, C, A, d, p, v, K)
        S = [ dmp_raise(s, 1, v, K) for s in S ]

        for s, b in zip(S, B):
            c = dmp_sub_mul(c, s, b, u, K)

        c = dmp_ground_trunc(c, p, u, K)

        m = dmp_nest([K.one, -a], n, K)
        M = dmp_one(n, K)

        for k in xrange(0, d):
            if dmp_zero_p(c, u):
                break

            M = dmp_mul(M, m, u, K)
            C = dmp_diff_eval_in(c, k+1, a, n, u, K)

            if not dmp_zero_p(C, v):
                C = dmp_quo_ground(C, K.factorial(k+1), v, K)
                T = dmp_zz_diophantine(G, C, A, d, p, v, K)

                for i, t in enumerate(T):
                    T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)

                for i, (s, t) in enumerate(zip(S, T)):
                    S[i] = dmp_add(s, t, u, K)

                for t, b in zip(T, B):
                    c = dmp_sub_mul(c, t, b, u, K)

                c = dmp_ground_trunc(c, p, u, K)

        S = [ dmp_ground_trunc(s, p, u, K) for s in S ]

    return S
Exemplo n.º 19
0
def test_dmp_factor_list():
    assert dmp_factor_list([[]], 1, ZZ) == (ZZ(0), [])
    assert dmp_factor_list([[]], 1, QQ) == (QQ(0), [])
    assert dmp_factor_list([[]], 1, ZZ['y']) == (DMP([], ZZ), [])
    assert dmp_factor_list([[]], 1, QQ['y']) == (DMP([], QQ), [])

    assert dmp_factor_list([[]], 1, ZZ, include=True) == [([[]], 1)]

    assert dmp_factor_list([[ZZ(7)]], 1, ZZ) == (ZZ(7), [])
    assert dmp_factor_list([[QQ(1, 7)]], 1, QQ) == (QQ(1, 7), [])
    assert dmp_factor_list([[DMP([ZZ(7)], ZZ)]], 1, ZZ['y']) == (DMP([ZZ(7)],
                                                                     ZZ), [])
    assert dmp_factor_list([[DMP([QQ(1, 7)], QQ)]], 1,
                           QQ['y']) == (DMP([QQ(1, 7)], QQ), [])

    assert dmp_factor_list([[ZZ(7)]], 1, ZZ, include=True) == [([[ZZ(7)]], 1)]

    f, g = [ZZ(1), ZZ(2), ZZ(1)], [ZZ(1), ZZ(1)]

    assert dmp_factor_list(dmp_nest(f, 200, ZZ), 200, ZZ) == \
        (ZZ(1), [(dmp_nest(g, 200, ZZ), 2)])

    assert dmp_factor_list(dmp_raise(f, 200, 0, ZZ), 200, ZZ) == \
        (ZZ(1), [(dmp_raise(g, 200, 0, ZZ), 2)])

    assert dmp_factor_list([ZZ(1),ZZ(2),ZZ(1)], 0, ZZ) == \
        (ZZ(1), [([ZZ(1), ZZ(1)], 2)])
    assert dmp_factor_list([QQ(1,2),QQ(1),QQ(1,2)], 0, QQ) == \
        (QQ(1,2), [([QQ(1),QQ(1)], 2)])

    assert dmp_factor_list([[ZZ(1)],[ZZ(2)],[ZZ(1)]], 1, ZZ) == \
        (ZZ(1), [([[ZZ(1)], [ZZ(1)]], 2)])
    assert dmp_factor_list([[QQ(1,2)],[QQ(1)],[QQ(1,2)]], 1, QQ) == \
        (QQ(1,2), [([[QQ(1)],[QQ(1)]], 2)])

    f = [[ZZ(4), ZZ(0)], [ZZ(4), ZZ(0), ZZ(0)], []]

    assert dmp_factor_list(f, 1, ZZ) == \
        (ZZ(4), [([[ZZ(1)],[]], 1),
                 ([[ZZ(1),ZZ(0)]], 1),
                 ([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)])

    assert dmp_factor_list(f, 1, ZZ, include=True) == \
        [([[ZZ(4)],[]], 1),
         ([[ZZ(1),ZZ(0)]], 1),
         ([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)]

    f = [[QQ(1, 2), QQ(0)], [QQ(1, 2), QQ(0), QQ(0)], []]

    assert dmp_factor_list(f, 1, QQ) == \
        (QQ(1,2), [([[QQ(1)],[]], 1),
                   ([[QQ(1),QQ(0)]], 1),
                   ([[QQ(1)],[QQ(1),QQ(0)]], 1)])

    f = [[RR(2.0)], [], [-RR(8.0), RR(0.0), RR(0.0)]]

    assert dmp_factor_list(f, 1, RR) == \
        (RR(2.0), [([[RR(1.0)],[-RR(2.0),RR(0.0)]], 1),
                   ([[RR(1.0)],[ RR(2.0),RR(0.0)]], 1)])

    f = [[DMP([ZZ(4), ZZ(0)], ZZ)], [DMP([ZZ(4), ZZ(0), ZZ(0)], ZZ)],
         [DMP([], ZZ)]]

    assert dmp_factor_list(f, 1, ZZ['y']) == \
        (DMP([ZZ(4)],ZZ), [([[DMP([ZZ(1)],ZZ)],[]], 1),
                           ([[DMP([ZZ(1),ZZ(0)],ZZ)]], 1),
                           ([[DMP([ZZ(1)],ZZ)],[DMP([ZZ(1),ZZ(0)],ZZ)]], 1)])

    f = [[DMP([QQ(1, 2), QQ(0)], ZZ)],
         [DMP([QQ(1, 2), QQ(0), QQ(0)], ZZ)], [DMP([], ZZ)]]

    assert dmp_factor_list(f, 1, QQ['y']) == \
        (DMP([QQ(1,2)],QQ), [([[DMP([QQ(1)],QQ)],[]], 1),
                             ([[DMP([QQ(1),QQ(0)],QQ)]], 1),
                             ([[DMP([QQ(1)],QQ)],[DMP([QQ(1),QQ(0)],QQ)]], 1)])

    raises(DomainError, "dmp_factor_list([[EX(sin(1))]], 1, EX)")
Exemplo n.º 20
0
def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of `f` and `g` modulo a prime `p`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x + y + 2
    >>> g = 2*x*y + x + 3

    >>> R.dmp_zz_modular_resultant(f, g, 5)
    -2*y**2 + 1

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n*M + m*N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r
Exemplo n.º 21
0
def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of ``f`` and ``g`` modulo a prime ``p``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_modular_resultant

    >>> f = ZZ.map([[1], [1, 2]])
    >>> g = ZZ.map([[2, 1], [3]])

    >>> dmp_zz_modular_resultant(f, g, ZZ(5), 1, ZZ)
    [-2, 0, 1]

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n*M + m*N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r
Exemplo n.º 22
0
def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of `f` and `g` modulo a prime `p`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x + y + 2
    >>> g = 2*x*y + x + 3

    >>> R.dmp_zz_modular_resultant(f, g, 5)
    -2*y**2 + 1

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n*M + m*N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r
Exemplo n.º 23
0
def dmp_zz_diophantine(F, c, A, d, p, u, K):
    """Wang/EEZ: Solve multivariate Diophantine equations. """
    if not A:
        S = [[] for _ in F]
        n = dup_degree(c)

        for i, coeff in enumerate(c):
            if not coeff:
                continue

            T = dup_zz_diophantine(F, n - i, p, K)

            for j, (s, t) in enumerate(zip(S, T)):
                t = dup_mul_ground(t, coeff, K)
                S[j] = dup_trunc(dup_add(s, t, K), p, K)
    else:
        n = len(A)
        e = dmp_expand(F, u, K)

        a, A = A[-1], A[:-1]
        B, G = [], []

        for f in F:
            B.append(dmp_quo(e, f, u, K))
            G.append(dmp_eval_in(f, a, n, u, K))

        C = dmp_eval_in(c, a, n, u, K)

        v = u - 1

        S = dmp_zz_diophantine(G, C, A, d, p, v, K)
        S = [dmp_raise(s, 1, v, K) for s in S]

        for s, b in zip(S, B):
            c = dmp_sub_mul(c, s, b, u, K)

        c = dmp_ground_trunc(c, p, u, K)

        m = dmp_nest([K.one, -a], n, K)
        M = dmp_one(n, K)

        for k in xrange(0, d):
            if dmp_zero_p(c, u):
                break

            M = dmp_mul(M, m, u, K)
            C = dmp_diff_eval_in(c, k + 1, a, n, u, K)

            if not dmp_zero_p(C, v):
                C = dmp_quo_ground(C, K.factorial(k + 1), v, K)
                T = dmp_zz_diophantine(G, C, A, d, p, v, K)

                for i, t in enumerate(T):
                    T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)

                for i, (s, t) in enumerate(zip(S, T)):
                    S[i] = dmp_add(s, t, u, K)

                for t, b in zip(T, B):
                    c = dmp_sub_mul(c, t, b, u, K)

                c = dmp_ground_trunc(c, p, u, K)

        S = [dmp_ground_trunc(s, p, u, K) for s in S]

    return S
Exemplo n.º 24
0
def test_dmp_factor_list():
    assert dmp_factor_list([[]], 1, ZZ) == (ZZ(0), [])
    assert dmp_factor_list([[]], 1, QQ) == (QQ(0), [])
    assert dmp_factor_list([[]], 1, ZZ['y']) == (DMP([],ZZ), [])
    assert dmp_factor_list([[]], 1, QQ['y']) == (DMP([],QQ), [])

    assert dmp_factor_list_include([[]], 1, ZZ) == [([[]], 1)]

    assert dmp_factor_list([[ZZ(7)]], 1, ZZ) == (ZZ(7), [])
    assert dmp_factor_list([[QQ(1,7)]], 1, QQ) == (QQ(1,7), [])
    assert dmp_factor_list([[DMP([ZZ(7)],ZZ)]], 1, ZZ['y']) == (DMP([ZZ(7)],ZZ), [])
    assert dmp_factor_list([[DMP([QQ(1,7)],QQ)]], 1, QQ['y']) == (DMP([QQ(1,7)],QQ), [])

    assert dmp_factor_list_include([[ZZ(7)]], 1, ZZ) == [([[ZZ(7)]], 1)]

    f, g = [ZZ(1),ZZ(2),ZZ(1)], [ZZ(1),ZZ(1)]

    assert dmp_factor_list(dmp_nest(f, 200, ZZ), 200, ZZ) == \
        (ZZ(1), [(dmp_nest(g, 200, ZZ), 2)])

    assert dmp_factor_list(dmp_raise(f, 200, 0, ZZ), 200, ZZ) == \
        (ZZ(1), [(dmp_raise(g, 200, 0, ZZ), 2)])

    assert dmp_factor_list([ZZ(1),ZZ(2),ZZ(1)], 0, ZZ) == \
        (ZZ(1), [([ZZ(1), ZZ(1)], 2)])
    assert dmp_factor_list([QQ(1,2),QQ(1),QQ(1,2)], 0, QQ) == \
        (QQ(1,2), [([QQ(1),QQ(1)], 2)])

    assert dmp_factor_list([[ZZ(1)],[ZZ(2)],[ZZ(1)]], 1, ZZ) == \
        (ZZ(1), [([[ZZ(1)], [ZZ(1)]], 2)])
    assert dmp_factor_list([[QQ(1,2)],[QQ(1)],[QQ(1,2)]], 1, QQ) == \
        (QQ(1,2), [([[QQ(1)],[QQ(1)]], 2)])

    f = [[ZZ(4),ZZ(0)],[ZZ(4),ZZ(0),ZZ(0)],[]]

    assert dmp_factor_list(f, 1, ZZ) == \
        (ZZ(4), [([[ZZ(1),ZZ(0)]], 1),
                 ([[ZZ(1)],[]], 1),
                 ([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)])

    assert dmp_factor_list_include(f, 1, ZZ) == \
        [([[ZZ(4),ZZ(0)]], 1),
         ([[ZZ(1)],[]], 1),
         ([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)]

    f = [[QQ(1,2),QQ(0)],[QQ(1,2),QQ(0),QQ(0)],[]]

    assert dmp_factor_list(f, 1, QQ) == \
        (QQ(1,2), [([[QQ(1),QQ(0)]], 1),
                   ([[QQ(1)],[]], 1),
                   ([[QQ(1)],[QQ(1),QQ(0)]], 1)])

    f = [[RR(2.0)],[],[-RR(8.0),RR(0.0),RR(0.0)]]

    assert dmp_factor_list(f, 1, RR) == \
        (RR(2.0), [([[RR(1.0)],[-RR(2.0),RR(0.0)]], 1),
                   ([[RR(1.0)],[ RR(2.0),RR(0.0)]], 1)])

    f = [[DMP([ZZ(4),ZZ(0)],ZZ)],[DMP([ZZ(4),ZZ(0),ZZ(0)],ZZ)],[DMP([],ZZ)]]

    assert dmp_factor_list(f, 1, ZZ['y']) == \
        (DMP([ZZ(4)],ZZ), [([[DMP([ZZ(1),ZZ(0)],ZZ)]], 1),
                           ([[DMP([ZZ(1)],ZZ)],[]], 1),
                           ([[DMP([ZZ(1)],ZZ)],[DMP([ZZ(1),ZZ(0)],ZZ)]], 1)])

    f = [[DMP([QQ(1,2),QQ(0)],ZZ)],[DMP([QQ(1,2),QQ(0),QQ(0)],ZZ)],[DMP([],ZZ)]]

    assert dmp_factor_list(f, 1, QQ['y']) == \
        (DMP([QQ(1,2)],QQ), [([[DMP([QQ(1),QQ(0)],QQ)]], 1),
                             ([[DMP([QQ(1)],QQ)],[]], 1),
                             ([[DMP([QQ(1)],QQ)],[DMP([QQ(1),QQ(0)],QQ)]], 1)])

    K = FF(2)

    raises(DomainError, "dmp_factor_list([[K(1)],[],[K(1),K(0),K(0)]], 1, K)")
    raises(DomainError, "dmp_factor_list([[EX(sin(1))]], 1, EX)")
Exemplo n.º 25
0
def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of `f` and `g` modulo a prime `p`.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_modular_resultant

    >>> f = ZZ.map([[1], [1, 2]])
    >>> g = ZZ.map([[2, 1], [3]])

    >>> dmp_zz_modular_resultant(f, g, ZZ(5), 1, ZZ)
    [-2, 0, 1]

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n * M + m * N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r