Exemplo n.º 1
0
def test_is_monotonic():
    """Test whether is_monotonic returns correct value."""
    assert is_monotonic(1 / (x**2 - 3 * x), Interval.open(Rational(3, 2), 3))
    assert is_monotonic(1 / (x**2 - 3 * x), Interval.open(1.5, 3))
    assert is_monotonic(1 / (x**2 - 3 * x), Interval.Lopen(3, oo))
    assert is_monotonic(x**3 - 3 * x**2 + 4 * x, S.Reals)
    assert not is_monotonic(-x**2, S.Reals)
    assert is_monotonic(x**2 + y + 1, Interval(1, 2), x)
    raises(NotImplementedError, lambda: is_monotonic(x**2 + y + 1))
Exemplo n.º 2
0
def test_is_strictly_decreasing():
    """Test whether is_strictly_decreasing returns correct value."""
    assert is_strictly_decreasing(1 / (x**2 - 3 * x), Interval.Lopen(3, oo))
    assert not is_strictly_decreasing(1 / (x**2 - 3 * x),
                                      Interval.Ropen(-oo, Rational(3, 2)))
    assert not is_strictly_decreasing(-x**2, Interval(-oo, 0))
    assert not is_strictly_decreasing(1)
    assert is_strictly_decreasing(1 / (x**2 - 3 * x),
                                  Interval.open(Rational(3, 2), 3))
    assert is_strictly_decreasing(1 / (x**2 - 3 * x), Interval.open(1.5, 3))
Exemplo n.º 3
0
def test_is_decreasing():
    """Test whether is_decreasing returns correct value."""
    b = Symbol('b', positive=True)

    assert is_decreasing(1 / (x**2 - 3 * x), Interval.open(Rational(3, 2), 3))
    assert is_decreasing(1 / (x**2 - 3 * x), Interval.open(1.5, 3))
    assert is_decreasing(1 / (x**2 - 3 * x), Interval.Lopen(3, oo))
    assert not is_decreasing(1 / (x**2 - 3 * x),
                             Interval.Ropen(-oo, Rational(3, 2)))
    assert not is_decreasing(-x**2, Interval(-oo, 0))
    assert not is_decreasing(-x**2 * b, Interval(-oo, 0), x)
Exemplo n.º 4
0
def test_is_strictly_increasing():
    """Test whether is_strictly_increasing returns correct value."""
    assert is_strictly_increasing(
        4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
    assert is_strictly_increasing(
        4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
    assert not is_strictly_increasing(
        4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
    assert not is_strictly_increasing(-x**2, Interval(0, oo))
    assert not is_strictly_decreasing(1)

    assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) is False
Exemplo n.º 5
0
def test_is_monotonic():
    """Test whether is_monotonic returns correct value."""
    assert is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
    assert is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    assert is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
    assert not is_monotonic(-x**2, S.Reals)
    assert is_monotonic(x**2 + y + 1, Interval(1, 2), x)
Exemplo n.º 6
0
def test_is_monotonic():
    """Test whether is_monotonic returns correct value."""
    assert is_monotonic(1 / (x**2 - 3 * x), Interval.open(1.5, 3))
    assert is_monotonic(1 / (x**2 - 3 * x), Interval.Lopen(3, oo))
    assert is_monotonic(x**3 - 3 * x**2 + 4 * x, S.Reals)
    assert not is_monotonic(-x**2, S.Reals)
    assert is_monotonic(x**2 + y + 1, Interval(1, 2), x)
Exemplo n.º 7
0
def test_is_decreasing():
    assert is_decreasing(1 / (x**2 - 3 * x), Interval.open(1.5, 3))
    assert is_decreasing(1 / (x**2 - 3 * x), Interval.Lopen(3, oo))
    assert is_decreasing(1 / (x**2 - 3 * x), Interval.Ropen(-oo,
                                                            S(3) / 2)) is False
    assert is_decreasing(-x**2, Interval(-oo, 0)) is False
    assert is_decreasing(-x**2 * b, Interval(-oo, 0), x) is False
Exemplo n.º 8
0
def test_SetExpr_Interval_div():
    # TODO: some expressions cannot be calculated due to bugs (currently
    # commented):
    assert SetExpr(Interval(-3, -2)) / SetExpr(Interval(-2, 1)) == SetExpr(
        Interval(-oo, oo))
    assert SetExpr(Interval(2, 3)) / SetExpr(Interval(-2, 2)) == SetExpr(
        Interval(-oo, oo))

    assert SetExpr(Interval(-3, -2)) / SetExpr(Interval(0, 4)) == SetExpr(
        Interval(-oo, Rational(-1, 2)))
    assert SetExpr(Interval(2, 4)) / SetExpr(Interval(-3, 0)) == SetExpr(
        Interval(-oo, Rational(-2, 3)))
    assert SetExpr(Interval(2, 4)) / SetExpr(Interval(0, 3)) == SetExpr(
        Interval(Rational(2, 3), oo))

    # assert SetExpr(Interval(0, 1))/SetExpr(Interval(0, 1)) == SetExpr(Interval(0, oo))
    # assert SetExpr(Interval(-1, 0))/SetExpr(Interval(0, 1)) == SetExpr(Interval(-oo, 0))
    assert SetExpr(Interval(-1, 2)) / SetExpr(Interval(-2, 2)) == SetExpr(
        Interval(-oo, oo))

    assert 1 / SetExpr(Interval(-1, 2)) == SetExpr(
        Union(Interval(-oo, -1), Interval(S.Half, oo)))

    assert 1 / SetExpr(Interval(0, 2)) == SetExpr(Interval(S.Half, oo))
    assert (-1) / SetExpr(Interval(0, 2)) == SetExpr(
        Interval(-oo, Rational(-1, 2)))
    assert 1 / SetExpr(Interval(-oo, 0)) == SetExpr(Interval.open(-oo, 0))
    assert 1 / SetExpr(Interval(-1, 0)) == SetExpr(Interval(-oo, -1))
Exemplo n.º 9
0
def test_is_strictly_increasing():
    assert is_strictly_increasing(4 * x**3 - 6 * x**2 - 72 * x + 30,
                                  Interval.Ropen(-oo, -2))
    assert is_strictly_increasing(4 * x**3 - 6 * x**2 - 72 * x + 30,
                                  Interval.Lopen(3, oo))
    assert is_strictly_increasing(4 * x**3 - 6 * x**2 - 72 * x + 30,
                                  Interval.open(-2, 3)) is False
    assert is_strictly_increasing(-x**2, Interval(0, oo)) is False
Exemplo n.º 10
0
def test_is_strictly_decreasing():
    """Test whether is_strictly_decreasing returns correct value."""
    assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    assert not is_strictly_decreasing(
        1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
    assert not is_strictly_decreasing(-x**2, Interval(-oo, 0))
    assert not is_strictly_decreasing(1)
    assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
Exemplo n.º 11
0
def test_is_decreasing():
    """Test whether is_decreasing returns correct value."""
    b = Symbol('b', positive=True)

    assert is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
    assert is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    assert not is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
    assert not is_decreasing(-x**2, Interval(-oo, 0))
    assert not is_decreasing(-x**2*b, Interval(-oo, 0), x)
Exemplo n.º 12
0
def test_SetExpr_Interval_pow():
    assert SetExpr(Interval(0, 2))**2 == SetExpr(Interval(0, 4))
    assert SetExpr(Interval(-1, 1))**2 == SetExpr(Interval(0, 1))
    assert SetExpr(Interval(1, 2))**2 == SetExpr(Interval(1, 4))
    assert SetExpr(Interval(-1, 2))**3 == SetExpr(Interval(-1, 8))
    assert SetExpr(Interval(-1, 1))**0 == SetExpr(FiniteSet(1))


    #assert SetExpr(Interval(1, 2))**Rational(5, 2) == SetExpr(Interval(1, 4*sqrt(2)))
    #assert SetExpr(Interval(-1, 2))**Rational(1, 3) == SetExpr(Interval(-1, 2**Rational(1, 3)))
    #assert SetExpr(Interval(0, 2))**S.Half == SetExpr(Interval(0, sqrt(2)))

    #assert SetExpr(Interval(-4, 2))**Rational(2, 3) == SetExpr(Interval(0, 2*2**Rational(1, 3)))

    #assert SetExpr(Interval(-1, 5))**S.Half == SetExpr(Interval(0, sqrt(5)))
    #assert SetExpr(Interval(-oo, 2))**S.Half == SetExpr(Interval(0, sqrt(2)))
    #assert SetExpr(Interval(-2, 3))**(Rational(-1, 4)) == SetExpr(Interval(0, oo))

    assert SetExpr(Interval(1, 5))**(-2) == SetExpr(Interval(Rational(1, 25), 1))
    assert SetExpr(Interval(-1, 3))**(-2) == SetExpr(Interval(0, oo))

    assert SetExpr(Interval(0, 2))**(-2) == SetExpr(Interval(Rational(1, 4), oo))
    assert SetExpr(Interval(-1, 2))**(-3) == SetExpr(Union(Interval(-oo, -1), Interval(Rational(1, 8), oo)))
    assert SetExpr(Interval(-3, -2))**(-3) == SetExpr(Interval(Rational(-1, 8), Rational(-1, 27)))
    assert SetExpr(Interval(-3, -2))**(-2) == SetExpr(Interval(Rational(1, 9), Rational(1, 4)))
    #assert SetExpr(Interval(0, oo))**S.Half == SetExpr(Interval(0, oo))
    #assert SetExpr(Interval(-oo, -1))**Rational(1, 3) == SetExpr(Interval(-oo, -1))
    #assert SetExpr(Interval(-2, 3))**(Rational(-1, 3)) == SetExpr(Interval(-oo, oo))

    assert SetExpr(Interval(-oo, 0))**(-2) == SetExpr(Interval.open(0, oo))
    assert SetExpr(Interval(-2, 0))**(-2) == SetExpr(Interval(Rational(1, 4), oo))

    assert SetExpr(Interval(Rational(1, 3), S.Half))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(0, S.Half))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(S.Half, 1))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(0, 1))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(2, 3))**oo == SetExpr(FiniteSet(oo))
    assert SetExpr(Interval(1, 2))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(S.Half, 3))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(Rational(-1, 3), Rational(-1, 4)))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(-1, Rational(-1, 2)))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-3, -2))**oo == SetExpr(FiniteSet(-oo, oo))
    assert SetExpr(Interval(-2, -1))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-2, Rational(-1, 2)))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(Rational(-1, 2), S.Half))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(Rational(-1, 2), 1))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(Rational(-2, 3), 2))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(-1, 1))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-1, S.Half))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-1, 2))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-2, S.Half))**oo == SetExpr(Interval(-oo, oo))

    assert (SetExpr(Interval(1, 2))**x).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**x), Interval(1, 2))))

    assert SetExpr(Interval(2, 3))**(-oo) == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(0, 2))**(-oo) == SetExpr(Interval(0, oo))
    assert (SetExpr(Interval(-1, 2))**(-oo)).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**(-oo)), Interval(-1, 2))))
Exemplo n.º 13
0
def test_is_strictly_increasing():
    """Test whether is_strictly_increasing returns correct value."""
    assert is_strictly_increasing(
        4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
    assert is_strictly_increasing(
        4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
    assert not is_strictly_increasing(
        4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
    assert not is_strictly_increasing(-x**2, Interval(0, oo))
    assert not is_strictly_decreasing(1)
Exemplo n.º 14
0
def test_SetExpr_Interval_pow():
    assert SetExpr(Interval(0, 2))**2 == SetExpr(Interval(0, 4))
    assert SetExpr(Interval(-1, 1))**2 == SetExpr(Interval(0, 1))
    assert SetExpr(Interval(1, 2))**2 == SetExpr(Interval(1, 4))
    assert SetExpr(Interval(-1, 2))**3 == SetExpr(Interval(-1, 8))
    assert SetExpr(Interval(-1, 1))**0 == SetExpr(FiniteSet(1))

    #assert SetExpr(Interval(1, 2))**(S(5)/2) == SetExpr(Interval(1, 4*sqrt(2)))
    #assert SetExpr(Interval(-1, 2))**(S.One/3) == SetExpr(Interval(-1, 2**(S.One/3)))
    #assert SetExpr(Interval(0, 2))**(S.One/2) == SetExpr(Interval(0, sqrt(2)))

    #assert SetExpr(Interval(-4, 2))**(S(2)/3) == SetExpr(Interval(0, 2*2**(S.One/3)))

    #assert SetExpr(Interval(-1, 5))**(S.One/2) == SetExpr(Interval(0, sqrt(5)))
    #assert SetExpr(Interval(-oo, 2))**(S.One/2) == SetExpr(Interval(0, sqrt(2)))
    #assert SetExpr(Interval(-2, 3))**(S(-1)/4) == SetExpr(Interval(0, oo))

    assert SetExpr(Interval(1, 5))**(-2) == SetExpr(Interval(S.One/25, 1))
    assert SetExpr(Interval(-1, 3))**(-2) == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(0, 2))**(-2) == SetExpr(Interval(S.One/4, oo))
    assert SetExpr(Interval(-1, 2))**(-3) == SetExpr(Union(Interval(-oo, -1), Interval(S(1)/8, oo)))
    assert SetExpr(Interval(-3, -2))**(-3) == SetExpr(Interval(S(-1)/8, -S.One/27))
    assert SetExpr(Interval(-3, -2))**(-2) == SetExpr(Interval(S.One/9, S.One/4))
    #assert SetExpr(Interval(0, oo))**(S.One/2) == SetExpr(Interval(0, oo))
    #assert SetExpr(Interval(-oo, -1))**(S.One/3) == SetExpr(Interval(-oo, -1))
    #assert SetExpr(Interval(-2, 3))**(-S.One/3) == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-oo, 0))**(-2) == SetExpr(Interval.open(0, oo))
    assert SetExpr(Interval(-2, 0))**(-2) == SetExpr(Interval(S.One/4, oo))

    assert SetExpr(Interval(S.One/3, S.One/2))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(0, S.One/2))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(S.One/2, 1))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(0, 1))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(2, 3))**oo == SetExpr(FiniteSet(oo))
    assert SetExpr(Interval(1, 2))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(S.One/2, 3))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(-S.One/3, -S.One/4))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(-1, -S.One/2))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-3, -2))**oo == SetExpr(FiniteSet(-oo, oo))
    assert SetExpr(Interval(-2, -1))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-2, -S.One/2))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-S.One/2, S.One/2))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(-S.One/2, 1))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(-S(2)/3, 2))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(-1, 1))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-1, S.One/2))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-1, 2))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-2, S.One/2))**oo == SetExpr(Interval(-oo, oo))

    assert (SetExpr(Interval(1, 2))**x).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**x), Interval(1, 2))))

    assert SetExpr(Interval(2, 3))**(-oo) == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(0, 2))**(-oo) == SetExpr(Interval(0, oo))
    assert (SetExpr(Interval(-1, 2))**(-oo)).dummy_eq(SetExpr(ImageSet(Lambda(_d, _d**(-oo)), Interval(-1, 2))))
Exemplo n.º 15
0
def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False):
    """Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() doesn't need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in `solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    `solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy.solvers.inequalities import solve_univariate_inequality
    >>> from sympy import Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((x <= -2) & (-oo < x))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2), Interval(2, oo))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval.open(0, pi)

    """
    from sympy.calculus.util import (continuous_domain, periodicity,
        function_range)
    from sympy.solvers.solvers import denoms
    from sympy.solvers.solveset import solveset_real, solvify

    # This keeps the function independent of the assumptions about `gen`.
    # `solveset` makes sure this function is called only when the domain is
    # real.
    d = Dummy(real=True)
    expr = expr.subs(gen, d)
    _gen = gen
    gen = d
    rv = None

    if expr is S.true:
        rv = domain

    elif expr is S.false:
        rv = S.EmptySet

    else:
        e = expr.lhs - expr.rhs
        period = periodicity(e, gen)
        if period is not None:
            frange = function_range(e, gen, domain)

            rel = expr.rel_op
            if rel == '<' or rel == '<=':
                if expr.func(frange.sup, 0):
                    rv = domain
                elif not expr.func(frange.inf, 0):
                    rv = S.EmptySet

            elif rel == '>' or rel == '>=':
                if expr.func(frange.inf, 0):
                    rv = domain
                elif not expr.func(frange.sup, 0):
                    rv = S.EmptySet

            inf, sup = domain.inf, domain.sup
            if sup - inf is S.Infinity:
                domain = Interval(0, period, False, True)

        if rv is None:
            solns = solvify(e, gen, domain)
            if solns is None:
                raise NotImplementedError(filldedent('''The inequality cannot be
                    solved using solve_univariate_inequality.'''))
            singularities = []
            for d in denoms(expr, gen):
                singularities.extend(solvify(d, gen, domain))
            if not continuous:
                domain = continuous_domain(e, gen, domain)

            include_x = expr.func(0, 0)

            def valid(x):
                v = e.subs(gen, x)
                try:
                    r = expr.func(v, 0)
                except TypeError:
                    r = S.false
                if r in (S.true, S.false):
                    return r
                if v.is_real is False:
                    return S.false
                else:
                    v = v.n(2)
                    if v.is_comparable:
                        return expr.func(v, 0)
                    return S.false

            try:
                discontinuities = set(domain.boundary -
                    FiniteSet(domain.inf, domain.sup))
                # remove points that are not between inf and sup of domain
                critical_points = FiniteSet(*(solns + singularities + list(
                    discontinuities))).intersection(
                    Interval(domain.inf, domain.sup,
                    domain.inf not in domain, domain.sup not in domain))
                reals = _nsort(critical_points, separated=True)[0]
            except NotImplementedError:
                raise NotImplementedError('sorting of these roots is not supported')

            sol_sets = [S.EmptySet]

            start = domain.inf
            if valid(start) and start.is_finite:
                sol_sets.append(FiniteSet(start))

            for x in reals:
                end = x

                if valid(_pt(start, end)):
                    sol_sets.append(Interval(start, end, True, True))

                if x in singularities:
                    singularities.remove(x)
                else:
                    if x in discontinuities:
                        discontinuities.remove(x)
                        _valid = valid(x)
                    else:  # it's a solution
                        _valid = include_x
                    if _valid:
                        sol_sets.append(FiniteSet(x))

                start = end

            end = domain.sup
            if valid(end) and end.is_finite:
                sol_sets.append(FiniteSet(end))

            if valid(_pt(start, end)):
                sol_sets.append(Interval.open(start, end))

            rv = Union(*sol_sets).subs(gen, _gen)

    return rv if not relational else rv.as_relational(_gen)
Exemplo n.º 16
0
def test_strictly_decreasing():
    assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
Exemplo n.º 17
0
def solve_univariate_inequality(expr,
                                gen,
                                relational=True,
                                domain=S.Reals,
                                continuous=False):
    """Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() doesn't need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in `solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    `solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy.solvers.inequalities import solve_univariate_inequality
    >>> from sympy import Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((x <= -2) & (-oo < x))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2, True), Interval(2, oo, False, True))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo, False, True)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval(0, pi, True, True)

    """
    from sympy.calculus.util import (continuous_domain, periodicity,
                                     function_range)
    from sympy.solvers.solvers import denoms
    from sympy.solvers.solveset import solveset_real, solvify

    # This keeps the function independent of the assumptions about `gen`.
    # `solveset` makes sure this function is called only when the domain is
    # real.
    d = Dummy(real=True)
    expr = expr.subs(gen, d)
    _gen = gen
    gen = d
    rv = None

    if expr is S.true:
        rv = domain

    elif expr is S.false:
        rv = S.EmptySet

    else:
        e = expr.lhs - expr.rhs
        period = periodicity(e, gen)
        if period is not None:
            frange = function_range(e, gen, domain)

            rel = expr.rel_op
            if rel == '<' or rel == '<=':
                if expr.func(frange.sup, 0):
                    rv = domain
                elif not expr.func(frange.inf, 0):
                    rv = S.EmptySet

            elif rel == '>' or rel == '>=':
                if expr.func(frange.inf, 0):
                    rv = domain
                elif not expr.func(frange.sup, 0):
                    rv = S.EmptySet

            inf, sup = domain.inf, domain.sup
            if sup - inf is S.Infinity:
                domain = Interval(0, period, False, True)

        if rv is None:
            solns = solvify(e, gen, domain)
            if solns is None:
                raise NotImplementedError(
                    filldedent('''The inequality cannot be
                    solved using solve_univariate_inequality.'''))
            singularities = []
            for d in denoms(expr, gen):
                singularities.extend(solvify(d, gen, domain))
            if not continuous:
                domain = continuous_domain(e, gen, domain)

            include_x = expr.func(0, 0)

            def valid(x):
                v = e.subs(gen, x)
                try:
                    r = expr.func(v, 0)
                except TypeError:
                    r = S.false
                if r in (S.true, S.false):
                    return r
                if v.is_real is False:
                    return S.false
                else:
                    v = v.n(2)
                    if v.is_comparable:
                        return expr.func(v, 0)
                    return S.false

            try:
                discontinuities = set(domain.boundary -
                                      FiniteSet(domain.inf, domain.sup))
                # remove points that are not between inf and sup of domain
                critical_points = FiniteSet(
                    *(solns + singularities +
                      list(discontinuities))).intersection(
                          Interval(domain.inf, domain.sup, domain.inf
                                   not in domain, domain.sup not in domain))
                reals = _nsort(critical_points, separated=True)[0]
            except NotImplementedError:
                raise NotImplementedError(
                    'sorting of these roots is not supported')

            sol_sets = [S.EmptySet]

            start = domain.inf
            if valid(start) and start.is_finite:
                sol_sets.append(FiniteSet(start))

            for x in reals:
                end = x

                if valid(_pt(start, end)):
                    sol_sets.append(Interval(start, end, True, True))

                if x in singularities:
                    singularities.remove(x)
                else:
                    if x in discontinuities:
                        discontinuities.remove(x)
                        _valid = valid(x)
                    else:  # it's a solution
                        _valid = include_x
                    if _valid:
                        sol_sets.append(FiniteSet(x))

                start = end

            end = domain.sup
            if valid(end) and end.is_finite:
                sol_sets.append(FiniteSet(end))

            if valid(_pt(start, end)):
                sol_sets.append(Interval.open(start, end))

            rv = Union(*sol_sets).subs(gen, _gen)

    return rv if not relational else rv.as_relational(_gen)
Exemplo n.º 18
0
def test_strictly_decreasing():
    assert is_strictly_decreasing(1 / (x**2 - 3 * x), Interval.open(1.5, 3))
Exemplo n.º 19
0
def test_is_monotonic():
    assert is_monotonic(1 / (x**2 - 3 * x), Interval.open(1.5, 3))
    assert is_monotonic(1 / (x**2 - 3 * x), Interval.Lopen(3, oo))
    assert is_monotonic(x**3 - 3 * x**2 + 4 * x, S.Reals)
    assert is_monotonic(-x**2, S.Reals) is False
    assert is_monotonic(x**2 + y + 1, Interval(1, 2), x) is True
Exemplo n.º 20
0
def test_is_strictly_increasing():
    assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
    assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
    assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) is False
    assert is_strictly_increasing(-x**2, Interval(0, oo)) is False
Exemplo n.º 21
0
def test_Interval_arithmetic():
    i12cc = SetExpr(Interval(1, 2))
    i12lo = SetExpr(Interval.Lopen(1, 2))
    i12ro = SetExpr(Interval.Ropen(1, 2))
    i12o = SetExpr(Interval.open(1, 2))

    n23cc = SetExpr(Interval(-2, 3))
    n23lo = SetExpr(Interval.Lopen(-2, 3))
    n23ro = SetExpr(Interval.Ropen(-2, 3))
    n23o = SetExpr(Interval.open(-2, 3))

    n3n2cc = SetExpr(Interval(-3, -2))

    assert i12cc + i12cc == SetExpr(Interval(2, 4))
    assert i12cc - i12cc == SetExpr(Interval(-1, 1))
    assert i12cc * i12cc == SetExpr(Interval(1, 4))
    assert i12cc / i12cc == SetExpr(Interval(S.Half, 2))
    assert i12cc ** 2 == SetExpr(Interval(1, 4))
    assert i12cc ** 3 == SetExpr(Interval(1, 8))

    assert i12lo + i12ro == SetExpr(Interval.open(2, 4))
    assert i12lo - i12ro == SetExpr(Interval.Lopen(-1, 1))
    assert i12lo * i12ro == SetExpr(Interval.open(1, 4))
    assert i12lo / i12ro == SetExpr(Interval.Lopen(S.Half, 2))
    assert i12lo + i12lo == SetExpr(Interval.Lopen(2, 4))
    assert i12lo - i12lo == SetExpr(Interval.open(-1, 1))
    assert i12lo * i12lo == SetExpr(Interval.Lopen(1, 4))
    assert i12lo / i12lo == SetExpr(Interval.open(S.Half, 2))
    assert i12lo + i12cc == SetExpr(Interval.Lopen(2, 4))
    assert i12lo - i12cc == SetExpr(Interval.Lopen(-1, 1))
    assert i12lo * i12cc == SetExpr(Interval.Lopen(1, 4))
    assert i12lo / i12cc == SetExpr(Interval.Lopen(S.Half, 2))
    assert i12lo + i12o == SetExpr(Interval.open(2, 4))
    assert i12lo - i12o == SetExpr(Interval.open(-1, 1))
    assert i12lo * i12o == SetExpr(Interval.open(1, 4))
    assert i12lo / i12o == SetExpr(Interval.open(S.Half, 2))
    assert i12lo ** 2 == SetExpr(Interval.Lopen(1, 4))
    assert i12lo ** 3 == SetExpr(Interval.Lopen(1, 8))

    assert i12ro + i12ro == SetExpr(Interval.Ropen(2, 4))
    assert i12ro - i12ro == SetExpr(Interval.open(-1, 1))
    assert i12ro * i12ro == SetExpr(Interval.Ropen(1, 4))
    assert i12ro / i12ro == SetExpr(Interval.open(S.Half, 2))
    assert i12ro + i12cc == SetExpr(Interval.Ropen(2, 4))
    assert i12ro - i12cc == SetExpr(Interval.Ropen(-1, 1))
    assert i12ro * i12cc == SetExpr(Interval.Ropen(1, 4))
    assert i12ro / i12cc == SetExpr(Interval.Ropen(S.Half, 2))
    assert i12ro + i12o == SetExpr(Interval.open(2, 4))
    assert i12ro - i12o == SetExpr(Interval.open(-1, 1))
    assert i12ro * i12o == SetExpr(Interval.open(1, 4))
    assert i12ro / i12o == SetExpr(Interval.open(S.Half, 2))
    assert i12ro ** 2 == SetExpr(Interval.Ropen(1, 4))
    assert i12ro ** 3 == SetExpr(Interval.Ropen(1, 8))

    assert i12o + i12lo == SetExpr(Interval.open(2, 4))
    assert i12o - i12lo == SetExpr(Interval.open(-1, 1))
    assert i12o * i12lo == SetExpr(Interval.open(1, 4))
    assert i12o / i12lo == SetExpr(Interval.open(S.Half, 2))
    assert i12o + i12ro == SetExpr(Interval.open(2, 4))
    assert i12o - i12ro == SetExpr(Interval.open(-1, 1))
    assert i12o * i12ro == SetExpr(Interval.open(1, 4))
    assert i12o / i12ro == SetExpr(Interval.open(S.Half, 2))
    assert i12o + i12cc == SetExpr(Interval.open(2, 4))
    assert i12o - i12cc == SetExpr(Interval.open(-1, 1))
    assert i12o * i12cc == SetExpr(Interval.open(1, 4))
    assert i12o / i12cc == SetExpr(Interval.open(S.Half, 2))
    assert i12o ** 2 == SetExpr(Interval.open(1, 4))
    assert i12o ** 3 == SetExpr(Interval.open(1, 8))

    assert n23cc + n23cc == SetExpr(Interval(-4, 6))
    assert n23cc - n23cc == SetExpr(Interval(-5, 5))
    assert n23cc * n23cc == SetExpr(Interval(-6, 9))
    assert n23cc / n23cc == SetExpr(Interval.open(-oo, oo))
    assert n23cc + n23ro == SetExpr(Interval.Ropen(-4, 6))
    assert n23cc - n23ro == SetExpr(Interval.Lopen(-5, 5))
    assert n23cc * n23ro == SetExpr(Interval.Ropen(-6, 9))
    assert n23cc / n23ro == SetExpr(Interval.Lopen(-oo, oo))
    assert n23cc + n23lo == SetExpr(Interval.Lopen(-4, 6))
    assert n23cc - n23lo == SetExpr(Interval.Ropen(-5, 5))
    assert n23cc * n23lo == SetExpr(Interval(-6, 9))
    assert n23cc / n23lo == SetExpr(Interval.open(-oo, oo))
    assert n23cc + n23o == SetExpr(Interval.open(-4, 6))
    assert n23cc - n23o == SetExpr(Interval.open(-5, 5))
    assert n23cc * n23o == SetExpr(Interval.open(-6, 9))
    assert n23cc / n23o == SetExpr(Interval.open(-oo, oo))
    assert n23cc ** 2 == SetExpr(Interval(0, 9))
    assert n23cc ** 3 == SetExpr(Interval(-8, 27))

    n32cc = SetExpr(Interval(-3, 2))
    n32lo = SetExpr(Interval.Lopen(-3, 2))
    n32ro = SetExpr(Interval.Ropen(-3, 2))
    assert n32cc * n32lo == SetExpr(Interval.Ropen(-6, 9))
    assert n32cc * n32cc == SetExpr(Interval(-6, 9))
    assert n32lo * n32cc == SetExpr(Interval.Ropen(-6, 9))
    assert n32cc * n32ro == SetExpr(Interval(-6, 9))
    assert n32lo * n32ro == SetExpr(Interval.Ropen(-6, 9))
    assert n32cc / n32lo == SetExpr(Interval.Ropen(-oo, oo))
    assert i12cc / n32lo == SetExpr(Interval.Ropen(-oo, oo))

    assert n3n2cc ** 2 == SetExpr(Interval(4, 9))
    assert n3n2cc ** 3 == SetExpr(Interval(-27, -8))

    assert n23cc + i12cc == SetExpr(Interval(-1, 5))
    assert n23cc - i12cc == SetExpr(Interval(-4, 2))
    assert n23cc * i12cc == SetExpr(Interval(-4, 6))
    assert n23cc / i12cc == SetExpr(Interval(-2, 3))
Exemplo n.º 22
0
def test_is_strictly_decreasing():
    assert is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
    assert is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    assert is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2)) is False
    assert is_decreasing(-x**2, Interval(-oo, 0)) is False
Exemplo n.º 23
0
def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False):
    """Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() doesn't need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in `solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    `solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy.solvers.inequalities import solve_univariate_inequality
    >>> from sympy import Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((x <= -2) & (-oo < x))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2), Interval(2, oo))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval.open(0, pi)

    """
    from sympy import im
    from sympy.calculus.util import (continuous_domain, periodicity,
        function_range)
    from sympy.solvers.solvers import denoms
    from sympy.solvers.solveset import solveset_real, solvify, solveset
    from sympy.solvers.solvers import solve

    # This keeps the function independent of the assumptions about `gen`.
    # `solveset` makes sure this function is called only when the domain is
    # real.
    _gen = gen
    _domain = domain
    if gen.is_real is False:
        rv = S.EmptySet
        return rv if not relational else rv.as_relational(_gen)
    elif gen.is_real is None:
        gen = Dummy('gen', real=True)
        try:
            expr = expr.xreplace({_gen: gen})
        except TypeError:
            raise TypeError(filldedent('''
When gen is real, the relational has a complex part
which leads to an invalid comparison like I < 0.
            '''))

    rv = None

    if expr is S.true:
        rv = domain

    elif expr is S.false:
        rv = S.EmptySet

    else:
        e = expr.lhs - expr.rhs
        period = periodicity(e, gen)
        if period is not None:
            frange = function_range(e, gen, domain)

            rel = expr.rel_op
            if rel == '<' or rel == '<=':
                if expr.func(frange.sup, 0):
                    rv = domain
                elif not expr.func(frange.inf, 0):
                    rv = S.EmptySet

            elif rel == '>' or rel == '>=':
                if expr.func(frange.inf, 0):
                    rv = domain
                elif not expr.func(frange.sup, 0):
                    rv = S.EmptySet

            inf, sup = domain.inf, domain.sup
            if sup - inf is S.Infinity:
                domain = Interval(0, period, False, True)

        if rv is None:
            n, d = e.as_numer_denom()
            try:
                if gen not in n.free_symbols and len(e.free_symbols) > 1:
                    raise ValueError
                # this might raise ValueError on its own
                # or it might give None...
                solns = solvify(e, gen, domain)
                if solns is None:
                    # in which case we raise ValueError
                    raise ValueError
            except (ValueError, NotImplementedError):
                raise NotImplementedError(filldedent('''
The inequality cannot be solved using solve_univariate_inequality.
                        '''))

            expanded_e = expand_mul(e)
            def valid(x):
                # this is used to see if gen=x satisfies the
                # relational by substituting it into the
                # expanded form and testing against 0, e.g.
                # if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
                # and expanded_e = x**2 + x - 2; the test is
                # whether a given value of x satisfies
                # x**2 + x - 2 < 0
                #
                # expanded_e, expr and gen used from enclosing scope
                v = expanded_e.subs(gen, x)
                try:
                    r = expr.func(v, 0)
                except TypeError:
                    r = S.false
                if r in (S.true, S.false):
                    return r
                if v.is_real is False:
                    return S.false
                else:
                    v = v.n(2)
                    if v.is_comparable:
                        return expr.func(v, 0)
                    # not comparable or couldn't be evaluated
                    raise NotImplementedError(
                        'relationship did not evaluate: %s' % r)

            singularities = []
            for d in denoms(expr, gen):
                singularities.extend(solvify(d, gen, domain))
            if not continuous:
                domain = continuous_domain(e, gen, domain)

            include_x = '=' in expr.rel_op and expr.rel_op != '!='

            try:
                discontinuities = set(domain.boundary -
                    FiniteSet(domain.inf, domain.sup))
                # remove points that are not between inf and sup of domain
                critical_points = FiniteSet(*(solns + singularities + list(
                    discontinuities))).intersection(
                    Interval(domain.inf, domain.sup,
                    domain.inf not in domain, domain.sup not in domain))
                if all(r.is_number for r in critical_points):
                    reals = _nsort(critical_points, separated=True)[0]
                else:
                    from sympy.utilities.iterables import sift
                    sifted = sift(critical_points, lambda x: x.is_real)
                    if sifted[None]:
                        # there were some roots that weren't known
                        # to be real
                        raise NotImplementedError
                    try:
                        reals = sifted[True]
                        if len(reals) > 1:
                            reals = list(sorted(reals))
                    except TypeError:
                        raise NotImplementedError
            except NotImplementedError:
                raise NotImplementedError('sorting of these roots is not supported')

            #If expr contains imaginary coefficients
            #Only real values of x for which the imaginary part is 0 are taken
            make_real = S.Reals
            if im(expanded_e) != S.Zero:
                check = True
                im_sol = FiniteSet()
                try:
                    a = solveset(im(expanded_e), gen, domain)
                    if not isinstance(a, Interval):
                        for z in a:
                            if z not in singularities and valid(z) and z.is_real:
                                im_sol += FiniteSet(z)
                    else:
                        start, end = a.inf, a.sup
                        for z in _nsort(critical_points + FiniteSet(end)):
                            valid_start = valid(start)
                            if start != end:
                                valid_z = valid(z)
                                pt = _pt(start, z)
                                if pt not in singularities and pt.is_real and valid(pt):
                                    if valid_start and valid_z:
                                        im_sol += Interval(start, z)
                                    elif valid_start:
                                        im_sol += Interval.Ropen(start, z)
                                    elif valid_z:
                                        im_sol += Interval.Lopen(start, z)
                                    else:
                                        im_sol += Interval.open(start, z)
                            start = z
                        for s in singularities:
                            im_sol -= FiniteSet(s)
                except (TypeError):
                    im_sol = S.Reals
                    check = False

                if isinstance(im_sol, EmptySet):
                    raise ValueError(filldedent('''
%s contains imaginary parts which cannot be made 0 for any value of %s
satisfying the inequality, leading to relations like I < 0.
                '''  % (expr.subs(gen, _gen), _gen)))

                make_real = make_real.intersect(im_sol)

            empty = sol_sets = [S.EmptySet]

            start = domain.inf
            if valid(start) and start.is_finite:
                sol_sets.append(FiniteSet(start))

            for x in reals:
                end = x

                if valid(_pt(start, end)):
                    sol_sets.append(Interval(start, end, True, True))

                if x in singularities:
                    singularities.remove(x)
                else:
                    if x in discontinuities:
                        discontinuities.remove(x)
                        _valid = valid(x)
                    else:  # it's a solution
                        _valid = include_x
                    if _valid:
                        sol_sets.append(FiniteSet(x))

                start = end

            end = domain.sup
            if valid(end) and end.is_finite:
                sol_sets.append(FiniteSet(end))

            if valid(_pt(start, end)):
                sol_sets.append(Interval.open(start, end))

            if im(expanded_e) != S.Zero and check:
                rv = (make_real).intersect(_domain)
            else:
                rv = Intersection(
                    (Union(*sol_sets)), make_real, _domain).subs(gen, _gen)

    return rv if not relational else rv.as_relational(_gen)
Exemplo n.º 24
0
def test_is_monotonic():
    assert is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
    assert is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
    assert is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
    assert is_monotonic(-x**2, S.Reals) is False
Exemplo n.º 25
0
def test_Interval_arithmetic():
    i12cc = SetExpr(Interval(1, 2))
    i12lo = SetExpr(Interval.Lopen(1, 2))
    i12ro = SetExpr(Interval.Ropen(1, 2))
    i12o = SetExpr(Interval.open(1, 2))

    n23cc = SetExpr(Interval(-2, 3))
    n23lo = SetExpr(Interval.Lopen(-2, 3))
    n23ro = SetExpr(Interval.Ropen(-2, 3))
    n23o = SetExpr(Interval.open(-2, 3))

    n3n2cc = SetExpr(Interval(-3, -2))

    assert i12cc + i12cc == SetExpr(Interval(2, 4))
    assert i12cc - i12cc == SetExpr(Interval(-1, 1))
    assert i12cc * i12cc == SetExpr(Interval(1, 4))
    assert i12cc / i12cc == SetExpr(Interval(S.Half, 2))
    assert i12cc**2 == SetExpr(Interval(1, 4))
    assert i12cc**3 == SetExpr(Interval(1, 8))

    assert i12lo + i12ro == SetExpr(Interval.open(2, 4))
    assert i12lo - i12ro == SetExpr(Interval.Lopen(-1, 1))
    assert i12lo * i12ro == SetExpr(Interval.open(1, 4))
    assert i12lo / i12ro == SetExpr(Interval.Lopen(S.Half, 2))
    assert i12lo + i12lo == SetExpr(Interval.Lopen(2, 4))
    assert i12lo - i12lo == SetExpr(Interval.open(-1, 1))
    assert i12lo * i12lo == SetExpr(Interval.Lopen(1, 4))
    assert i12lo / i12lo == SetExpr(Interval.open(S.Half, 2))
    assert i12lo + i12cc == SetExpr(Interval.Lopen(2, 4))
    assert i12lo - i12cc == SetExpr(Interval.Lopen(-1, 1))
    assert i12lo * i12cc == SetExpr(Interval.Lopen(1, 4))
    assert i12lo / i12cc == SetExpr(Interval.Lopen(S.Half, 2))
    assert i12lo + i12o == SetExpr(Interval.open(2, 4))
    assert i12lo - i12o == SetExpr(Interval.open(-1, 1))
    assert i12lo * i12o == SetExpr(Interval.open(1, 4))
    assert i12lo / i12o == SetExpr(Interval.open(S.Half, 2))
    assert i12lo**2 == SetExpr(Interval.Lopen(1, 4))
    assert i12lo**3 == SetExpr(Interval.Lopen(1, 8))

    assert i12ro + i12ro == SetExpr(Interval.Ropen(2, 4))
    assert i12ro - i12ro == SetExpr(Interval.open(-1, 1))
    assert i12ro * i12ro == SetExpr(Interval.Ropen(1, 4))
    assert i12ro / i12ro == SetExpr(Interval.open(S.Half, 2))
    assert i12ro + i12cc == SetExpr(Interval.Ropen(2, 4))
    assert i12ro - i12cc == SetExpr(Interval.Ropen(-1, 1))
    assert i12ro * i12cc == SetExpr(Interval.Ropen(1, 4))
    assert i12ro / i12cc == SetExpr(Interval.Ropen(S.Half, 2))
    assert i12ro + i12o == SetExpr(Interval.open(2, 4))
    assert i12ro - i12o == SetExpr(Interval.open(-1, 1))
    assert i12ro * i12o == SetExpr(Interval.open(1, 4))
    assert i12ro / i12o == SetExpr(Interval.open(S.Half, 2))
    assert i12ro**2 == SetExpr(Interval.Ropen(1, 4))
    assert i12ro**3 == SetExpr(Interval.Ropen(1, 8))

    assert i12o + i12lo == SetExpr(Interval.open(2, 4))
    assert i12o - i12lo == SetExpr(Interval.open(-1, 1))
    assert i12o * i12lo == SetExpr(Interval.open(1, 4))
    assert i12o / i12lo == SetExpr(Interval.open(S.Half, 2))
    assert i12o + i12ro == SetExpr(Interval.open(2, 4))
    assert i12o - i12ro == SetExpr(Interval.open(-1, 1))
    assert i12o * i12ro == SetExpr(Interval.open(1, 4))
    assert i12o / i12ro == SetExpr(Interval.open(S.Half, 2))
    assert i12o + i12cc == SetExpr(Interval.open(2, 4))
    assert i12o - i12cc == SetExpr(Interval.open(-1, 1))
    assert i12o * i12cc == SetExpr(Interval.open(1, 4))
    assert i12o / i12cc == SetExpr(Interval.open(S.Half, 2))
    assert i12o**2 == SetExpr(Interval.open(1, 4))
    assert i12o**3 == SetExpr(Interval.open(1, 8))

    assert n23cc + n23cc == SetExpr(Interval(-4, 6))
    assert n23cc - n23cc == SetExpr(Interval(-5, 5))
    assert n23cc * n23cc == SetExpr(Interval(-6, 9))
    assert n23cc / n23cc == SetExpr(Interval.open(-oo, oo))
    assert n23cc + n23ro == SetExpr(Interval.Ropen(-4, 6))
    assert n23cc - n23ro == SetExpr(Interval.Lopen(-5, 5))
    assert n23cc * n23ro == SetExpr(Interval.Ropen(-6, 9))
    assert n23cc / n23ro == SetExpr(Interval.Lopen(-oo, oo))
    assert n23cc + n23lo == SetExpr(Interval.Lopen(-4, 6))
    assert n23cc - n23lo == SetExpr(Interval.Ropen(-5, 5))
    assert n23cc * n23lo == SetExpr(Interval(-6, 9))
    assert n23cc / n23lo == SetExpr(Interval.open(-oo, oo))
    assert n23cc + n23o == SetExpr(Interval.open(-4, 6))
    assert n23cc - n23o == SetExpr(Interval.open(-5, 5))
    assert n23cc * n23o == SetExpr(Interval.open(-6, 9))
    assert n23cc / n23o == SetExpr(Interval.open(-oo, oo))
    assert n23cc**2 == SetExpr(Interval(0, 9))
    assert n23cc**3 == SetExpr(Interval(-8, 27))

    n32cc = SetExpr(Interval(-3, 2))
    n32lo = SetExpr(Interval.Lopen(-3, 2))
    n32ro = SetExpr(Interval.Ropen(-3, 2))
    assert n32cc * n32lo == SetExpr(Interval.Ropen(-6, 9))
    assert n32cc * n32cc == SetExpr(Interval(-6, 9))
    assert n32lo * n32cc == SetExpr(Interval.Ropen(-6, 9))
    assert n32cc * n32ro == SetExpr(Interval(-6, 9))
    assert n32lo * n32ro == SetExpr(Interval.Ropen(-6, 9))
    assert n32cc / n32lo == SetExpr(Interval.Ropen(-oo, oo))
    assert i12cc / n32lo == SetExpr(Interval.Ropen(-oo, oo))

    assert n3n2cc**2 == SetExpr(Interval(4, 9))
    assert n3n2cc**3 == SetExpr(Interval(-27, -8))

    assert n23cc + i12cc == SetExpr(Interval(-1, 5))
    assert n23cc - i12cc == SetExpr(Interval(-4, 2))
    assert n23cc * i12cc == SetExpr(Interval(-4, 6))
    assert n23cc / i12cc == SetExpr(Interval(-2, 3))
Exemplo n.º 26
0
def solve_univariate_inequality(expr,
                                gen,
                                relational=True,
                                domain=S.Reals,
                                continuous=False):
    """Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() doesn't need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in `solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    `solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy.solvers.inequalities import solve_univariate_inequality
    >>> from sympy import Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((x <= -2) & (-oo < x))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2), Interval(2, oo))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval.open(0, pi)

    """
    from sympy import im
    from sympy.calculus.util import (continuous_domain, periodicity,
                                     function_range)
    from sympy.solvers.solvers import denoms
    from sympy.solvers.solveset import solveset_real, solvify, solveset
    from sympy.solvers.solvers import solve

    # This keeps the function independent of the assumptions about `gen`.
    # `solveset` makes sure this function is called only when the domain is
    # real.
    _gen = gen
    _domain = domain
    if gen.is_real is False:
        rv = S.EmptySet
        return rv if not relational else rv.as_relational(_gen)
    elif gen.is_real is None:
        gen = Dummy('gen', real=True)
        try:
            expr = expr.xreplace({_gen: gen})
        except TypeError:
            raise TypeError(
                filldedent('''
                When gen is real, the relational has a complex part
                which leads to an invalid comparison like I < 0.
                '''))

    rv = None

    if expr is S.true:
        rv = domain

    elif expr is S.false:
        rv = S.EmptySet

    else:
        e = expr.lhs - expr.rhs
        period = periodicity(e, gen)
        if period is S.Zero:
            e = expand_mul(e)
            const = expr.func(e, 0)
            if const is S.true:
                rv = domain
            elif const is S.false:
                rv = S.EmptySet
        elif period is not None:
            frange = function_range(e, gen, domain)

            rel = expr.rel_op
            if rel == '<' or rel == '<=':
                if expr.func(frange.sup, 0):
                    rv = domain
                elif not expr.func(frange.inf, 0):
                    rv = S.EmptySet

            elif rel == '>' or rel == '>=':
                if expr.func(frange.inf, 0):
                    rv = domain
                elif not expr.func(frange.sup, 0):
                    rv = S.EmptySet

            inf, sup = domain.inf, domain.sup
            if sup - inf is S.Infinity:
                domain = Interval(0, period, False, True)

        if rv is None:
            n, d = e.as_numer_denom()
            try:
                if gen not in n.free_symbols and len(e.free_symbols) > 1:
                    raise ValueError
                # this might raise ValueError on its own
                # or it might give None...
                solns = solvify(e, gen, domain)
                if solns is None:
                    # in which case we raise ValueError
                    raise ValueError
            except (ValueError, NotImplementedError):
                # replace gen with generic x since it's
                # univariate anyway
                raise NotImplementedError(
                    filldedent('''
                    The inequality, %s, cannot be solved using
                    solve_univariate_inequality.
                    ''' % expr.subs(gen, Symbol('x'))))

            expanded_e = expand_mul(e)

            def valid(x):
                # this is used to see if gen=x satisfies the
                # relational by substituting it into the
                # expanded form and testing against 0, e.g.
                # if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
                # and expanded_e = x**2 + x - 2; the test is
                # whether a given value of x satisfies
                # x**2 + x - 2 < 0
                #
                # expanded_e, expr and gen used from enclosing scope
                v = expanded_e.subs(gen, expand_mul(x))
                try:
                    r = expr.func(v, 0)
                except TypeError:
                    r = S.false
                if r in (S.true, S.false):
                    return r
                if v.is_real is False:
                    return S.false
                else:
                    v = v.n(2)
                    if v.is_comparable:
                        return expr.func(v, 0)
                    # not comparable or couldn't be evaluated
                    raise NotImplementedError(
                        'relationship did not evaluate: %s' % r)

            singularities = []
            for d in denoms(expr, gen):
                singularities.extend(solvify(d, gen, domain))
            if not continuous:
                domain = continuous_domain(expanded_e, gen, domain)

            include_x = '=' in expr.rel_op and expr.rel_op != '!='

            try:
                discontinuities = set(domain.boundary -
                                      FiniteSet(domain.inf, domain.sup))
                # remove points that are not between inf and sup of domain
                critical_points = FiniteSet(
                    *(solns + singularities +
                      list(discontinuities))).intersection(
                          Interval(domain.inf, domain.sup, domain.inf
                                   not in domain, domain.sup not in domain))
                if all(r.is_number for r in critical_points):
                    reals = _nsort(critical_points, separated=True)[0]
                else:
                    from sympy.utilities.iterables import sift
                    sifted = sift(critical_points, lambda x: x.is_real)
                    if sifted[None]:
                        # there were some roots that weren't known
                        # to be real
                        raise NotImplementedError
                    try:
                        reals = sifted[True]
                        if len(reals) > 1:
                            reals = list(sorted(reals))
                    except TypeError:
                        raise NotImplementedError
            except NotImplementedError:
                raise NotImplementedError(
                    'sorting of these roots is not supported')

            # If expr contains imaginary coefficients, only take real
            # values of x for which the imaginary part is 0
            make_real = S.Reals
            if im(expanded_e) != S.Zero:
                check = True
                im_sol = FiniteSet()
                try:
                    a = solveset(im(expanded_e), gen, domain)
                    if not isinstance(a, Interval):
                        for z in a:
                            if z not in singularities and valid(
                                    z) and z.is_real:
                                im_sol += FiniteSet(z)
                    else:
                        start, end = a.inf, a.sup
                        for z in _nsort(critical_points + FiniteSet(end)):
                            valid_start = valid(start)
                            if start != end:
                                valid_z = valid(z)
                                pt = _pt(start, z)
                                if pt not in singularities and pt.is_real and valid(
                                        pt):
                                    if valid_start and valid_z:
                                        im_sol += Interval(start, z)
                                    elif valid_start:
                                        im_sol += Interval.Ropen(start, z)
                                    elif valid_z:
                                        im_sol += Interval.Lopen(start, z)
                                    else:
                                        im_sol += Interval.open(start, z)
                            start = z
                        for s in singularities:
                            im_sol -= FiniteSet(s)
                except (TypeError):
                    im_sol = S.Reals
                    check = False

                if isinstance(im_sol, EmptySet):
                    raise ValueError(
                        filldedent('''
                        %s contains imaginary parts which cannot be
                        made 0 for any value of %s satisfying the
                        inequality, leading to relations like I < 0.
                        ''' % (expr.subs(gen, _gen), _gen)))

                make_real = make_real.intersect(im_sol)

            empty = sol_sets = [S.EmptySet]

            start = domain.inf
            if valid(start) and start.is_finite:
                sol_sets.append(FiniteSet(start))

            for x in reals:
                end = x

                if valid(_pt(start, end)):
                    sol_sets.append(Interval(start, end, True, True))

                if x in singularities:
                    singularities.remove(x)
                else:
                    if x in discontinuities:
                        discontinuities.remove(x)
                        _valid = valid(x)
                    else:  # it's a solution
                        _valid = include_x
                    if _valid:
                        sol_sets.append(FiniteSet(x))

                start = end

            end = domain.sup
            if valid(end) and end.is_finite:
                sol_sets.append(FiniteSet(end))

            if valid(_pt(start, end)):
                sol_sets.append(Interval.open(start, end))

            if im(expanded_e) != S.Zero and check:
                rv = (make_real).intersect(_domain)
            else:
                rv = Intersection((Union(*sol_sets)), make_real,
                                  _domain).subs(gen, _gen)

    return rv if not relational else rv.as_relational(_gen)
Exemplo n.º 27
0
def test_SetExpr_Interval_pow():
    assert SetExpr(Interval(0, 2))**2 == SetExpr(Interval(0, 4))
    assert SetExpr(Interval(-1, 1))**2 == SetExpr(Interval(0, 1))
    assert SetExpr(Interval(1, 2))**2 == SetExpr(Interval(1, 4))
    assert SetExpr(Interval(-1, 2))**3 == SetExpr(Interval(-1, 8))
    assert SetExpr(Interval(-1, 1))**0 == SetExpr(FiniteSet(1))

    #assert SetExpr(Interval(1, 2))**(S(5)/2) == SetExpr(Interval(1, 4*sqrt(2)))
    #assert SetExpr(Interval(-1, 2))**(S.One/3) == SetExpr(Interval(-1, 2**(S.One/3)))
    #assert SetExpr(Interval(0, 2))**(S.One/2) == SetExpr(Interval(0, sqrt(2)))

    #assert SetExpr(Interval(-4, 2))**(S(2)/3) == SetExpr(Interval(0, 2*2**(S.One/3)))

    #assert SetExpr(Interval(-1, 5))**(S.One/2) == SetExpr(Interval(0, sqrt(5)))
    #assert SetExpr(Interval(-oo, 2))**(S.One/2) == SetExpr(Interval(0, sqrt(2)))
    #assert SetExpr(Interval(-2, 3))**(S(-1)/4) == SetExpr(Interval(0, oo))

    assert SetExpr(Interval(1, 5))**(-2) == SetExpr(Interval(S.One / 25, 1))
    assert SetExpr(Interval(-1, 3))**(-2) == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(0, 2))**(-2) == SetExpr(Interval(S.One / 4, oo))
    assert SetExpr(Interval(-1, 2))**(-3) == SetExpr(
        Union(Interval(-oo, -1), Interval(S(1) / 8, oo)))
    assert SetExpr(Interval(-3, -2))**(-3) == SetExpr(
        Interval(S(-1) / 8, -S.One / 27))
    assert SetExpr(Interval(-3, -2))**(-2) == SetExpr(
        Interval(S.One / 9, S.One / 4))
    #assert SetExpr(Interval(0, oo))**(S.One/2) == SetExpr(Interval(0, oo))
    #assert SetExpr(Interval(-oo, -1))**(S.One/3) == SetExpr(Interval(-oo, -1))
    #assert SetExpr(Interval(-2, 3))**(-S.One/3) == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-oo, 0))**(-2) == SetExpr(Interval.open(0, oo))
    assert SetExpr(Interval(-2, 0))**(-2) == SetExpr(Interval(S.One / 4, oo))

    assert SetExpr(Interval(S.One / 3, S.One / 2))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(0, S.One / 2))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(S.One / 2, 1))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(0, 1))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(2, 3))**oo == SetExpr(FiniteSet(oo))
    assert SetExpr(Interval(1, 2))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(S.One / 2, 3))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(-S.One / 3,
                            -S.One / 4))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(-1, -S.One / 2))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-3, -2))**oo == SetExpr(FiniteSet(-oo, oo))
    assert SetExpr(Interval(-2, -1))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-2, -S.One / 2))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-S.One / 2,
                            S.One / 2))**oo == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(-S.One / 2, 1))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(-S(2) / 3, 2))**oo == SetExpr(Interval(0, oo))
    assert SetExpr(Interval(-1, 1))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-1, S.One / 2))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-1, 2))**oo == SetExpr(Interval(-oo, oo))
    assert SetExpr(Interval(-2, S.One / 2))**oo == SetExpr(Interval(-oo, oo))

    assert (SetExpr(Interval(1, 2))**x).dummy_eq(
        SetExpr(ImageSet(Lambda(_d, _d**x), Interval(1, 2))))

    assert SetExpr(Interval(2, 3))**(-oo) == SetExpr(FiniteSet(0))
    assert SetExpr(Interval(0, 2))**(-oo) == SetExpr(Interval(0, oo))
    assert (SetExpr(Interval(-1, 2))**(-oo)).dummy_eq(
        SetExpr(ImageSet(Lambda(_d, _d**(-oo)), Interval(-1, 2))))