Exemplo n.º 1
0
def test_Compound_Distribution():
    X = Normal('X', 2, 4)
    N = NormalDistribution(X, 4)
    C = CompoundDistribution(N)
    assert C.is_Continuous
    assert C.set == Interval(-oo, oo)
    assert C.pdf(x, evaluate=True).simplify() == exp(-x**2/64 + x/16 - S(1)/16)/(8*sqrt(pi))

    assert not isinstance(CompoundDistribution(NormalDistribution(2, 3)),
                            CompoundDistribution)
    M = MultivariateNormalDistribution([1, 2], [[2, 1], [1, 2]])
    raises(NotImplementedError, lambda: CompoundDistribution(M))

    X = Beta('X', 2, 4)
    B = BernoulliDistribution(X, 1, 0)
    C = CompoundDistribution(B)
    assert C.is_Finite
    assert C.set == {0, 1}
    y = symbols('y', negative=False, integer=True)
    assert C.pdf(y, evaluate=True) == Piecewise((S(1)/(30*beta(2, 4)), Eq(y, 0)),
                (S(1)/(60*beta(2, 4)), Eq(y, 1)), (0, True))

    k, t, z = symbols('k t z', positive=True, real=True)
    G = Gamma('G', k, t)
    X = PoissonDistribution(G)
    C = CompoundDistribution(X)
    assert C.is_Discrete
    assert C.set == S.Naturals0
    assert C.pdf(z, evaluate=True).simplify() == t**z*(t + 1)**(-k - z)*gamma(k \
                    + z)/(gamma(k)*gamma(z + 1))
Exemplo n.º 2
0
def test_long_precomputed_cdf():
    x = symbols("x", real=True, finite=True)
    distribs = [
        Arcsin("A", -5, 9),
        Dagum("D", 4, 10, 3),
        Erlang("E", 14, 5),
        Frechet("F", 2, 6, -3),
        Gamma("G", 2, 7),
        GammaInverse("GI", 3, 5),
        Kumaraswamy("K", 6, 8),
        Laplace("LA", -5, 4),
        Logistic("L", -6, 7),
        Nakagami("N", 2, 7),
        StudentT("S", 4)
    ]
    for distr in distribs:
        for _ in range(5):
            assert tn(diff(cdf(distr)(x), x),
                      density(distr)(x),
                      x,
                      a=0,
                      b=0,
                      c=1,
                      d=0)

    US = UniformSum("US", 5)
    pdf01 = density(US)(x).subs(floor(x), 0).doit()  # pdf on (0, 1)
    cdf01 = cdf(US, evaluate=False)(x).subs(floor(x),
                                            0).doit()  # cdf on (0, 1)
    assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0)
Exemplo n.º 3
0
def test_sample_pymc3():
    distribs_pymc3 = [
        Beta("B", 1, 1),
        Cauchy("C", 1, 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        GaussianInverse("GI", 1, 1),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    pymc3 = import_module('pymc3')
    if not pymc3:
        skip('PyMC3 is not installed. Abort tests for _sample_pymc3.')
    else:
        with ignore_warnings(
                UserWarning
        ):  ### TODO: Restore tests once warnings are removed
            for X in distribs_pymc3:
                samps = next(sample(X, size=size, library='pymc3'))
                for sam in samps:
                    assert sam in X.pspace.domain.set
            raises(NotImplementedError,
                   lambda: next(sample(Chi("C", 1), library='pymc3')))
def test_sample_scipy():
    distribs_scipy = [
        Beta("B", 1, 1),
        BetaPrime("BP", 1, 1),
        Cauchy("C", 1, 1),
        Chi("C", 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        GammaInverse("GI", 1, 1),
        GaussianInverse("GUI", 1, 1),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        StudentT("S", 2),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests for _sample_scipy.')
    else:
        for X in distribs_scipy:
            samps = sample(X, size=size, library='scipy')
            samps2 = sample(X, size=(2, 2), library='scipy')
            for sam in samps:
                assert sam in X.pspace.domain.set
            for i in range(2):
                for j in range(2):
                    assert samps2[i][j] in X.pspace.domain.set
Exemplo n.º 5
0
def test_gamma():
    k, theta = symbols('k theta', real=True, bounded=True, positive=True)
    X = Gamma(k, theta)

    assert simplify(E(X)) == k*theta
    # can't get things to simplify on this one so we use subs
    assert Var(X).subs(k,5) == (k*theta**2).subs(k, 5)
Exemplo n.º 6
0
def test_sample_numpy():
    distribs_numpy = [
        Beta("B", 1, 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    numpy = import_module('numpy')
    if not numpy:
        skip('Numpy is not installed. Abort tests for _sample_numpy.')
    else:
        for X in distribs_numpy:
            samps = sample(X, size=size, library='numpy')
            for sam in samps:
                assert sam in X.pspace.domain.set
        raises(NotImplementedError,
               lambda: sample(Chi("C", 1), library='numpy'))
    raises(
        NotImplementedError,
        lambda: Chi("C", 1).pspace.distribution.sample(library='tensorflow'))
Exemplo n.º 7
0
def test_poisson_CompoundDist():
    k, t, y = symbols('k t y', positive=True, real=True)
    G = Gamma('G', k, t)
    D = Poisson('P', G)
    assert density(D)(y).simplify() == t**y*(t + 1)**(-k - y)*gamma(k + y)/(gamma(k)*gamma(y + 1))
    # https://en.wikipedia.org/wiki/Negative_binomial_distribution#Gamma%E2%80%93Poisson_mixture
    assert E(D).simplify() == k*t # mean of NegativeBinomialDistribution
Exemplo n.º 8
0
def test_gamma():
    k = Symbol("k", positive=True)
    theta = Symbol("theta", positive=True)

    X = Gamma('x', k, theta)
    assert density(X) == Lambda(_x,
                                _x**(k - 1)*theta**(-k)*exp(-_x/theta)/gamma(k))
    assert cdf(X, meijerg=True) == Lambda(_z, Piecewise(
    (-k*lowergamma(k, 0)/gamma(k + 1) + k*lowergamma(k, _z/theta)/gamma(k + 1), _z >= 0), (0, True)))
    assert variance(X) == (-theta**2*gamma(k + 1)**2/gamma(k)**2 +
           theta*theta**(-k)*theta**(k + 1)*gamma(k + 2)/gamma(k))

    k, theta = symbols('k theta', real=True, bounded=True, positive=True)
    X = Gamma('x', k, theta)
    assert simplify(E(X)) == k*theta
    # can't get things to simplify on this one so we use subs
    assert variance(X).subs(k,5) == (k*theta**2).subs(k, 5)
Exemplo n.º 9
0
def test_gamma():
    k = Symbol("k", positive=True)
    theta = Symbol("theta", positive=True)

    X = Gamma('x', k, theta)
    assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k)
    assert cdf(X, meijerg=True)(z) == Piecewise(
            (-k*lowergamma(k, 0)/gamma(k + 1) +
                k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0),
            (0, True))
    # assert simplify(variance(X)) == k*theta**2  # handled numerically below
    assert E(X) == moment(X, 1)

    k, theta = symbols('k theta', real=True, finite=True, positive=True)
    X = Gamma('x', k, theta)
    assert simplify(E(X)) == k*theta
    # can't get things to simplify on this one so we use subs
    assert variance(X).subs(k, 5) == (k*theta**2).subs(k, 5)
Exemplo n.º 10
0
def test_gamma():
    k = Symbol("k", positive=True)
    theta = Symbol("theta", positive=True)

    X = Gamma('x', k, theta)
    assert density(X)(x) == x**(k - 1) * theta**(-k) * exp(
        -x / theta) / gamma(k)
    assert cdf(X, meijerg=True)(z) == Piecewise(
        (-k * lowergamma(k, 0) / gamma(k + 1) +
         k * lowergamma(k, z / theta) / gamma(k + 1), z >= 0), (0, True))
    # assert simplify(variance(X)) == k*theta**2  # handled numerically below
    assert E(X) == moment(X, 1)

    k, theta = symbols('k theta', real=True, finite=True, positive=True)
    X = Gamma('x', k, theta)
    assert E(X) == k * theta
    assert variance(X) == k * theta**2
    assert simplify(skewness(X)) == 2 / sqrt(k)
Exemplo n.º 11
0
def test_sample_scipy():
    distribs_scipy = [
        Beta("B", 1, 1),
        BetaPrime("BP", 1, 1),
        Cauchy("C", 1, 1),
        Chi("C", 1),
        Normal("N", 0, 1),
        Gamma("G", 2, 7),
        GammaInverse("GI", 1, 1),
        GaussianInverse("GUI", 1, 1),
        Exponential("E", 2),
        LogNormal("LN", 0, 1),
        Pareto("P", 1, 1),
        StudentT("S", 2),
        ChiSquared("CS", 2),
        Uniform("U", 0, 1)
    ]
    size = 3
    numsamples = 5
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests for _sample_scipy.')
    else:
        with ignore_warnings(
                UserWarning
        ):  ### TODO: Restore tests once warnings are removed
            g_sample = list(
                sample(Gamma("G", 2, 7), size=size, numsamples=numsamples))
            assert len(g_sample) == numsamples
            for X in distribs_scipy:
                samps = next(sample(X, size=size, library='scipy'))
                samps2 = next(sample(X, size=(2, 2), library='scipy'))
                for sam in samps:
                    assert sam in X.pspace.domain.set
                for i in range(2):
                    for j in range(2):
                        assert samps2[i][j] in X.pspace.domain.set
Exemplo n.º 12
0
def test_prefab_sampling():
    N = Normal('X', 0, 1)
    L = LogNormal('L', 0, 1)
    E = Exponential('Ex', 1)
    P = Pareto('P', 1, 3)
    W = Weibull('W', 1, 1)
    U = Uniform('U', 0, 1)
    B = Beta('B', 2, 5)
    G = Gamma('G', 1, 3)

    variables = [N, L, E, P, W, U, B, G]
    niter = 10
    for var in variables:
        for i in range(niter):
            assert sample(var) in var.pspace.domain.set
Exemplo n.º 13
0
def test_prefab_sampling():
    N = Normal(0, 1)
    L = LogNormal(0, 1)
    E = Exponential(1)
    P = Pareto(1, 3)
    W = Weibull(1, 1)
    U = Uniform(0, 1)
    B = Beta(2,5)
    G = Gamma(1,3)

    variables = [N,L,E,P,W,U,B,G]
    niter = 10
    for var in variables:
        for i in xrange(niter):
            assert Sample(var) in var.pspace.domain.set
Exemplo n.º 14
0
def test_gamma():
    k = Symbol("k", positive=True)
    theta = Symbol("theta", positive=True)

    X = Gamma('x', k, theta)

    # Tests characteristic function
    assert characteristic_function(X)(x) == ((-I * theta * x + 1)**(-k))

    assert density(X)(x) == x**(k - 1) * theta**(-k) * exp(
        -x / theta) / gamma(k)
    assert cdf(X, meijerg=True)(z) == Piecewise(
        (-k * lowergamma(k, 0) / gamma(k + 1) +
         k * lowergamma(k, z / theta) / gamma(k + 1), z >= 0), (0, True))

    # assert simplify(variance(X)) == k*theta**2  # handled numerically below
    assert E(X) == moment(X, 1)

    k, theta = symbols('k theta', positive=True)
    X = Gamma('x', k, theta)
    assert E(X) == k * theta
    assert variance(X) == k * theta**2
    assert skewness(X).expand() == 2 / sqrt(k)
    assert kurtosis(X).expand() == 3 + 6 / k
def test_prefab_sampling():
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests')
    N = Normal('X', 0, 1)
    L = LogNormal('L', 0, 1)
    E = Exponential('Ex', 1)
    P = Pareto('P', 1, 3)
    W = Weibull('W', 1, 1)
    U = Uniform('U', 0, 1)
    B = Beta('B', 2, 5)
    G = Gamma('G', 1, 3)

    variables = [N, L, E, P, W, U, B, G]
    niter = 10
    size = 5
    for var in variables:
        for _ in range(niter):
            assert sample(var) in var.pspace.domain.set
            samps = sample(var, size=size)
            for samp in samps:
                assert samp in var.pspace.domain.set
Exemplo n.º 16
0
def test_issue_10003():
    X = Exponential('x', 3)
    G = Gamma('g', 1, 2)
    assert P(X < -1) == S.Zero
    assert P(G < -1) == S.Zero
Exemplo n.º 17
0
def test_moment_generating_function():
    t = symbols('t', positive=True)

    # Symbolic tests
    a, b, c = symbols('a b c')

    mgf = moment_generating_function(Beta('x', a, b))(t)
    assert mgf == hyper((a, ), (a + b, ), t)

    mgf = moment_generating_function(Chi('x', a))(t)
    assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\
        hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\
        hyper((a/2,), (S.Half,), t**2/2)

    mgf = moment_generating_function(ChiSquared('x', a))(t)
    assert mgf == (1 - 2 * t)**(-a / 2)

    mgf = moment_generating_function(Erlang('x', a, b))(t)
    assert mgf == (1 - t / b)**(-a)

    mgf = moment_generating_function(ExGaussian("x", a, b, c))(t)
    assert mgf == exp(a * t + b**2 * t**2 / 2) / (1 - t / c)

    mgf = moment_generating_function(Exponential('x', a))(t)
    assert mgf == a / (a - t)

    mgf = moment_generating_function(Gamma('x', a, b))(t)
    assert mgf == (-b * t + 1)**(-a)

    mgf = moment_generating_function(Gumbel('x', a, b))(t)
    assert mgf == exp(b * t) * gamma(-a * t + 1)

    mgf = moment_generating_function(Gompertz('x', a, b))(t)
    assert mgf == b * exp(b) * expint(t / a, b)

    mgf = moment_generating_function(Laplace('x', a, b))(t)
    assert mgf == exp(a * t) / (-b**2 * t**2 + 1)

    mgf = moment_generating_function(Logistic('x', a, b))(t)
    assert mgf == exp(a * t) * beta(-b * t + 1, b * t + 1)

    mgf = moment_generating_function(Normal('x', a, b))(t)
    assert mgf == exp(a * t + b**2 * t**2 / 2)

    mgf = moment_generating_function(Pareto('x', a, b))(t)
    assert mgf == b * (-a * t)**b * uppergamma(-b, -a * t)

    mgf = moment_generating_function(QuadraticU('x', a, b))(t)
    assert str(mgf) == (
        "(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - "
        "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)")

    mgf = moment_generating_function(RaisedCosine('x', a, b))(t)
    assert mgf == pi**2 * exp(a * t) * sinh(b * t) / (b * t *
                                                      (b**2 * t**2 + pi**2))

    mgf = moment_generating_function(Rayleigh('x', a))(t)
    assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\
        *exp(a**2*t**2/2)/2 + 1

    mgf = moment_generating_function(Triangular('x', a, b, c))(t)
    assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + "
                        "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))")

    mgf = moment_generating_function(Uniform('x', a, b))(t)
    assert mgf == (-exp(a * t) + exp(b * t)) / (t * (-a + b))

    mgf = moment_generating_function(UniformSum('x', a))(t)
    assert mgf == ((exp(t) - 1) / t)**a

    mgf = moment_generating_function(WignerSemicircle('x', a))(t)
    assert mgf == 2 * besseli(1, a * t) / (a * t)

    # Numeric tests

    mgf = moment_generating_function(Beta('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == hyper((2, ), (3, ), 1) / 2

    mgf = moment_generating_function(Chi('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == sqrt(2) * hyper(
        (1, ), (Rational(3, 2), ), S.Half) / sqrt(pi) + hyper(
            (Rational(3, 2), ),
            (Rational(3, 2), ), S.Half) + 2 * sqrt(2) * hyper(
                (2, ), (Rational(5, 2), ), S.Half) / (3 * sqrt(pi))

    mgf = moment_generating_function(ChiSquared('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == I

    mgf = moment_generating_function(Erlang('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t)
    assert mgf.diff(t).subs(t, 2) == -exp(2)

    mgf = moment_generating_function(Exponential('x', 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Gamma('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Gumbel('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == EulerGamma + 1

    mgf = moment_generating_function(Gompertz('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == -e * meijerg(((), (1, 1)),
                                                  ((0, 0, 0), ()), 1)

    mgf = moment_generating_function(Laplace('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == 1

    mgf = moment_generating_function(Logistic('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == beta(1, 1)

    mgf = moment_generating_function(Normal('x', 0, 1))(t)
    assert mgf.diff(t).subs(t, 1) == exp(S.Half)

    mgf = moment_generating_function(Pareto('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 0) == expint(1, 0)

    mgf = moment_generating_function(QuadraticU('x', 1, 2))(t)
    assert mgf.diff(t).subs(t, 1) == -12 * e - 3 * exp(2)

    mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t)
    assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\
    (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2)

    mgf = moment_generating_function(Rayleigh('x', 1))(t)
    assert mgf.diff(t).subs(t, 0) == sqrt(2) * sqrt(pi) / 2

    mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t)
    assert mgf.diff(t).subs(t, 1) == -e + exp(3)

    mgf = moment_generating_function(Uniform('x', 0, 1))(t)
    assert mgf.diff(t).subs(t, 1) == 1

    mgf = moment_generating_function(UniformSum('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == 1

    mgf = moment_generating_function(WignerSemicircle('x', 1))(t)
    assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\
        besseli(0, 1)