Exemplo n.º 1
0
def dup_factor_list(f, K0):
    """Factor univariate polynomials into irreducibles in `K[x]`. """
    j, f = dup_terms_gcd(f, K0)
    cont, f = dup_primitive(f, K0)

    if K0.is_FiniteField:
        coeff, factors = dup_gf_factor(f, K0)
    elif K0.is_Algebraic:
        coeff, factors = dup_ext_factor(f, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dup_convert(f, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.is_Field:
            K = K0.get_ring()

            denom, f = dup_clear_denoms(f, K0, K)
            f = dup_convert(f, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            coeff, factors = dup_zz_factor(f, K)
        elif K.is_Poly:
            f, u = dmp_inject(f, 0, K)

            coeff, factors = dmp_factor_list(f, u, K.dom)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, u, K), k)

            coeff = K.convert(coeff, K.dom)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.is_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K, K0), k)

            coeff = K0.convert(coeff, K)
            coeff = K0.quo(coeff, denom)

            if K0_inexact:
                for i, (f, k) in enumerate(factors):
                    max_norm = dup_max_norm(f, K0)
                    f = dup_quo_ground(f, max_norm, K0)
                    f = dup_convert(f, K0, K0_inexact)
                    factors[i] = (f, k)
                    coeff = K0.mul(coeff, K0.pow(max_norm, k))

                coeff = K0_inexact.convert(coeff, K0)
                K0 = K0_inexact

    if j:
        factors.insert(0, ([K0.one, K0.zero], j))

    return coeff*cont, _sort_factors(factors)
Exemplo n.º 2
0
def dup_factor_list(f, K0):
    """Factor univariate polynomials into irreducibles in `K[x]`. """
    j, f = dup_terms_gcd(f, K0)
    cont, f = dup_primitive(f, K0)

    if K0.is_FiniteField:
        coeff, factors = dup_gf_factor(f, K0)
    elif K0.is_Algebraic:
        coeff, factors = dup_ext_factor(f, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dup_convert(f, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.is_Field:
            K = K0.get_ring()

            denom, f = dup_clear_denoms(f, K0, K)
            f = dup_convert(f, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            coeff, factors = dup_zz_factor(f, K)
        elif K.is_Poly:
            f, u = dmp_inject(f, 0, K)

            coeff, factors = dmp_factor_list(f, u, K.dom)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, u, K), k)

            coeff = K.convert(coeff, K.dom)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.is_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K, K0), k)

            coeff = K0.convert(coeff, K)
            coeff = K0.quo(coeff, denom)

            if K0_inexact:
                for i, (f, k) in enumerate(factors):
                    max_norm = dup_max_norm(f, K0)
                    f = dup_quo_ground(f, max_norm, K0)
                    f = dup_convert(f, K0, K0_inexact)
                    factors[i] = (f, k)
                    coeff = K0.mul(coeff, K0.pow(max_norm, k))

                coeff = K0_inexact.convert(coeff, K0)
                K0 = K0_inexact

    if j:
        factors.insert(0, ([K0.one, K0.zero], j))

    return coeff*cont, _sort_factors(factors)
Exemplo n.º 3
0
def test_dup_clear_denoms():
    assert dup_clear_denoms([], QQ, ZZ) == (ZZ(1), [])

    assert dup_clear_denoms([QQ(1)], QQ, ZZ) == (ZZ(1), [QQ(1)])
    assert dup_clear_denoms([QQ(7)], QQ, ZZ) == (ZZ(1), [QQ(7)])

    assert dup_clear_denoms([QQ(7,3)], QQ) == (ZZ(3), [QQ(7)])
    assert dup_clear_denoms([QQ(7,3)], QQ, ZZ) == (ZZ(3), [QQ(7)])

    assert dup_clear_denoms([QQ(3),QQ(1),QQ(0)], QQ, ZZ) == (ZZ(1), [QQ(3),QQ(1),QQ(0)])
    assert dup_clear_denoms([QQ(1),QQ(1,2),QQ(0)], QQ, ZZ) == (ZZ(2), [QQ(2),QQ(1),QQ(0)])

    assert dup_clear_denoms([QQ(3),QQ(1),QQ(0)], QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3),ZZ(1),ZZ(0)])
    assert dup_clear_denoms([QQ(1),QQ(1,2),QQ(0)], QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2),ZZ(1),ZZ(0)])

    assert dup_clear_denoms([EX(S(3)/2), EX(S(9)/4)], EX) == (EX(4), [EX(6), EX(9)])
Exemplo n.º 4
0
def test_dup_clear_denoms():
    assert dup_clear_denoms([], QQ, ZZ) == (ZZ(1), [])

    assert dup_clear_denoms([QQ(1)], QQ, ZZ) == (ZZ(1), [QQ(1)])
    assert dup_clear_denoms([QQ(7)], QQ, ZZ) == (ZZ(1), [QQ(7)])

    assert dup_clear_denoms([QQ(7,3)], QQ) == (ZZ(3), [QQ(7)])
    assert dup_clear_denoms([QQ(7,3)], QQ, ZZ) == (ZZ(3), [QQ(7)])

    assert dup_clear_denoms([QQ(3),QQ(1),QQ(0)], QQ, ZZ) == (ZZ(1), [QQ(3),QQ(1),QQ(0)])
    assert dup_clear_denoms([QQ(1),QQ(1,2),QQ(0)], QQ, ZZ) == (ZZ(2), [QQ(2),QQ(1),QQ(0)])

    assert dup_clear_denoms([QQ(3),QQ(1),QQ(0)], QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3),ZZ(1),ZZ(0)])
    assert dup_clear_denoms([QQ(1),QQ(1,2),QQ(0)], QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2),ZZ(1),ZZ(0)])

    raises(DomainError, lambda: dup_clear_denoms([EX(7)], EX))
Exemplo n.º 5
0
def dup_qq_heu_gcd(f, g, K0):
    """
    Heuristic polynomial GCD in `Q[x]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = QQ(1,2)*x**2 + QQ(7,4)*x + QQ(3,2)
    >>> g = QQ(1,2)*x**2 + x

    >>> R.dup_qq_heu_gcd(f, g)
    (x + 2, 1/2*x + 3/4, 1/2*x)

    """
    result = _dup_ff_trivial_gcd(f, g, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dup_clear_denoms(f, K0, K1)
    cg, g = dup_clear_denoms(g, K0, K1)

    f = dup_convert(f, K0, K1)
    g = dup_convert(g, K0, K1)

    h, cff, cfg = dup_zz_heu_gcd(f, g, K1)

    h = dup_convert(h, K1, K0)

    c = dup_LC(h, K0)
    h = dup_monic(h, K0)

    cff = dup_convert(cff, K1, K0)
    cfg = dup_convert(cfg, K1, K0)

    cff = dup_mul_ground(cff, K0.quo(c, cf), K0)
    cfg = dup_mul_ground(cfg, K0.quo(c, cg), K0)

    return h, cff, cfg
Exemplo n.º 6
0
def dup_qq_heu_gcd(f, g, K0):
    """
    Heuristic polynomial GCD in `Q[x]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = QQ(1,2)*x**2 + QQ(7,4)*x + QQ(3,2)
    >>> g = QQ(1,2)*x**2 + x

    >>> R.dup_qq_heu_gcd(f, g)
    (x + 2, 1/2*x + 3/4, 1/2*x)

    """
    result = _dup_ff_trivial_gcd(f, g, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dup_clear_denoms(f, K0, K1)
    cg, g = dup_clear_denoms(g, K0, K1)

    f = dup_convert(f, K0, K1)
    g = dup_convert(g, K0, K1)

    h, cff, cfg = dup_zz_heu_gcd(f, g, K1)

    h = dup_convert(h, K1, K0)

    c = dup_LC(h, K0)
    h = dup_monic(h, K0)

    cff = dup_convert(cff, K1, K0)
    cfg = dup_convert(cfg, K1, K0)

    cff = dup_mul_ground(cff, K0.quo(c, cf), K0)
    cfg = dup_mul_ground(cfg, K0.quo(c, cg), K0)

    return h, cff, cfg
Exemplo n.º 7
0
def dup_qq_heu_gcd(f, g, K0):
    """
    Heuristic polynomial GCD in `Q[x]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_qq_heu_gcd

    >>> f = [QQ(1,2), QQ(7,4), QQ(3,2)]
    >>> g = [QQ(1,2), QQ(1), QQ(0)]

    >>> dup_qq_heu_gcd(f, g, QQ)
    ([1/1, 2/1], [1/2, 3/4], [1/2, 0/1])

    """
    result = _dup_ff_trivial_gcd(f, g, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dup_clear_denoms(f, K0, K1)
    cg, g = dup_clear_denoms(g, K0, K1)

    f = dup_convert(f, K0, K1)
    g = dup_convert(g, K0, K1)

    h, cff, cfg = dup_zz_heu_gcd(f, g, K1)

    h = dup_convert(h, K1, K0)

    c = dup_LC(h, K0)
    h = dup_monic(h, K0)

    cff = dup_convert(cff, K1, K0)
    cfg = dup_convert(cfg, K1, K0)

    cff = dup_mul_ground(cff, K0.quo(c, cf), K0)
    cfg = dup_mul_ground(cfg, K0.quo(c, cg), K0)

    return h, cff, cfg
Exemplo n.º 8
0
def dup_qq_heu_gcd(f, g, K0):
    """
    Heuristic polynomial GCD in `Q[x]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_qq_heu_gcd

    >>> f = [QQ(1,2), QQ(7,4), QQ(3,2)]
    >>> g = [QQ(1,2), QQ(1), QQ(0)]

    >>> dup_qq_heu_gcd(f, g, QQ)
    ([1/1, 2/1], [1/2, 3/4], [1/2, 0/1])

    """
    result = _dup_ff_trivial_gcd(f, g, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dup_clear_denoms(f, K0, K1)
    cg, g = dup_clear_denoms(g, K0, K1)

    f = dup_convert(f, K0, K1)
    g = dup_convert(g, K0, K1)

    h, cff, cfg = dup_zz_heu_gcd(f, g, K1)

    h = dup_convert(h, K1, K0)

    c = dup_LC(h, K0)
    h = dup_monic(h, K0)

    cff = dup_convert(cff, K1, K0)
    cfg = dup_convert(cfg, K1, K0)

    cff = dup_mul_ground(cff, K0.quo(c, cf), K0)
    cfg = dup_mul_ground(cfg, K0.quo(c, cg), K0)

    return h, cff, cfg
Exemplo n.º 9
0
def dup_factor_list(f, K0):
    """Factor polynomials into irreducibles in `K[x]`. """
    j, f = dup_terms_gcd(f, K0)

    if not K0.has_CharacteristicZero:
        coeff, factors = dup_gf_factor(f, K0)
    elif K0.is_Algebraic:
        coeff, factors = dup_ext_factor(f, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dup_convert(f, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.has_Field:
            K = K0.get_ring()

            denom, f = dup_clear_denoms(f, K0, K)
            f = dup_convert(f, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            coeff, factors = dup_zz_factor(f, K)
        elif K.is_Poly:
            f, u = dmp_inject(f, 0, K)

            coeff, factors = dmp_factor_list(f, u, K.dom)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, u, K), k)

            coeff = K.convert(coeff, K.dom)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.has_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K, K0), k)

            coeff = K0.convert(coeff, K)
            denom = K0.convert(denom, K)

            coeff = K0.quo(coeff, denom)

        if K0_inexact is not None:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K0, K0_inexact), k)

            coeff = K0_inexact.convert(coeff, K0)

    if j:
        factors.insert(0, ([K0.one, K0.zero], j))

    return coeff, _sort_factors(factors)
Exemplo n.º 10
0
def dup_factor_list(f, K0):
    """Factor polynomials into irreducibles in `K[x]`. """
    j, f = dup_terms_gcd(f, K0)

    if not K0.has_CharacteristicZero:
        coeff, factors = dup_gf_factor(f, K0)
    elif K0.is_Algebraic:
        coeff, factors = dup_ext_factor(f, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dup_convert(f, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.has_Field:
            K = K0.get_ring()

            denom, f = dup_clear_denoms(f, K0, K)
            f = dup_convert(f, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            coeff, factors = dup_zz_factor(f, K)
        elif K.is_Poly:
            f, u = dmp_inject(f, 0, K)

            coeff, factors = dmp_factor_list(f, u, K.dom)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, u, K), k)

            coeff = K.convert(coeff, K.dom)
        else: # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.has_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K, K0), k)

            coeff = K0.convert(coeff, K)
            denom = K0.convert(denom, K)

            coeff = K0.quo(coeff, denom)

        if K0_inexact is not None:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K0, K0_inexact), k)

            coeff = K0_inexact.convert(coeff, K0)

    if j:
        factors.insert(0, ([K0.one, K0.zero], j))

    return coeff, _sort_factors(factors)
Exemplo n.º 11
0
def test_dup_clear_denoms():
    assert dup_clear_denoms([], QQ, ZZ) == (ZZ(1), [])

    assert dup_clear_denoms([QQ(1)], QQ, ZZ) == (ZZ(1), [QQ(1)])
    assert dup_clear_denoms([QQ(7)], QQ, ZZ) == (ZZ(1), [QQ(7)])

    assert dup_clear_denoms([QQ(7,3)], QQ) == (ZZ(3), [QQ(7)])
    assert dup_clear_denoms([QQ(7,3)], QQ, ZZ) == (ZZ(3), [QQ(7)])

    assert dup_clear_denoms([QQ(3),QQ(1),QQ(0)], QQ, ZZ) == (ZZ(1), [QQ(3),QQ(1),QQ(0)])
    assert dup_clear_denoms([QQ(1),QQ(1,2),QQ(0)], QQ, ZZ) == (ZZ(2), [QQ(2),QQ(1),QQ(0)])

    assert dup_clear_denoms([QQ(3),QQ(1),QQ(0)], QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3),ZZ(1),ZZ(0)])
    assert dup_clear_denoms([QQ(1),QQ(1,2),QQ(0)], QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2),ZZ(1),ZZ(0)])

    raises(DomainError, "dup_clear_denoms([EX(7)], EX)")
Exemplo n.º 12
0
def test_dup_clear_denoms():
    assert dup_clear_denoms([], QQ, ZZ) == (ZZ(1), [])

    assert dup_clear_denoms([QQ(1)], QQ, ZZ) == (ZZ(1), [QQ(1)])
    assert dup_clear_denoms([QQ(7)], QQ, ZZ) == (ZZ(1), [QQ(7)])

    assert dup_clear_denoms([QQ(7, 3)], QQ) == (ZZ(3), [QQ(7)])
    assert dup_clear_denoms([QQ(7, 3)], QQ, ZZ) == (ZZ(3), [QQ(7)])

    assert dup_clear_denoms(
        [QQ(3), QQ(1), QQ(0)], QQ, ZZ) == (ZZ(1), [QQ(3), QQ(1), QQ(0)])
    assert dup_clear_denoms(
        [QQ(1), QQ(1, 2), QQ(0)], QQ, ZZ) == (ZZ(2), [QQ(2), QQ(1), QQ(0)])

    assert dup_clear_denoms([QQ(3), QQ(
        1), QQ(0)], QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3), ZZ(1), ZZ(0)])
    assert dup_clear_denoms([QQ(1), QQ(
        1, 2), QQ(0)], QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2), ZZ(1), ZZ(0)])

    assert dup_clear_denoms(
        [EX(S(3)/2), EX(S(9)/4)], EX) == (EX(4), [EX(6), EX(9)])
Exemplo n.º 13
0
def dup_zz_i_factor(f, K0):
    """Factor univariate polynomials into irreducibles in `ZZ_I[x]`. """
    # First factor in QQ_I
    K1 = K0.get_field()
    f = dup_convert(f, K0, K1)
    coeff, factors = dup_qq_i_factor(f, K1)

    new_factors = []
    for fac, i in factors:
        # Extract content
        fac_denom, fac_num = dup_clear_denoms(fac, K1)
        fac_num_ZZ_I = dup_convert(fac_num, K1, K0)
        content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, 0, K1)

        coeff = (coeff * content**i) // fac_denom**i
        new_factors.append((fac_prim, i))

    factors = new_factors
    coeff = K0.convert(coeff, K1)
    return coeff, factors