Exemplo n.º 1
0
def test_solve_lin_sys_2x4_none():
    domain, x1,x2 = ring("x1,x2", QQ)
    eqs = [x1 - 1,
           x1 - x2,
           x1 - 2*x2,
           x2 - 1]
    assert solve_lin_sys(eqs, domain) is None
Exemplo n.º 2
0
def test_solve_lin_sys_3x3_inf():
    domain, x1,x2,x3 = ring("x1,x2,x3", QQ)
    eqs = [x1 - x2 + 2*x3 - 1,
           2*x1 + x2 + x3 - 8,
           x1 + x2 - 5]
    sol = {x1: -x3 + 3, x2: x3 + 2}
    assert solve_lin_sys(eqs, domain) == sol
Exemplo n.º 3
0
def test_solve_lin_sys_2x2_one():
    domain, x1,x2 = ring("x1,x2", QQ)
    eqs = [x1 + x2 - 5,
           2*x1 - x2]
    sol = {x1: QQ(5, 3), x2: QQ(10, 3)}
    _sol = solve_lin_sys(eqs, domain)
    assert _sol == sol and all(isinstance(s, domain.dtype) for s in _sol)
Exemplo n.º 4
0
def test_solve_lin_sys_3x4_one():
    domain, x1,x2,x3 = ring("x1,x2,x3", QQ)
    eqs = [x1 + 2*x2 + 3*x3,
           2*x1 - x2 + x3,
           3*x1 + x2 + x3,
           5*x2 + 2*x3]
    sol = {x1: 0, x2: 0, x3: 0}
    assert solve_lin_sys(eqs, domain) == sol
Exemplo n.º 5
0
def test_solve_lin_sys_3x4_none():
    domain, x1, x2, x3, x4 = ring("x1,x2,x3,x4", QQ)
    eqs = [
        2 * x1 + x2 + 7 * x3 - 7 * x4 - 2,
        -3 * x1 + 4 * x2 - 5 * x3 - 6 * x4 - 3,
        x1 + x2 + 4 * x3 - 5 * x4 - 2,
    ]
    assert solve_lin_sys(eqs, domain) is None
Exemplo n.º 6
0
def test_solve_lin_sys_4x7_inf():
    domain, x1,x2,x3,x4,x5,x6,x7 = ring("x1,x2,x3,x4,x5,x6,x7", QQ)
    eqs = [x1 + 4*x2 - x4 + 7*x6 - 9*x7 - 3,
           2*x1 + 8*x2 - x3 + 3*x4 + 9*x5 - 13*x6 + 7*x7 - 9,
           2*x3 - 3*x4 - 4*x5 + 12*x6 - 8*x7 - 1,
           -x1 - 4*x2 + 2*x3 + 4*x4 + 8*x5 - 31*x6 + 37*x7 - 4]
    sol = {x1: 4 - 4*x2 - 2*x5 - x6 + 3*x7,
           x3: 2 - x5 + 3*x6 - 5*x7,
           x4: 1 - 2*x5 + 6*x6 - 6*x7}
    assert solve_lin_sys(eqs, domain) == sol
Exemplo n.º 7
0
def test_solve_lin_sys_5x5_inf():
    domain, x1,x2,x3,x4,x5 = ring("x1,x2,x3,x4,x5", QQ)
    eqs = [x1 - x2 - 2*x3 + x4 + 11*x5 - 13,
           x1 - x2 + x3 + x4 + 5*x5 - 16,
           2*x1 - 2*x2 + x4 + 10*x5 - 21,
           2*x1 - 2*x2 - x3 + 3*x4 + 20*x5 - 38,
           2*x1 - 2*x2 + x3 + x4 + 8*x5 - 22]
    sol = {x1: 6 + x2 - 3*x5,
           x3: 1 + 2*x5,
           x4: 9 - 4*x5}
    assert solve_lin_sys(eqs, domain) == sol
Exemplo n.º 8
0
def test_M38():
    variabes = vring("k1:50", vfield("a,b,c", ZZ).to_domain())
    system = [
        -b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a,
        -b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a,
        -b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a,
        b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a,
        b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4,
        -b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c,
        b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b),
        -k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b,
        a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11,
        b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b,
        -k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b,
        -a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b,
        a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b),
        a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2,
        -k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c,
        -k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c,
        -a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18,
        -a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c,
        a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c,
        -k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c,
        -a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c),
        a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18,
        -k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44,
        -k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42,
        -2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a,
        k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b,
        a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c,
        -a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7,
        k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a,
        k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37,
        k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b,
        a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c,
        -k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8,
        -k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6,
        -k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46,
        b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b,
        -k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a,
        -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b,
        -a*k49/c + b*k49/c
        ]
    solution = {
        k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
        k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
        k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
        k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
        k10: 0, k9:  0, k8:  0, k7:  0, k6:  0, k5:  0, k4:  0, k3:  0,
        k2:  0, k1:  0,
        k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39
    }
    assert solve_lin_sys(system, variabes) == solution
Exemplo n.º 9
0
def test_M38():
    variabes = vring("k1:50", vfield("a,b,c", ZZ).to_domain())
    system = [
        -b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a,
        -b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a,
        -b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a,
        b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a,
        b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4,
        -b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c,
        b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b),
        -k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b,
        a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11,
        b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b,
        -k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b,
        -a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b,
        a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b),
        a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2,
        -k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c,
        -k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c,
        -a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18,
        -a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c,
        a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c,
        -k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c,
        -a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c),
        a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18,
        -k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44,
        -k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42,
        -2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a,
        k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b,
        a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c,
        -a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7,
        k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a,
        k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37,
        k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b,
        a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c,
        -k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8,
        -k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6,
        -k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46,
        b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b,
        -k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a,
        -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b,
        -a*k49/c + b*k49/c
        ]
    solution = {
        k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
        k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
        k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
        k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
        k10: 0, k9:  0, k8:  0, k7:  0, k6:  0, k5:  0, k4:  0, k3:  0,
        k2:  0, k1:  0,
        k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39
    }
    assert solve_lin_sys(system, variabes) == solution
Exemplo n.º 10
0
def test_solve_lin_sys_6x6_2():
    ground, d,r,e,g,i,j,l,o,m,p,q = field("d,r,e,g,i,j,l,o,m,p,q", ZZ)
    domain, c,f,h,k,n,b = ring("c,f,h,k,n,b", ground)

    eqs = [b + r/d - c/d, c*(1/d + 1/e + 1/g) - f/g - r/d, f*(1/g + 1/i + 1/j) - c/g - h/i, h*(1/i + 1/l + 1/m) - f/i - k/m, k*(1/m + 1/o + 1/p) - h/m - n/p, n*(1/p + 1/q) - k/p]
    sol = {
        b: -((l*q*e*o + l*q*g*o + i*m*q*e + i*l*q*e + i*l*p*e + i*j*o*q + j*e*o*q + g*j*o*q + i*e*o*q + g*i*o*q + e*l*o*p + e*l*m*p + e*l*m*o + e*i*o*p + e*i*m*p + e*i*m*o + e*i*l*o + j*e*o*p + j*e*m*q + j*e*m*p + j*e*m*o + j*l*m*q + j*l*m*p + j*l*m*o + i*j*m*p + i*j*m*o + i*j*l*q + i*j*l*o + i*j*m*q + j*l*o*p + j*e*l*o + g*j*o*p + g*j*m*q + g*j*m*p + i*j*l*p + i*j*o*p + j*e*l*q + j*e*l*p + j*l*o*q + g*j*m*o + g*j*l*q + g*j*l*p + g*j*l*o + g*l*o*p + g*l*m*p + g*l*m*o + g*i*m*o + g*i*o*p + g*i*m*q + g*i*m*p + g*i*l*q + g*i*l*p + g*i*l*o + l*m*q*e + l*m*q*g)*r)/(l*q*d*e*o + l*q*d*g*o + l*q*e*g*o + i*j*d*o*q + i*j*e*o*q + j*d*e*o*q + g*j*d*o*q + g*j*e*o*q + g*i*e*o*q + i*d*e*o*q + g*i*d*o*q + g*i*d*o*p + g*i*d*m*q + g*i*d*m*p + g*i*d*m*o + g*i*d*l*q + g*i*d*l*p + g*i*d*l*o + g*e*l*m*p + g*e*l*o*p + g*j*e*l*q + g*e*l*m*o + g*j*e*m*p + g*j*e*m*o + d*e*l*m*p + d*e*l*m*o + i*d*e*m*p + g*j*e*l*p + g*j*e*l*o + d*e*l*o*p + i*j*d*l*o + i*j*e*o*p + i*j*e*m*q + i*j*d*m*q + i*j*d*m*p + i*j*d*m*o + i*j*d*l*q + i*j*d*l*p + i*j*e*m*p + i*j*e*m*o + i*j*e*l*q + i*j*e*l*p + i*j*e*l*o + i*d*e*m*q + i*d*e*m*o + i*d*e*l*q + i*d*e*l*p + j*d*l*o*p + j*d*e*l*o + g*j*d*o*p + g*j*d*m*q + g*j*d*m*p + g*j*d*m*o + g*j*d*l*q + g*j*d*l*p + g*j*d*l*o + g*j*e*o*p + g*j*e*m*q + g*d*l*o*p + g*d*l*m*p + g*d*l*m*o + j*d*e*m*p + i*d*e*o*p + j*e*o*q*l + j*e*o*p*l + j*e*m*q*l + j*d*e*o*p + j*d*e*m*q + i*j*d*o*p + g*i*e*o*p + j*d*e*m*o + j*d*e*l*q + j*d*e*l*p + j*e*m*p*l + j*e*m*o*l + g*i*e*m*q + g*i*e*m*p + g*i*e*m*o + g*i*e*l*q + g*i*e*l*p + g*i*e*l*o + j*d*l*o*q + j*d*l*m*q + j*d*l*m*p + j*d*l*m*o + i*d*e*l*o + l*m*q*d*e + l*m*q*d*g + l*m*q*e*g),
        c: (r*e*(l*q*g*o + i*j*o*q + g*j*o*q + g*i*o*q + j*l*m*q + j*l*m*p + j*l*m*o + i*j*m*p + i*j*m*o + i*j*l*q + i*j*l*o + i*j*m*q + j*l*o*p + g*j*o*p + g*j*m*q + g*j*m*p + i*j*l*p + i*j*o*p + j*l*o*q + g*j*m*o + g*j*l*q + g*j*l*p + g*j*l*o + g*l*o*p + g*l*m*p + g*l*m*o + g*i*m*o + g*i*o*p + g*i*m*q + g*i*m*p + g*i*l*q + g*i*l*p + g*i*l*o + l*m*q*g))/(l*q*d*e*o + l*q*d*g*o + l*q*e*g*o + i*j*d*o*q + i*j*e*o*q + j*d*e*o*q + g*j*d*o*q + g*j*e*o*q + g*i*e*o*q + i*d*e*o*q + g*i*d*o*q + g*i*d*o*p + g*i*d*m*q + g*i*d*m*p + g*i*d*m*o + g*i*d*l*q + g*i*d*l*p + g*i*d*l*o + g*e*l*m*p + g*e*l*o*p + g*j*e*l*q + g*e*l*m*o + g*j*e*m*p + g*j*e*m*o + d*e*l*m*p + d*e*l*m*o + i*d*e*m*p + g*j*e*l*p + g*j*e*l*o + d*e*l*o*p + i*j*d*l*o + i*j*e*o*p + i*j*e*m*q + i*j*d*m*q + i*j*d*m*p + i*j*d*m*o + i*j*d*l*q + i*j*d*l*p + i*j*e*m*p + i*j*e*m*o + i*j*e*l*q + i*j*e*l*p + i*j*e*l*o + i*d*e*m*q + i*d*e*m*o + i*d*e*l*q + i*d*e*l*p + j*d*l*o*p + j*d*e*l*o + g*j*d*o*p + g*j*d*m*q + g*j*d*m*p + g*j*d*m*o + g*j*d*l*q + g*j*d*l*p + g*j*d*l*o + g*j*e*o*p + g*j*e*m*q + g*d*l*o*p + g*d*l*m*p + g*d*l*m*o + j*d*e*m*p + i*d*e*o*p + j*e*o*q*l + j*e*o*p*l + j*e*m*q*l + j*d*e*o*p + j*d*e*m*q + i*j*d*o*p + g*i*e*o*p + j*d*e*m*o + j*d*e*l*q + j*d*e*l*p + j*e*m*p*l + j*e*m*o*l + g*i*e*m*q + g*i*e*m*p + g*i*e*m*o + g*i*e*l*q + g*i*e*l*p + g*i*e*l*o + j*d*l*o*q + j*d*l*m*q + j*d*l*m*p + j*d*l*m*o + i*d*e*l*o + l*m*q*d*e + l*m*q*d*g + l*m*q*e*g),
        f: (r*e*j*(l*q*o + l*o*p + l*m*q + l*m*p + l*m*o + i*o*q + i*o*p + i*m*q + i*m*p + i*m*o + i*l*q + i*l*p + i*l*o))/(l*q*d*e*o + l*q*d*g*o + l*q*e*g*o + i*j*d*o*q + i*j*e*o*q + j*d*e*o*q + g*j*d*o*q + g*j*e*o*q + g*i*e*o*q + i*d*e*o*q + g*i*d*o*q + g*i*d*o*p + g*i*d*m*q + g*i*d*m*p + g*i*d*m*o + g*i*d*l*q + g*i*d*l*p + g*i*d*l*o + g*e*l*m*p + g*e*l*o*p + g*j*e*l*q + g*e*l*m*o + g*j*e*m*p + g*j*e*m*o + d*e*l*m*p + d*e*l*m*o + i*d*e*m*p + g*j*e*l*p + g*j*e*l*o + d*e*l*o*p + i*j*d*l*o + i*j*e*o*p + i*j*e*m*q + i*j*d*m*q + i*j*d*m*p + i*j*d*m*o + i*j*d*l*q + i*j*d*l*p + i*j*e*m*p + i*j*e*m*o + i*j*e*l*q + i*j*e*l*p + i*j*e*l*o + i*d*e*m*q + i*d*e*m*o + i*d*e*l*q + i*d*e*l*p + j*d*l*o*p + j*d*e*l*o + g*j*d*o*p + g*j*d*m*q + g*j*d*m*p + g*j*d*m*o + g*j*d*l*q + g*j*d*l*p + g*j*d*l*o + g*j*e*o*p + g*j*e*m*q + g*d*l*o*p + g*d*l*m*p + g*d*l*m*o + j*d*e*m*p + i*d*e*o*p + j*e*o*q*l + j*e*o*p*l + j*e*m*q*l + j*d*e*o*p + j*d*e*m*q + i*j*d*o*p + g*i*e*o*p + j*d*e*m*o + j*d*e*l*q + j*d*e*l*p + j*e*m*p*l + j*e*m*o*l + g*i*e*m*q + g*i*e*m*p + g*i*e*m*o + g*i*e*l*q + g*i*e*l*p + g*i*e*l*o + j*d*l*o*q + j*d*l*m*q + j*d*l*m*p + j*d*l*m*o + i*d*e*l*o + l*m*q*d*e + l*m*q*d*g + l*m*q*e*g),
        h: (j*e*r*l*(o*q + o*p + m*q + m*p + m*o))/(l*q*d*e*o + l*q*d*g*o + l*q*e*g*o + i*j*d*o*q + i*j*e*o*q + j*d*e*o*q + g*j*d*o*q + g*j*e*o*q + g*i*e*o*q + i*d*e*o*q + g*i*d*o*q + g*i*d*o*p + g*i*d*m*q + g*i*d*m*p + g*i*d*m*o + g*i*d*l*q + g*i*d*l*p + g*i*d*l*o + g*e*l*m*p + g*e*l*o*p + g*j*e*l*q + g*e*l*m*o + g*j*e*m*p + g*j*e*m*o + d*e*l*m*p + d*e*l*m*o + i*d*e*m*p + g*j*e*l*p + g*j*e*l*o + d*e*l*o*p + i*j*d*l*o + i*j*e*o*p + i*j*e*m*q + i*j*d*m*q + i*j*d*m*p + i*j*d*m*o + i*j*d*l*q + i*j*d*l*p + i*j*e*m*p + i*j*e*m*o + i*j*e*l*q + i*j*e*l*p + i*j*e*l*o + i*d*e*m*q + i*d*e*m*o + i*d*e*l*q + i*d*e*l*p + j*d*l*o*p + j*d*e*l*o + g*j*d*o*p + g*j*d*m*q + g*j*d*m*p + g*j*d*m*o + g*j*d*l*q + g*j*d*l*p + g*j*d*l*o + g*j*e*o*p + g*j*e*m*q + g*d*l*o*p + g*d*l*m*p + g*d*l*m*o + j*d*e*m*p + i*d*e*o*p + j*e*o*q*l + j*e*o*p*l + j*e*m*q*l + j*d*e*o*p + j*d*e*m*q + i*j*d*o*p + g*i*e*o*p + j*d*e*m*o + j*d*e*l*q + j*d*e*l*p + j*e*m*p*l + j*e*m*o*l + g*i*e*m*q + g*i*e*m*p + g*i*e*m*o + g*i*e*l*q + g*i*e*l*p + g*i*e*l*o + j*d*l*o*q + j*d*l*m*q + j*d*l*m*p + j*d*l*m*o + i*d*e*l*o + l*m*q*d*e + l*m*q*d*g + l*m*q*e*g),
        k: (j*e*r*o*l*(q + p))/(l*q*d*e*o + l*q*d*g*o + l*q*e*g*o + i*j*d*o*q + i*j*e*o*q + j*d*e*o*q + g*j*d*o*q + g*j*e*o*q + g*i*e*o*q + i*d*e*o*q + g*i*d*o*q + g*i*d*o*p + g*i*d*m*q + g*i*d*m*p + g*i*d*m*o + g*i*d*l*q + g*i*d*l*p + g*i*d*l*o + g*e*l*m*p + g*e*l*o*p + g*j*e*l*q + g*e*l*m*o + g*j*e*m*p + g*j*e*m*o + d*e*l*m*p + d*e*l*m*o + i*d*e*m*p + g*j*e*l*p + g*j*e*l*o + d*e*l*o*p + i*j*d*l*o + i*j*e*o*p + i*j*e*m*q + i*j*d*m*q + i*j*d*m*p + i*j*d*m*o + i*j*d*l*q + i*j*d*l*p + i*j*e*m*p + i*j*e*m*o + i*j*e*l*q + i*j*e*l*p + i*j*e*l*o + i*d*e*m*q + i*d*e*m*o + i*d*e*l*q + i*d*e*l*p + j*d*l*o*p + j*d*e*l*o + g*j*d*o*p + g*j*d*m*q + g*j*d*m*p + g*j*d*m*o + g*j*d*l*q + g*j*d*l*p + g*j*d*l*o + g*j*e*o*p + g*j*e*m*q + g*d*l*o*p + g*d*l*m*p + g*d*l*m*o + j*d*e*m*p + i*d*e*o*p + j*e*o*q*l + j*e*o*p*l + j*e*m*q*l + j*d*e*o*p + j*d*e*m*q + i*j*d*o*p + g*i*e*o*p + j*d*e*m*o + j*d*e*l*q + j*d*e*l*p + j*e*m*p*l + j*e*m*o*l + g*i*e*m*q + g*i*e*m*p + g*i*e*m*o + g*i*e*l*q + g*i*e*l*p + g*i*e*l*o + j*d*l*o*q + j*d*l*m*q + j*d*l*m*p + j*d*l*m*o + i*d*e*l*o + l*m*q*d*e + l*m*q*d*g + l*m*q*e*g),
        n: (j*e*r*o*q*l)/(l*q*d*e*o + l*q*d*g*o + l*q*e*g*o + i*j*d*o*q + i*j*e*o*q + j*d*e*o*q + g*j*d*o*q + g*j*e*o*q + g*i*e*o*q + i*d*e*o*q + g*i*d*o*q + g*i*d*o*p + g*i*d*m*q + g*i*d*m*p + g*i*d*m*o + g*i*d*l*q + g*i*d*l*p + g*i*d*l*o + g*e*l*m*p + g*e*l*o*p + g*j*e*l*q + g*e*l*m*o + g*j*e*m*p + g*j*e*m*o + d*e*l*m*p + d*e*l*m*o + i*d*e*m*p + g*j*e*l*p + g*j*e*l*o + d*e*l*o*p + i*j*d*l*o + i*j*e*o*p + i*j*e*m*q + i*j*d*m*q + i*j*d*m*p + i*j*d*m*o + i*j*d*l*q + i*j*d*l*p + i*j*e*m*p + i*j*e*m*o + i*j*e*l*q + i*j*e*l*p + i*j*e*l*o + i*d*e*m*q + i*d*e*m*o + i*d*e*l*q + i*d*e*l*p + j*d*l*o*p + j*d*e*l*o + g*j*d*o*p + g*j*d*m*q + g*j*d*m*p + g*j*d*m*o + g*j*d*l*q + g*j*d*l*p + g*j*d*l*o + g*j*e*o*p + g*j*e*m*q + g*d*l*o*p + g*d*l*m*p + g*d*l*m*o + j*d*e*m*p + i*d*e*o*p + j*e*o*q*l + j*e*o*p*l + j*e*m*q*l + j*d*e*o*p + j*d*e*m*q + i*j*d*o*p + g*i*e*o*p + j*d*e*m*o + j*d*e*l*q + j*d*e*l*p + j*e*m*p*l + j*e*m*o*l + g*i*e*m*q + g*i*e*m*p + g*i*e*m*o + g*i*e*l*q + g*i*e*l*p + g*i*e*l*o + j*d*l*o*q + j*d*l*m*q + j*d*l*m*p + j*d*l*m*o + i*d*e*l*o + l*m*q*d*e + l*m*q*d*g + l*m*q*e*g),
    }

    assert solve_lin_sys(eqs, domain) == sol
Exemplo n.º 11
0
def test_solve_lin_sys_6x6_1():
    ground, d,r,e,g,i,j,l,o,m,p,q = field("d,r,e,g,i,j,l,o,m,p,q", ZZ)
    domain, c,f,h,k,n,b = ring("c,f,h,k,n,b", ground)

    eqs = [b + q/d - c/d, c*(1/d + 1/e + 1/g) - f/g - q/d, f*(1/g + 1/i + 1/j) - c/g - h/i, h*(1/i + 1/l + 1/m) - f/i - k/m, k*(1/m + 1/o + 1/p) - h/m - n/p, n/p - k/p]
    sol = {
         b: (e*i*l*q + e*i*m*q + e*i*o*q + e*j*l*q + e*j*m*q + e*j*o*q + e*l*m*q + e*l*o*q + g*i*l*q + g*i*m*q + g*i*o*q + g*j*l*q + g*j*m*q + g*j*o*q + g*l*m*q + g*l*o*q + i*j*l*q + i*j*m*q + i*j*o*q + j*l*m*q + j*l*o*q)/(-d*e*i*l - d*e*i*m - d*e*i*o - d*e*j*l - d*e*j*m - d*e*j*o - d*e*l*m - d*e*l*o - d*g*i*l - d*g*i*m - d*g*i*o - d*g*j*l - d*g*j*m - d*g*j*o - d*g*l*m - d*g*l*o - d*i*j*l - d*i*j*m - d*i*j*o - d*j*l*m - d*j*l*o - e*g*i*l - e*g*i*m - e*g*i*o - e*g*j*l - e*g*j*m - e*g*j*o - e*g*l*m - e*g*l*o - e*i*j*l - e*i*j*m - e*i*j*o - e*j*l*m - e*j*l*o),
         c: (-e*g*i*l*q - e*g*i*m*q - e*g*i*o*q - e*g*j*l*q - e*g*j*m*q - e*g*j*o*q - e*g*l*m*q - e*g*l*o*q - e*i*j*l*q - e*i*j*m*q - e*i*j*o*q - e*j*l*m*q - e*j*l*o*q)/(-d*e*i*l - d*e*i*m - d*e*i*o - d*e*j*l - d*e*j*m - d*e*j*o - d*e*l*m - d*e*l*o - d*g*i*l - d*g*i*m - d*g*i*o - d*g*j*l - d*g*j*m - d*g*j*o - d*g*l*m - d*g*l*o - d*i*j*l - d*i*j*m - d*i*j*o - d*j*l*m - d*j*l*o - e*g*i*l - e*g*i*m - e*g*i*o - e*g*j*l - e*g*j*m - e*g*j*o - e*g*l*m - e*g*l*o - e*i*j*l - e*i*j*m - e*i*j*o - e*j*l*m - e*j*l*o),
         f: (-e*i*j*l*q - e*i*j*m*q - e*i*j*o*q - e*j*l*m*q - e*j*l*o*q)/(-d*e*i*l - d*e*i*m - d*e*i*o - d*e*j*l - d*e*j*m - d*e*j*o - d*e*l*m - d*e*l*o - d*g*i*l - d*g*i*m - d*g*i*o - d*g*j*l - d*g*j*m - d*g*j*o - d*g*l*m - d*g*l*o - d*i*j*l - d*i*j*m - d*i*j*o - d*j*l*m - d*j*l*o - e*g*i*l - e*g*i*m - e*g*i*o - e*g*j*l - e*g*j*m - e*g*j*o - e*g*l*m - e*g*l*o - e*i*j*l - e*i*j*m - e*i*j*o - e*j*l*m - e*j*l*o),
         h: (-e*j*l*m*q - e*j*l*o*q)/(-d*e*i*l - d*e*i*m - d*e*i*o - d*e*j*l - d*e*j*m - d*e*j*o - d*e*l*m - d*e*l*o - d*g*i*l - d*g*i*m - d*g*i*o - d*g*j*l - d*g*j*m - d*g*j*o - d*g*l*m - d*g*l*o - d*i*j*l - d*i*j*m - d*i*j*o - d*j*l*m - d*j*l*o - e*g*i*l - e*g*i*m - e*g*i*o - e*g*j*l - e*g*j*m - e*g*j*o - e*g*l*m - e*g*l*o - e*i*j*l - e*i*j*m - e*i*j*o - e*j*l*m - e*j*l*o),
         k: e*j*l*o*q/(d*e*i*l + d*e*i*m + d*e*i*o + d*e*j*l + d*e*j*m + d*e*j*o + d*e*l*m + d*e*l*o + d*g*i*l + d*g*i*m + d*g*i*o + d*g*j*l + d*g*j*m + d*g*j*o + d*g*l*m + d*g*l*o + d*i*j*l + d*i*j*m + d*i*j*o + d*j*l*m + d*j*l*o + e*g*i*l + e*g*i*m + e*g*i*o + e*g*j*l + e*g*j*m + e*g*j*o + e*g*l*m + e*g*l*o + e*i*j*l + e*i*j*m + e*i*j*o + e*j*l*m + e*j*l*o),
         n: e*j*l*o*q/(d*e*i*l + d*e*i*m + d*e*i*o + d*e*j*l + d*e*j*m + d*e*j*o + d*e*l*m + d*e*l*o + d*g*i*l + d*g*i*m + d*g*i*o + d*g*j*l + d*g*j*m + d*g*j*o + d*g*l*m + d*g*l*o + d*i*j*l + d*i*j*m + d*i*j*o + d*j*l*m + d*j*l*o + e*g*i*l + e*g*i*m + e*g*i*o + e*g*j*l + e*g*j*m + e*g*j*o + e*g*l*m + e*g*l*o + e*i*j*l + e*i*j*m + e*i*j*o + e*j*l*m + e*j*l*o),
    }

    assert solve_lin_sys(eqs, domain) == sol
Exemplo n.º 12
0
    def _integrate(field=None):
        atans = set()
        pairs = set()

        if field == 'Q':
            irreducibles = set(reducibles)
        else:
            setV = set(V)
            irreducibles = set()
            for poly in ordered(reducibles):
                zV = setV & set(iterfreeargs(poly))
                for z in ordered(zV):
                    s = set(root_factors(poly, z, filter=field))
                    irreducibles |= s
                    break

        log_part, atan_part = [], []

        for poly in ordered(irreducibles):
            m = collect(poly, I, evaluate=False)
            y = m.get(I, S.Zero)
            if y:
                x = m.get(S.One, S.Zero)
                if x.has(I) or y.has(I):
                    continue  # nontrivial x + I*y
                pairs.add((x, y))
                irreducibles.remove(poly)

        while pairs:
            x, y = pairs.pop()
            if (x, -y) in pairs:
                pairs.remove((x, -y))
                # Choosing b with no minus sign
                if y.could_extract_minus_sign():
                    y = -y
                irreducibles.add(x*x + y*y)
                atans.add(atan(x/y))
            else:
                irreducibles.add(x + I*y)


        B = _symbols('B', len(irreducibles))
        C = _symbols('C', len(atans))

        # Note: the ordering matters here
        for poly, b in reversed(list(zip(ordered(irreducibles), B))):
            if poly.has(*V):
                poly_coeffs.append(b)
                log_part.append(b * log(poly))

        for poly, c in reversed(list(zip(ordered(atans), C))):
            if poly.has(*V):
                poly_coeffs.append(c)
                atan_part.append(c * poly)

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancellation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(poly_coeffs) | set(V)
        non_syms = set()

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass # ignore trivial numbers
            elif expr in syms:
                pass # ignore variables
            elif not expr.has_free(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(poly_coeffs, ground)
        ring = PolyRing(V, coeff_ring)
        try:
            numer = ring.from_expr(raw_numer)
        except ValueError:
            raise PolynomialError
        solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)

        if solution is None:
            return None
        else:
            return candidate.xreplace(solution).xreplace(
                dict(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))
Exemplo n.º 13
0
    def _integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.atoms(Symbol):
                if z in V:
                    break
            else:
                continue

            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        for i, poly in enumerate(irreducibles):
            if poly.has(*V):
                log_coeffs.append(B[i])
                log_part.append(log_coeffs[-1] * log(poly))

        coeffs = poly_coeffs + log_coeffs

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancelation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part/poly_denom + Add(*log_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(coeffs) | set(V)
        non_syms = set([])

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass # ignore trivial numbers
            elif expr in syms:
                pass # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(coeffs, ground)
        ring = PolyRing(V, coeff_ring)

        numer = ring.from_expr(raw_numer)

        solution = solve_lin_sys(numer.coeffs(), coeff_ring)

        if solution is None:
            return None
        else:
            solution = [ (k.as_expr(), v.as_expr()) for k, v in solution.items() ]
            return candidate.subs(solution).subs(list(zip(coeffs, [S.Zero]*len(coeffs))))
Exemplo n.º 14
0
    def _integrate(field=None):
        irreducibles = set()
        atans = set()
        pairs = set()

        for poly in reducibles:
            for z in poly.free_symbols:
                if z in V:
                    break  # should this be: `irreducibles |= \
            else:          # set(root_factors(poly, z, filter=field))`
                continue   # and the line below deleted?
                           #               |
                           #               V
            irreducibles |= set(root_factors(poly, z, filter=field))

        log_part, atan_part = [], []

        for poly in list(irreducibles):
            m = collect(poly, I, evaluate=False)
            y = m.get(I, S.Zero)
            if y:
                x = m.get(S.One, S.Zero)
                if x.has(I) or y.has(I):
                    continue  # nontrivial x + I*y
                pairs.add((x, y))
                irreducibles.remove(poly)

        while pairs:
            x, y = pairs.pop()
            if (x, -y) in pairs:
                pairs.remove((x, -y))
                # Choosing b with no minus sign
                if y.could_extract_minus_sign():
                    y = -y
                irreducibles.add(x*x + y*y)
                atans.add(atan(x/y))
            else:
                irreducibles.add(x + I*y)


        B = _symbols('B', len(irreducibles))
        C = _symbols('C', len(atans))

        # Note: the ordering matters here
        for poly, b in reversed(list(ordered(zip(irreducibles, B)))):
            if poly.has(*V):
                poly_coeffs.append(b)
                log_part.append(b * log(poly))

        for poly, c in reversed(list(ordered(zip(atans, C)))):
            if poly.has(*V):
                poly_coeffs.append(c)
                atan_part.append(c * poly)

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancellation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(poly_coeffs) | set(V)
        non_syms = set([])

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass # ignore trivial numbers
            elif expr in syms:
                pass # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(poly_coeffs, ground)
        ring = PolyRing(V, coeff_ring)
        try:
            numer = ring.from_expr(raw_numer)
        except ValueError:
            raise PolynomialError
        solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)

        if solution is None:
            return None
        else:
            return candidate.subs(solution).subs(
                list(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))
Exemplo n.º 15
0
    def _integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.free_symbols:
                if z in V:
                    break  # should this be: `irreducibles |= \
            else:          # set(root_factors(poly, z, filter=field))`
                continue   # and the line below deleted?
                           #               |
                           #               V
            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        # Note: the ordering matters here
        for poly, b in reversed(list(ordered(zip(irreducibles, B)))):
            if poly.has(*V):
                poly_coeffs.append(b)
                log_part.append(b * log(poly))

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancelation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part/poly_denom + Add(*log_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(poly_coeffs) | set(V)
        non_syms = set([])

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass # ignore trivial numbers
            elif expr in syms:
                pass # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(poly_coeffs, ground)
        ring = PolyRing(V, coeff_ring)

        numer = ring.from_expr(raw_numer)

        solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)

        if solution is None:
            return None
        else:
            return candidate.subs(solution).subs(
                list(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))
Exemplo n.º 16
0
    def _integrate(field=None):
        irreducibles = set()
        atans = set()
        pairs = set()

        for poly in reducibles:
            for z in poly.free_symbols:
                if z in V:
                    break  # should this be: `irreducibles |= \
            else:          # set(root_factors(poly, z, filter=field))`
                continue   # and the line below deleted?
                           #               |
                           #               V
            irreducibles |= set(root_factors(poly, z, filter=field))

        log_part, atan_part = [], []

        x, y = symbols('x y', cls=Wild, exclude=[I])
        for poly in list(irreducibles):
            m = poly.match(x + I*y)
            if m[y] == 0:  # No coefficient of I
                continue
            pairs.add((m[x], m[y]))  # It is enough to save the coefficients
            irreducibles.remove(poly)

        while pairs:
            x, y = pairs.pop()
            if (x,-y) in pairs:
                pairs.remove((x,-y))
                # Choosing b with no minus sign
                if y.could_extract_minus_sign():
                    y = -y
                irreducibles.add(x*x + y*y)
                atans.add(atan(x/y))
            else:
                irreducibles.add(x + I*y)


        B = _symbols('B', len(irreducibles))
        C = _symbols('C', len(atans))

        # Note: the ordering matters here
        for poly, b in reversed(list(ordered(zip(irreducibles, B)))):
            if poly.has(*V):
                poly_coeffs.append(b)
                log_part.append(b * log(poly))

        for poly, c in reversed(list(ordered(zip(atans, C)))):
            if poly.has(*V):
                poly_coeffs.append(c)
                atan_part.append(c * poly)

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancellation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(poly_coeffs) | set(V)
        non_syms = set([])

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass # ignore trivial numbers
            elif expr in syms:
                pass # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(poly_coeffs, ground)
        ring = PolyRing(V, coeff_ring)
        try:
            numer = ring.from_expr(raw_numer)
        except ValueError:
            raise PolynomialError
        solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)

        if solution is None:
            return None
        else:
            return candidate.subs(solution).subs(
                list(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))
Exemplo n.º 17
0
def test_solve_lin_sys_3x4_none():
    domain, x1,x2,x3,x4 = ring("x1,x2,x3,x4", QQ)
    eqs = [2*x1 + x2 + 7*x3 - 7*x4 - 2,
           -3*x1 + 4*x2 - 5*x3 - 6*x4 - 3,
           x1 + x2 + 4*x3 - 5*x4 - 2]
    assert solve_lin_sys(eqs, domain) is None