Exemplo n.º 1
0
def _minpoly_cos(ex, x):
    """
    Returns the minimal polynomial of ``cos(ex)``
    see http://mathworld.wolfram.com/TrigonometryAngles.html
    """
    from sympy import sqrt
    c, a = ex.args[0].as_coeff_Mul()
    if a is pi:
        if c.is_rational:
            if c.p == 1:
                if c.q == 7:
                    return 8*x**3 - 4*x**2 - 4*x + 1
                if c.q == 9:
                    return 8*x**3 - 6*x + 1
            elif c.p == 2:
                q = sympify(c.q)
                if q.is_prime:
                    s = _minpoly_sin(ex, x)
                    return _mexpand(s.subs({x:sqrt((1 - x)/2)}))

            # for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p
            n = int(c.q)
            a = dup_chebyshevt(n, ZZ)
            a = [x**(n - i)*a[i] for i in range(n + 1)]
            r = Add(*a) - (-1)**c.p
            _, factors = factor_list(r)
            res = _choose_factor(factors, x, ex)
            return res

    raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
Exemplo n.º 2
0
def _minpoly_rootof(ex, x):
    """
    Returns the minimal polynomial of a ``RootOf`` object.
    """
    p = ex.expr
    p = p.subs({ex.poly.gens[0]:x})
    _, factors = factor_list(p, x)
    result = _choose_factor(factors, x, ex)
    return result
Exemplo n.º 3
0
def _minimal_polynomial_sq(p, n, x):
    """
    Returns the minimal polynomial for the ``nth-root`` of a sum of surds
    or ``None`` if it fails.

    Parameters
    ==========

    p : sum of surds
    n : positive integer
    x : variable of the returned polynomial

    Examples
    ========

    >>> from sympy.polys.numberfields import _minimal_polynomial_sq
    >>> from sympy import sqrt
    >>> from sympy.abc import x
    >>> q = 1 + sqrt(2) + sqrt(3)
    >>> _minimal_polynomial_sq(q, 3, x)
    x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8

    """
    from sympy.simplify.simplify import _is_sum_surds

    p = sympify(p)
    n = sympify(n)
    r = _is_sum_surds(p)
    if not n.is_Integer or not n > 0 or not _is_sum_surds(p):
        return None
    pn = p**Rational(1, n)
    # eliminate the square roots
    p -= x
    while 1:
        p1 = _separate_sq(p)
        if p1 is p:
            p = p1.subs({x:x**n})
            break
        else:
            p = p1

    # _separate_sq eliminates field extensions in a minimal way, so that
    # if n = 1 then `p = constant*(minimal_polynomial(p))`
    # if n > 1 it contains the minimal polynomial as a factor.
    if n == 1:
        p1 = Poly(p)
        if p.coeff(x**p1.degree(x)) < 0:
            p = -p
        p = p.primitive()[1]
        return p
    # by construction `p` has root `pn`
    # the minimal polynomial is the factor vanishing in x = pn
    factors = factor_list(p)[1]

    result = _choose_factor(factors, x, pn)
    return result
Exemplo n.º 4
0
def _minpoly_pow(ex, pw, x, mp=None):
    """
    Returns ``minpoly(ex**pw, x)``

    Parameters
    ==========

    p  : algebraic number
    mp : minimal polynomial of ``p``
    pw : rational number
    x : indeterminate of the polynomial

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.polys.numberfields import _minpoly_pow, minpoly
    >>> from sympy.abc import x
    >>> p = sqrt(1 + sqrt(2))
    >>> _minpoly_pow(p, 2, x)
    x**2 - 2*x - 1
    >>> minpoly(p**2, x)
    x**2 - 2*x - 1
    """
    pw = sympify(pw)
    if not mp:
        mp = _minpoly1(ex, x)
    if not pw.is_rational:
        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)
    if pw < 0:
        if mp == x:
            raise ZeroDivisionError('%s is zero' % ex)
        mp = _invertx(mp, x)
        if pw == -1:
            return mp
        pw = -pw
        ex = 1/ex
    y = Dummy(str(x))
    mp = mp.subs({x:y})
    n, d = pw.as_numer_denom()
    res = resultant(mp, x**d - y**n, gens=[y])
    _, factors = factor_list(res)
    res = _choose_factor(factors, x, ex**pw)
    return res
Exemplo n.º 5
0
def field_isomorphism_factor(a, b):
    """Construct field isomorphism via factorization. """
    _, factors = factor_list(a.minpoly, extension=b)

    for f, _ in factors:
        if f.degree() == 1:
            coeffs = f.rep.TC().to_sympy_list()
            d, terms = len(coeffs) - 1, []

            for i, coeff in enumerate(coeffs):
                terms.append(coeff*b.root**(d - i))

            root = Add(*terms)

            if (a.root - root).evalf(chop=True) == 0:
                return coeffs

            if (a.root + root).evalf(chop=True) == 0:
                return [ -c for c in coeffs ]
    else:
        return None
Exemplo n.º 6
0
def _minpoly_sin(ex, x):
    """
    Returns the minimal polynomial of ``sin(ex)``
    see http://mathworld.wolfram.com/TrigonometryAngles.html
    """
    from sympy.functions.combinatorial.factorials import binomial
    c, a = ex.args[0].as_coeff_Mul()
    if a is pi:
        if c.is_rational:
            n = c.q
            q = sympify(n)
            if q.is_prime:
                # for a = pi*p/q with q odd prime, using chebyshevt
                # write sin(q*a) = mp(sin(a))*sin(a);
                # the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1
                a = dup_chebyshevt(n, ZZ)
                return Add(*[x**(n - i - 1)*a[i] for i in range(n)])
            if c.p == 1:
                if q == 9:
                    return 64*x**6 - 96*x**4 + 36*x**2 - 3

            if n % 2 == 1:
                # for a = pi*p/q with q odd, use
                # sin(q*a) = 0 to see that the minimal polynomial must be
                # a factor of dup_chebyshevt(n, ZZ)
                a = dup_chebyshevt(n, ZZ)
                a = [x**(n - i)*a[i] for i in range(n + 1)]
                r = Add(*a)
                _, factors = factor_list(r)
                res = _choose_factor(factors, x, ex)
                return res

            expr = ((1 - C.cos(2*c*pi))/2)**S.Half
            res = _minpoly_compose(expr, x, QQ)
            return res

    raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
Exemplo n.º 7
0
def _minpoly_sin(ex, x):
    """
    Returns the minimal polynomial of ``sin(ex)``
    see http://mathworld.wolfram.com/TrigonometryAngles.html
    """
    c, a = ex.args[0].as_coeff_Mul()
    if a is pi:
        if c.is_rational:
            n = c.q
            q = sympify(n)
            if q.is_prime:
                # for a = pi*p/q with q odd prime, using chebyshevt
                # write sin(q*a) = mp(sin(a))*sin(a);
                # the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1
                a = dup_chebyshevt(n, ZZ)
                return Add(*[x**(n - i - 1) * a[i] for i in range(n)])
            if c.p == 1:
                if q == 9:
                    return 64 * x**6 - 96 * x**4 + 36 * x**2 - 3

            if n % 2 == 1:
                # for a = pi*p/q with q odd, use
                # sin(q*a) = 0 to see that the minimal polynomial must be
                # a factor of dup_chebyshevt(n, ZZ)
                a = dup_chebyshevt(n, ZZ)
                a = [x**(n - i) * a[i] for i in range(n + 1)]
                r = Add(*a)
                _, factors = factor_list(r)
                res = _choose_factor(factors, x, ex)
                return res

            expr = ((1 - cos(2 * c * pi)) / 2)**S.Half
            res = _minpoly_compose(expr, x, QQ)
            return res

    raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
Exemplo n.º 8
0
def primitive_element(extension, x=None, **args):
    """Construct a common number field for all extensions. """
    if not extension:
        raise ValueError("can't compute primitive element for empty extension")

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not args.get('ex', False):
        gen, coeffs = extension[0], [1]
        # XXX when minimal_polynomial is extended to work
        # with AlgebraicNumbers this test can be removed
        if isinstance(gen, AlgebraicNumber):
            g = gen.minpoly.replace(x)
        else:
            g = minimal_polynomial(gen, x, polys=True)
        for ext in extension[1:]:
            _, factors = factor_list(g, extension=ext)
            g = _choose_factor(factors, x, gen)
            s, _, g = g.sqf_norm()
            gen += s * ext
            coeffs.append(s)

        if not args.get('polys', False):
            return g.as_expr(), coeffs
        else:
            return cls(g), coeffs

    generator = numbered_symbols('y', cls=Dummy)

    F, Y = [], []

    for ext in extension:
        y = next(generator)

        if ext.is_Poly:
            if ext.is_univariate:
                f = ext.as_expr(y)
            else:
                raise ValueError("expected minimal polynomial, got %s" % ext)
        else:
            f = minpoly(ext, y)

        F.append(f)
        Y.append(y)

    coeffs_generator = args.get('coeffs', _coeffs_generator)

    for coeffs in coeffs_generator(len(Y)):
        f = x - sum([c * y for c, y in zip(coeffs, Y)])
        G = groebner(F + [f], Y + [x], order='lex', field=True)

        H, g = G[:-1], cls(G[-1], x, domain='QQ')

        for i, (h, y) in enumerate(zip(H, Y)):
            try:
                H[i] = Poly(y - h, x,
                            domain='QQ').all_coeffs()  # XXX: composite=False
            except CoercionFailed:  # pragma: no cover
                break  # G is not a triangular set
        else:
            break
    else:  # pragma: no cover
        raise RuntimeError("run out of coefficient configurations")

    _, g = g.clear_denoms()

    if not args.get('polys', False):
        return g.as_expr(), coeffs, H
    else:
        return g, coeffs, H
Exemplo n.º 9
0
def _minpoly_groebner(ex, x, cls):
    """
    Computes the minimal polynomial of an algebraic number
    using Groebner bases

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False)
    x**2 - 2*x - 1

    """
    from sympy.polys.polytools import degree
    from sympy.core.function import expand_multinomial

    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols = {}, {}

    def update_mapping(ex, exp, base=None):
        a = next(generator)
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Mul:
            return Mul(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0:
                    minpoly_base = _minpoly_groebner(ex.base, x, cls)
                    inverse = invert(x, minpoly_base).as_expr()
                    base_inv = inverse.subs(x, ex.base).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base_inv)
                    else:
                        ex = base_inv**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (ex.base**ex.exp.p).expand(), Rational(
                        1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1 / exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1 / ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        return ex.minpoly.as_expr(x)
    elif ex.is_Rational:
        result = ex.q * x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1 / ex.exp).is_Integer:
            n = 1 / ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + list(mapping.values())
            G = groebner(F, list(symbols.values()) + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)

    return result
Exemplo n.º 10
0
def _minpoly_groebner(ex, x, cls):
    """
    Computes the minimal polynomial of an algebraic number
    using Groebner bases

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False)
    x**2 - 2*x - 1

    """

    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols = {}, {}

    def update_mapping(ex, exp, base=None):
        a = next(generator)
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        """
        Transform a given algebraic expression *ex* into a multivariate
        polynomial, by introducing fresh variables with defining equations.

        Explanation
        ===========

        The critical elements of the algebraic expression *ex* are root
        extractions, instances of :py:class:`~.AlgebraicNumber`, and negative
        powers.

        When we encounter a root extraction or an :py:class:`~.AlgebraicNumber`
        we replace this expression with a fresh variable ``a_i``, and record
        the defining polynomial for ``a_i``. For example, if ``a_0**(1/3)``
        occurs, we will replace it with ``a_1``, and record the new defining
        polynomial ``a_1**3 - a_0``.

        When we encounter a negative power we transform it into a positive
        power by algebraically inverting the base. This means computing the
        minimal polynomial in ``x`` for the base, inverting ``x`` modulo this
        poly (which generates a new polynomial) and then substituting the
        original base expression for ``x`` in this last polynomial.

        We return the transformed expression, and we record the defining
        equations for new symbols using the ``update_mapping()`` function.

        """
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Mul:
            return Mul(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0:
                    minpoly_base = _minpoly_groebner(ex.base, x, cls)
                    inverse = invert(x, minpoly_base).as_expr()
                    base_inv = inverse.subs(x, ex.base).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base_inv)
                    else:
                        ex = base_inv**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (ex.base**ex.exp.p).expand(), Rational(
                        1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    if exp.is_Integer:
                        return expr.expand()
                    else:
                        return update_mapping(expr, 1 / exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex not in mapping:
                return update_mapping(ex, ex.minpoly_of_element())
            else:
                return symbols[ex]

        raise NotAlgebraic("%s does not seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1 / ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        return ex.minpoly_of_element().as_expr(x)
    elif ex.is_Rational:
        result = ex.q * x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1 / ex.exp).is_Integer:
            n = 1 / ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + list(mapping.values())
            G = groebner(F, list(symbols.values()) + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)

    return result
Exemplo n.º 11
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic number.

    Parameters
    ==========

    ex : algebraic number expression

    x : indipendent variable of the minimal polynomial

    Options
    =======

    compose : if ``True`` _minpoly1`` is used, else the ``groebner`` algorithm

    polys : if ``True`` returns a ``Poly`` object

    Notes
    =====

    By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
    are computed, then the arithmetic operations on them are performed using the resultant
    and factorization.
    If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
    The default algorithm stalls less frequently.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, solve
    >>> from sympy.abc import x

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1
    >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
    x**3 + x + 3

    """
    from sympy.polys.polytools import degree
    from sympy.core.function import expand_multinomial
    from sympy.core.basic import preorder_traversal

    compose = args.get('compose', True)
    polys = args.get('polys', False)
    ex = sympify(ex)
    for expr in preorder_traversal(ex):
        if expr.is_AlgebraicNumber:
            compose = False
            break

    if ex.is_AlgebraicNumber:
        compose = False

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if compose:
        result = _minpoly1(ex, x)
        result = result.primitive()[1]
        c = result.coeff(x**degree(result, x))
        if c < 0:
            result = expand_mul(-result)
            c = -c
        return cls(result, x, field=True) if polys else result

    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    def update_mapping(ex, exp, base=None):
        a = generator.next()
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Mul:
            return Mul(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (
                        ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1/exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1/ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational:
        result = ex.q*x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1/ex.exp).is_Integer:
            n = 1/ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + mapping.values()
            G = groebner(F, symbols.values() + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)
    if polys:
        return cls(result, x, field=True)
    else:
        return result
Exemplo n.º 12
0
def _minpoly_op_algebraic_number(ex1, ex2, x, mp1=None, mp2=None, op=Add):
    """
    return the minimal polinomial for ``op(ex1, ex2)``

    Parameters
    ==========

    ex1, ex2 : expressions for the algebraic numbers
    x : indeterminate of the polynomials
    mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None
    op : operation ``Add`` or ``Mul``

    Examples
    ========

    >>> from sympy import sqrt, Mul
    >>> from sympy.polys.numberfields import _minpoly_op_algebraic_number
    >>> from sympy.abc import x
    >>> p1 = sqrt(sqrt(2) + 1)
    >>> p2 = sqrt(sqrt(2) - 1)
    >>> _minpoly_op_algebraic_number(p1, p2, x, op=Mul)
    x - 1

    References
    ==========

    [1] http://en.wikipedia.org/wiki/Resultant
    [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
    "Degrees of sums in a separable field extension".
    """
    from sympy import gcd
    y = Dummy(str(x))
    if mp1 is None:
        mp1 = _minpoly1(ex1, x)
    if mp2 is None:
        mp2 = _minpoly1(ex2, y)
    else:
        mp2 = mp2.subs({x:y})

    if op is Add:
        # mp1a = mp1.subs({x:x - y})
        (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
        r = p1.compose(p2)
        mp1a = r.as_expr()
    elif op is Mul:
        mp1a = _muly(mp1, x, y)
    else:
        raise NotImplementedError('option not available')
    r = resultant(mp1a, mp2, gens=[y, x])

    deg1 = degree(mp1, x)
    deg2 = degree(mp2, y)
    if op is Add and gcd(deg1, deg2) == 1:
        # `r` is irreducible, see [2]
        return r
    if op is Mul and deg1 == 1 or deg2 == 1:
        # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
        # r = mp2(x - a), so that `r` is irreducible
        return r
    _, factors = factor_list(r)
    if op in [Add, Mul]:
        ex = op(ex1, ex2)
    res = _choose_factor(factors, x, ex)
    return res
Exemplo n.º 13
0
def primitive_element(extension, x=None, **args):
    """Construct a common number field for all extensions. """
    if not extension:
        raise ValueError("can't compute primitive element for empty extension")

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not args.get('ex', False):
        gen, coeffs = extension[0], [1]
        # XXX when minimal_polynomial is extended to work
        # with AlgebraicNumbers this test can be removed
        if isinstance(gen, AlgebraicNumber):
            g = gen.minpoly.replace(x)
        else:
            g = minimal_polynomial(gen, x, polys=True)
        for ext in extension[1:]:
            _, factors = factor_list(g, extension=ext)
            g = _choose_factor(factors, x, gen)
            s, _, g = g.sqf_norm()
            gen += s*ext
            coeffs.append(s)

        if not args.get('polys', False):
            return g.as_expr(), coeffs
        else:
            return cls(g), coeffs

    generator = numbered_symbols('y', cls=Dummy)

    F, Y = [], []

    for ext in extension:
        y = next(generator)

        if ext.is_Poly:
            if ext.is_univariate:
                f = ext.as_expr(y)
            else:
                raise ValueError("expected minimal polynomial, got %s" % ext)
        else:
            f = minpoly(ext, y)

        F.append(f)
        Y.append(y)

    coeffs_generator = args.get('coeffs', _coeffs_generator)

    for coeffs in coeffs_generator(len(Y)):
        f = x - sum([ c*y for c, y in zip(coeffs, Y)])
        G = groebner(F + [f], Y + [x], order='lex', field=True)

        H, g = G[:-1], cls(G[-1], x, domain='QQ')

        for i, (h, y) in enumerate(zip(H, Y)):
            try:
                H[i] = Poly(y - h, x,
                            domain='QQ').all_coeffs()  # XXX: composite=False
            except CoercionFailed:  # pragma: no cover
                break  # G is not a triangular set
        else:
            break
    else:  # pragma: no cover
        raise RuntimeError("run out of coefficient configurations")

    _, g = g.clear_denoms()

    if not args.get('polys', False):
        return g.as_expr(), coeffs, H
    else:
        return g, coeffs, H
Exemplo n.º 14
0
def _minpoly_compose(ex, x, dom):
    """
    Computes the minimal polynomial of an algebraic element
    using operations on minimal polynomials

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x, y
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
    x**2 - 2*x - 1
    >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
    x**2*y**2 - 2*x*y - y**3 + 1

    """
    if ex.is_Rational:
        return ex.q*x - ex.p
    if ex is I:
        _, factors = factor_list(x**2 + 1, x, domain=dom)
        return x**2 + 1 if len(factors) == 1 else x - I
    if hasattr(dom, 'symbols') and ex in dom.symbols:
        return x - ex

    if dom.is_QQ and _is_sum_surds(ex):
        # eliminate the square roots
        ex -= x
        while 1:
            ex1 = _separate_sq(ex)
            if ex1 is ex:
                return ex
            else:
                ex = ex1

    if ex.is_Add:
        res = _minpoly_add(x, dom, *ex.args)
    elif ex.is_Mul:
        f = Factors(ex).factors
        r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational)
        if r[True] and dom == QQ:
            ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
            r1 = r[True]
            dens = [y.q for _, y in r1]
            lcmdens = reduce(lcm, dens, 1)
            nums = [base**(y.p*lcmdens // y.q) for base, y in r1]
            ex2 = Mul(*nums)
            mp1 = minimal_polynomial(ex1, x)
            # use the fact that in SymPy canonicalization products of integers
            # raised to rational powers are organized in relatively prime
            # bases, and that in ``base**(n/d)`` a perfect power is
            # simplified with the root
            mp2 = ex2.q*x**lcmdens - ex2.p
            ex2 = ex2**Rational(1, lcmdens)
            res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2)
        else:
            res = _minpoly_mul(x, dom, *ex.args)
    elif ex.is_Pow:
        res = _minpoly_pow(ex.base, ex.exp, x, dom)
    elif ex.__class__ is sin:
        res = _minpoly_sin(ex, x)
    elif ex.__class__ is cos:
        res = _minpoly_cos(ex, x)
    elif ex.__class__ is exp:
        res = _minpoly_exp(ex, x)
    elif ex.__class__ is CRootOf:
        res = _minpoly_rootof(ex, x)
    else:
        raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
    return res
Exemplo n.º 15
0
def _minpoly_compose(ex, x, dom):
    """
    Computes the minimal polynomial of an algebraic element
    using operations on minimal polynomials

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x, y
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
    x**2 - 2*x - 1
    >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
    x**2*y**2 - 2*x*y - y**3 + 1

    """
    if ex.is_Rational:
        return ex.q * x - ex.p
    if ex is I:
        _, factors = factor_list(x**2 + 1, x, domain=dom)
        return x**2 + 1 if len(factors) == 1 else x - I
    if hasattr(dom, 'symbols') and ex in dom.symbols:
        return x - ex

    if dom.is_QQ and _is_sum_surds(ex):
        # eliminate the square roots
        ex -= x
        while 1:
            ex1 = _separate_sq(ex)
            if ex1 is ex:
                return ex
            else:
                ex = ex1

    if ex.is_Add:
        res = _minpoly_add(x, dom, *ex.args)
    elif ex.is_Mul:
        f = Factors(ex).factors
        r = sift(f.items(),
                 lambda itx: itx[0].is_Rational and itx[1].is_Rational)
        if r[True] and dom == QQ:
            ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
            r1 = r[True]
            dens = [y.q for _, y in r1]
            lcmdens = reduce(lcm, dens, 1)
            nums = [base**(y.p * lcmdens // y.q) for base, y in r1]
            ex2 = Mul(*nums)
            mp1 = minimal_polynomial(ex1, x)
            # use the fact that in SymPy canonicalization products of integers
            # raised to rational powers are organized in relatively prime
            # bases, and that in ``base**(n/d)`` a perfect power is
            # simplified with the root
            mp2 = ex2.q * x**lcmdens - ex2.p
            ex2 = ex2**Rational(1, lcmdens)
            res = _minpoly_op_algebraic_element(Mul,
                                                ex1,
                                                ex2,
                                                x,
                                                dom,
                                                mp1=mp1,
                                                mp2=mp2)
        else:
            res = _minpoly_mul(x, dom, *ex.args)
    elif ex.is_Pow:
        res = _minpoly_pow(ex.base, ex.exp, x, dom)
    elif ex.__class__ is sin:
        res = _minpoly_sin(ex, x)
    elif ex.__class__ is cos:
        res = _minpoly_cos(ex, x)
    elif ex.__class__ is exp:
        res = _minpoly_exp(ex, x)
    elif ex.__class__ is CRootOf:
        res = _minpoly_rootof(ex, x)
    else:
        raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
    return res
Exemplo n.º 16
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic number.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt
    >>> from sympy.abc import x

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1

    """
    from sympy.polys.polytools import degree
    from sympy.core.function import expand_mul
    from sympy.simplify.simplify import _is_sum_surds

    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    ex = sympify(ex)

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    def update_mapping(ex, exp, base=None):
        a = generator.next()
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Mul:
            return Mul(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (ex.base**ex.exp.p).expand(), Rational(
                        1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1 / exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1 / ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    polys = args.get('polys', False)
    prec = args.pop('prec', 10)

    inverted = False
    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational:
        result = ex.q * x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1 / ex.exp).is_Integer:
            n = 1 / ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x, prec)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x, prec)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + mapping.values()
            G = groebner(F, symbols.values() + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex, prec)
            if result is None:
                raise NotImplementedError(
                    "multiple candidates for the minimal polynomial of %s" %
                    ex)
    if inverted:
        result = expand_mul(x**degree(result) * result.subs(x, 1 / x))
        if result.coeff(x**degree(result)) < 0:
            result = expand_mul(-result)
    if polys:
        return cls(result, x, field=True)
    else:
        return result
Exemplo n.º 17
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic number.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt
    >>> from sympy.abc import x

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1

    """
    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    ex = sympify(ex)

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    def update_mapping(ex, exp, base=None):
        a = generator.next()
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Mul:
            return Mul(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)

                if not ex.exp.is_Integer:
                    base, exp = (ex.base**ex.exp.p).expand(), Rational(
                        1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp

                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1 / exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    polys = args.get('polys', False)

    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational:
        result = ex.q * x - ex.p
    else:
        F = [x - bottom_up_scan(ex)] + mapping.values()
        G = groebner(F, symbols.values() + [x], order='lex')

        _, factors = factor_list(G[-1])

        if len(factors) == 1:
            ((result, _), ) = factors
        else:
            for result, _ in factors:
                if result.subs(x, ex).evalf(chop=True) == 0:
                    break
            else:  # pragma: no cover
                raise NotImplementedError(
                    "multiple candidates for the minimal polynomial of %s" %
                    ex)

    if polys:
        return cls(result, x, field=True)
    else:
        return result
Exemplo n.º 18
0
def _minpoly_op_algebraic_number(ex1, ex2, x, mp1=None, mp2=None, op=Add):
    """
    return the minimal polinomial for ``op(ex1, ex2)``

    Parameters
    ==========

    ex1, ex2 : expressions for the algebraic numbers
    x : indeterminate of the polynomials
    mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None
    op : operation ``Add`` or ``Mul``

    Examples
    ========

    >>> from sympy import sqrt, Mul
    >>> from sympy.polys.numberfields import _minpoly_op_algebraic_number
    >>> from sympy.abc import x
    >>> p1 = sqrt(sqrt(2) + 1)
    >>> p2 = sqrt(sqrt(2) - 1)
    >>> _minpoly_op_algebraic_number(p1, p2, x, op=Mul)
    x - 1

    References
    ==========

    [1] http://en.wikipedia.org/wiki/Resultant
    [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
    "Degrees of sums in a separable field extension".
    """
    from sympy import gcd
    y = Dummy(str(x))
    if mp1 is None:
        mp1 = _minpoly1(ex1, x)
    if mp2 is None:
        mp2 = _minpoly1(ex2, y)
    else:
        mp2 = mp2.subs({x: y})

    if op is Add:
        # mp1a = mp1.subs({x:x - y})
        (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
        r = p1.compose(p2)
        mp1a = r.as_expr()
    elif op is Mul:
        mp1a = _muly(mp1, x, y)
    else:
        raise NotImplementedError('option not available')
    r = resultant(mp1a, mp2, gens=[y, x])

    deg1 = degree(mp1, x)
    deg2 = degree(mp2, y)
    if op is Add and gcd(deg1, deg2) == 1:
        # `r` is irreducible, see [2]
        return r
    if op is Mul and deg1 == 1 or deg2 == 1:
        # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
        # r = mp2(x - a), so that `r` is irreducible
        return r
    _, factors = factor_list(r)
    if op in [Add, Mul]:
        ex = op(ex1, ex2)
    res = _choose_factor(factors, x, ex)
    return res
Exemplo n.º 19
0
def _minpoly_groebner(ex, x, cls):
    """
    Computes the minimal polynomial of an algebraic number
    using Groebner bases

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False)
    x**2 - 2*x - 1

    """
    from sympy.polys.polytools import degree
    from sympy.core.function import expand_multinomial

    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    def update_mapping(ex, exp, base=None):
        a = next(generator)
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Mul:
            return Mul(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (
                        ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1/exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1/ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        return ex.minpoly.as_expr(x)
    elif ex.is_Rational:
        result = ex.q*x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1/ex.exp).is_Integer:
            n = 1/ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + list(mapping.values())
            G = groebner(F, list(symbols.values()) + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)

    return result
Exemplo n.º 20
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic number.

    Parameters
    ==========

    ex : algebraic number expression

    x : indipendent variable of the minimal polynomial

    Options
    =======

    compose : if ``True`` _minpoly1`` is used, else the ``groebner`` algorithm

    polys : if ``True`` returns a ``Poly`` object

    Notes
    =====

    By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
    are computed, then the arithmetic operations on them are performed using the resultant
    and factorization.
    If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
    The default algorithm stalls less frequently.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, solve
    >>> from sympy.abc import x

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1
    >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
    x**3 + x + 3

    """
    from sympy.polys.polytools import degree
    from sympy.core.function import expand_multinomial
    from sympy.core.basic import preorder_traversal

    compose = args.get('compose', True)
    polys = args.get('polys', False)
    ex = sympify(ex)
    for expr in preorder_traversal(ex):
        if expr.is_AlgebraicNumber:
            compose = False
            break

    if ex.is_AlgebraicNumber:
        compose = False

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if compose:
        result = _minpoly1(ex, x)
        result = result.primitive()[1]
        c = result.coeff(x**degree(result, x))
        if c < 0:
            result = expand_mul(-result)
            c = -c
        return cls(result, x, field=True) if polys else result

    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    def update_mapping(ex, exp, base=None):
        a = generator.next()
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Mul:
            return Mul(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (ex.base**ex.exp.p).expand(), Rational(
                        1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1 / exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1 / ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational:
        result = ex.q * x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1 / ex.exp).is_Integer:
            n = 1 / ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + mapping.values()
            G = groebner(F, symbols.values() + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)
    if polys:
        return cls(result, x, field=True)
    else:
        return result
Exemplo n.º 21
0
def _minpoly_compose(ex, x, dom):
    """
    Computes the minimal polynomial of an algebraic element
    using operations on minimal polynomials

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x, y
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
    x**2 - 2*x - 1
    >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
    x**2*y**2 - 2*x*y - y**3 + 1

    """
    if ex.is_Rational:
        return ex.q * x - ex.p
    if ex is I:
        _, factors = factor_list(x**2 + 1, x, domain=dom)
        return x**2 + 1 if len(factors) == 1 else x - I

    if ex is S.GoldenRatio:
        _, factors = factor_list(x**2 - x - 1, x, domain=dom)
        if len(factors) == 1:
            return x**2 - x - 1
        else:
            return _choose_factor(factors, x, (1 + sqrt(5)) / 2, dom=dom)

    if ex is S.TribonacciConstant:
        _, factors = factor_list(x**3 - x**2 - x - 1, x, domain=dom)
        if len(factors) == 1:
            return x**3 - x**2 - x - 1
        else:
            fac = (1 + cbrt(19 - 3 * sqrt(33)) + cbrt(19 + 3 * sqrt(33))) / 3
            return _choose_factor(factors, x, fac, dom=dom)

    if hasattr(dom, 'symbols') and ex in dom.symbols:
        return x - ex

    if dom.is_QQ and _is_sum_surds(ex):
        # eliminate the square roots
        ex -= x
        while 1:
            ex1 = _separate_sq(ex)
            if ex1 is ex:
                return ex
            else:
                ex = ex1

    if ex.is_Add:
        res = _minpoly_add(x, dom, *ex.args)
    elif ex.is_Mul:
        f = Factors(ex).factors
        r = sift(f.items(),
                 lambda itx: itx[0].is_Rational and itx[1].is_Rational)
        if r[True] and dom == QQ:
            ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
            r1 = dict(r[True])
            dens = [y.q for y in r1.values()]
            lcmdens = reduce(lcm, dens, 1)
            neg1 = S.NegativeOne
            expn1 = r1.pop(neg1, S.Zero)
            nums = [base**(y.p * lcmdens // y.q) for base, y in r1.items()]
            ex2 = Mul(*nums)
            mp1 = minimal_polynomial(ex1, x)
            # use the fact that in SymPy canonicalization products of integers
            # raised to rational powers are organized in relatively prime
            # bases, and that in ``base**(n/d)`` a perfect power is
            # simplified with the root
            # Powers of -1 have to be treated separately to preserve sign.
            mp2 = ex2.q * x**lcmdens - ex2.p * neg1**(expn1 * lcmdens)
            ex2 = neg1**expn1 * ex2**Rational(1, lcmdens)
            res = _minpoly_op_algebraic_element(Mul,
                                                ex1,
                                                ex2,
                                                x,
                                                dom,
                                                mp1=mp1,
                                                mp2=mp2)
        else:
            res = _minpoly_mul(x, dom, *ex.args)
    elif ex.is_Pow:
        res = _minpoly_pow(ex.base, ex.exp, x, dom)
    elif ex.__class__ is sin:
        res = _minpoly_sin(ex, x)
    elif ex.__class__ is cos:
        res = _minpoly_cos(ex, x)
    elif ex.__class__ is tan:
        res = _minpoly_tan(ex, x)
    elif ex.__class__ is exp:
        res = _minpoly_exp(ex, x)
    elif ex.__class__ is CRootOf:
        res = _minpoly_rootof(ex, x)
    else:
        raise NotAlgebraic("%s does not seem to be an algebraic element" % ex)
    return res
Exemplo n.º 22
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic number.

    **Example**

    >>> from sympy import minimal_polynomial, sqrt
    >>> from sympy.abc import x

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1

    """
    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    ex = sympify(ex)

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    def update_mapping(ex, exp, base=None):
        a = generator.next()
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational and ex.q != 0:
                return ex
        elif ex.is_Add:
            return Add(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Mul:
            return Mul(*[ bottom_up_scan(g) for g in ex.args ])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)

                if not ex.exp.is_Integer:
                    base, exp = (ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp

                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1/exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    polys = args.get('polys', False)

    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational and ex.q != 0:
        result = ex.q*x - ex.p
    else:
        F = [x - bottom_up_scan(ex)] + mapping.values()
        G = groebner(F, symbols.values() + [x], order='lex')

        _, factors = factor_list(G[-1])

        if len(factors) == 1:
            ((result, _),) = factors
        else:
            for result, _ in factors:
                if result.subs(x, ex).evalf(chop=True) == 0:
                    break
            else: # pragma: no cover
                raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % ex)

    if polys:
        return cls(result, x, field=True)
    else:
        return result
Exemplo n.º 23
0
def primitive_element(extension, x=None, *, ex=False, polys=False):
    r"""
    Find a single generator for a number field given by several generators.

    Explanation
    ===========

    The basic problem is this: Given several algebraic numbers
    $\alpha_1, \alpha_2, \ldots, \alpha_n$, find a single algebraic number
    $\theta$ such that
    $\mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_n) = \mathbb{Q}(\theta)$.

    This function actually guarantees that $\theta$ will be a linear
    combination of the $\alpha_i$, with non-negative integer coefficients.

    Furthermore, if desired, this function will tell you how to express each
    $\alpha_i$ as a $\mathbb{Q}$-linear combination of the powers of $\theta$.

    Examples
    ========

    >>> from sympy import primitive_element, sqrt, S, minpoly, simplify
    >>> from sympy.abc import x
    >>> f, lincomb, reps = primitive_element([sqrt(2), sqrt(3)], x, ex=True)

    Then ``lincomb`` tells us the primitive element as a linear combination of
    the given generators ``sqrt(2)`` and ``sqrt(3)``.

    >>> print(lincomb)
    [1, 1]

    This means the primtiive element is $\sqrt{2} + \sqrt{3}$.
    Meanwhile ``f`` is the minimal polynomial for this primitive element.

    >>> print(f)
    x**4 - 10*x**2 + 1
    >>> print(minpoly(sqrt(2) + sqrt(3), x))
    x**4 - 10*x**2 + 1

    Finally, ``reps`` (which was returned only because we set keyword arg
    ``ex=True``) tells us how to recover each of the generators $\sqrt{2}$ and
    $\sqrt{3}$ as $\mathbb{Q}$-linear combinations of the powers of the
    primitive element $\sqrt{2} + \sqrt{3}$.

    >>> print([S(r) for r in reps[0]])
    [1/2, 0, -9/2, 0]
    >>> theta = sqrt(2) + sqrt(3)
    >>> print(simplify(theta**3/2 - 9*theta/2))
    sqrt(2)
    >>> print([S(r) for r in reps[1]])
    [-1/2, 0, 11/2, 0]
    >>> print(simplify(-theta**3/2 + 11*theta/2))
    sqrt(3)

    Parameters
    ==========

    extension : list of :py:class:`~.Expr`
        Each expression must represent an algebraic number $\alpha_i$.
    x : :py:class:`~.Symbol`, optional (default=None)
        The desired symbol to appear in the computed minimal polynomial for the
        primitive element $\theta$. If ``None``, we use a dummy symbol.
    ex : boolean, optional (default=False)
        If and only if ``True``, compute the representation of each $\alpha_i$
        as a $\mathbb{Q}$-linear combination over the powers of $\theta$.
    polys : boolean, optional (default=False)
        If ``True``, return the minimal polynomial as a :py:class:`~.Poly`.
        Otherwise return it as an :py:class:`~.Expr`.

    Returns
    =======

    Pair (f, coeffs) or triple (f, coeffs, reps), where:
        ``f`` is the minimal polynomial for the primitive element.
        ``coeffs`` gives the primitive element as a linear combination of the
        given generators.
        ``reps`` is present if and only if argument ``ex=True`` was passed,
        and is a list of lists of rational numbers. Each list gives the
        coefficients of falling powers of the primitive element, to recover
        one of the original, given generators.

    """
    if not extension:
        raise ValueError("Cannot compute primitive element for empty extension")
    extension = [_sympify(ext) for ext in extension]

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not ex:
        gen, coeffs = extension[0], [1]
        g = minimal_polynomial(gen, x, polys=True)
        for ext in extension[1:]:
            if ext.is_Rational:
                coeffs.append(0)
                continue
            _, factors = factor_list(g, extension=ext)
            g = _choose_factor(factors, x, gen)
            s, _, g = g.sqf_norm()
            gen += s*ext
            coeffs.append(s)

        if not polys:
            return g.as_expr(), coeffs
        else:
            return cls(g), coeffs

    gen, coeffs = extension[0], [1]
    f = minimal_polynomial(gen, x, polys=True)
    K = QQ.algebraic_field((f, gen))  # incrementally constructed field
    reps = [K.unit]  # representations of extension elements in K
    for ext in extension[1:]:
        if ext.is_Rational:
            coeffs.append(0)    # rational ext is not included in the expression of a primitive element
            reps.append(K.convert(ext))    # but it is included in reps
            continue
        p = minimal_polynomial(ext, x, polys=True)
        L = QQ.algebraic_field((p, ext))
        _, factors = factor_list(f, domain=L)
        f = _choose_factor(factors, x, gen)
        s, g, f = f.sqf_norm()
        gen += s*ext
        coeffs.append(s)
        K = QQ.algebraic_field((f, gen))
        h = _switch_domain(g, K)
        erep = _linsolve(h.gcd(p))  # ext as element of K
        ogen = K.unit - s*erep  # old gen as element of K
        reps = [dup_eval(_.rep, ogen, K) for _ in reps] + [erep]

    if K.ext.root.is_Rational:  # all extensions are rational
        H = [K.convert(_).rep for _ in extension]
        coeffs = [0]*len(extension)
        f = cls(x, domain=QQ)
    else:
        H = [_.rep for _ in reps]
    if not polys:
        return f.as_expr(), coeffs, H
    else:
        return f, coeffs, H
Exemplo n.º 24
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic number.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt
    >>> from sympy.abc import x

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1

    """
    from sympy.polys.polytools import degree
    from sympy.core.function import expand_mul, expand_multinomial
    from sympy.simplify.simplify import _is_sum_surds

    generator = numbered_symbols("a", cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    ex = sympify(ex)

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy("x"), PurePoly

    def update_mapping(ex, exp, base=None):
        a = generator.next()
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a ** exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Mul:
            return Mul(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base ** (-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (ex.base ** ex.exp.p).expand(), Rational(1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base ** exp

                if expr not in mapping:
                    return update_mapping(expr, 1 / exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1 / ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    polys = args.get("polys", False)
    prec = args.pop("prec", 10)

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational:
        result = ex.q * x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex ** -1
        res = None
        if ex.is_Pow and (1 / ex.exp).is_Integer:
            n = 1 / ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x, prec)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x, prec)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + mapping.values()
            G = groebner(F, symbols.values() + [x], order="lex")

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex, prec)
            if result is None:
                raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % ex)
    if inverted:
        result = expand_mul(x ** degree(result) * result.subs(x, 1 / x))
        if result.coeff(x ** degree(result)) < 0:
            result = expand_mul(-result)
    if polys:
        return cls(result, x, field=True)
    else:
        return result