def test_hyper_as_trig(): from sympy.simplify.fu import _osborne, _osbornei eq = sinh(x)**2 + cosh(x)**2 t, f = hyper_as_trig(eq) assert f(fu(t)) == cosh(2 * x) e, f = hyper_as_trig(tanh(x + y)) assert f(TR12(e)) == (tanh(x) + tanh(y)) / (tanh(x) * tanh(y) + 1) d = Dummy() assert _osborne(sinh(x), d) == I * sin(x * d) assert _osborne(tanh(x), d) == I * tan(x * d) assert _osborne(coth(x), d) == cot(x * d) / I assert _osborne(cosh(x), d) == cos(x * d) assert _osborne(sech(x), d) == sec(x * d) assert _osborne(csch(x), d) == csc(x * d) / I for func in (sinh, cosh, tanh, coth, sech, csch): h = func(pi) assert _osbornei(_osborne(h, d), d) == h # /!\ the _osborne functions are not meant to work # in the o(i(trig, d), d) direction so we just check # that they work as they are supposed to work assert _osbornei(cos(x * y + z), y) == cosh(x + z * I) assert _osbornei(sin(x * y + z), y) == sinh(x + z * I) / I assert _osbornei(tan(x * y + z), y) == tanh(x + z * I) / I assert _osbornei(cot(x * y + z), y) == coth(x + z * I) * I assert _osbornei(sec(x * y + z), y) == sech(x + z * I) assert _osbornei(csc(x * y + z), y) == csch(x + z * I) * I
def _futrig(e, **kwargs): """Helper for futrig.""" from sympy.simplify.fu import ( TR1, TR2, TR3, TR2i, TR10, L, TR10i, TR8, TR6, TR15, TR16, TR111, TR5, TRmorrie, TR11, TR14, TR22, TR12) from sympy.core.compatibility import _nodes if not e.has(TrigonometricFunction): return e if e.is_Mul: coeff, e = e.as_independent(TrigonometricFunction) else: coeff = S.One Lops = lambda x: (L(x), x.count_ops(), _nodes(x), len(x.args), x.is_Add) trigs = lambda x: x.has(TrigonometricFunction) tree = [identity, ( TR3, # canonical angles TR1, # sec-csc -> cos-sin TR12, # expand tan of sum lambda x: _eapply(factor, x, trigs), TR2, # tan-cot -> sin-cos [identity, lambda x: _eapply(_mexpand, x, trigs)], TR2i, # sin-cos ratio -> tan lambda x: _eapply(lambda i: factor(i.normal()), x, trigs), TR14, # factored identities TR5, # sin-pow -> cos_pow TR10, # sin-cos of sums -> sin-cos prod TR11, TR6, # reduce double angles and rewrite cos pows lambda x: _eapply(factor, x, trigs), TR14, # factored powers of identities [identity, lambda x: _eapply(_mexpand, x, trigs)], TRmorrie, TR10i, # sin-cos products > sin-cos of sums [identity, TR8], # sin-cos products -> sin-cos of sums [identity, lambda x: TR2i(TR2(x))], # tan -> sin-cos -> tan [ lambda x: _eapply(expand_mul, TR5(x), trigs), lambda x: _eapply( expand_mul, TR15(x), trigs)], # pos/neg powers of sin [ lambda x: _eapply(expand_mul, TR6(x), trigs), lambda x: _eapply( expand_mul, TR16(x), trigs)], # pos/neg powers of cos TR111, # tan, sin, cos to neg power -> cot, csc, sec [identity, TR2i], # sin-cos ratio to tan [identity, lambda x: _eapply( expand_mul, TR22(x), trigs)], # tan-cot to sec-csc TR1, TR2, TR2i, [identity, lambda x: _eapply( factor_terms, TR12(x), trigs)], # expand tan of sum )] e = greedy(tree, objective=Lops)(e) return coeff*e
def test_TR12(): assert TR12(tan(x + y)) == (tan(x) + tan(y)) / (-tan(x) * tan(y) + 1) assert TR12(tan(x + y + z)) ==\ (tan(z) + (tan(x) + tan(y))/(-tan(x)*tan(y) + 1))/( 1 - (tan(x) + tan(y))*tan(z)/(-tan(x)*tan(y) + 1)) assert TR12(tan(x * y)) == tan(x * y)