Exemplo n.º 1
0
def test_nsimplify():
    x = Symbol("x")
    assert nsimplify(0) == 0
    assert nsimplify(-1) == -1
    assert nsimplify(1) == 1
    assert nsimplify(1+x) == 1+x
    assert nsimplify(2.7) == Rational(27, 10)
    assert nsimplify(1-GoldenRatio) == (1-sqrt(5))/2
    assert nsimplify((1+sqrt(5))/4, [GoldenRatio]) == GoldenRatio/2
    assert nsimplify(2/GoldenRatio, [GoldenRatio]) == 2*GoldenRatio - 2
    assert nsimplify(exp(5*pi*I/3, evaluate=False)) == sympify('1/2 - sqrt(3)*I/2')
    assert nsimplify(sin(3*pi/5, evaluate=False)) == sympify('sqrt(sqrt(5)/8 + 5/8)')
    assert nsimplify(sqrt(atan('1', evaluate=False))*(2+I), [pi]) == sqrt(pi) + sqrt(pi)/2*I
    assert nsimplify(2 + exp(2*atan('1/4')*I)) == sympify('49/17 + 8*I/17')
    assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
    assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
    assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
    assert nsimplify(2.0**(1/3.), tolerance=0.001) == Rational(635, 504)
    assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == 2**Rational(1, 3)
    assert nsimplify(x + .5, rational=True) == Rational(1, 2) + x
    assert nsimplify(1/.3 + x, rational=True) == Rational(10, 3) + x
    assert nsimplify(log(3).n(), rational=True) == \
           sympify('109861228866811/100000000000000')
    assert nsimplify(Float(0.272198261287950), [pi,log(2)]) == pi*log(2)/8
    assert nsimplify(Float(0.272198261287950).n(3), [pi,log(2)]) == \
        -pi/4 - log(2) + S(7)/4
    assert nsimplify(x/7.0) == x/7
    assert nsimplify(pi/1e2) == pi/100
    assert nsimplify(pi/1e2, rational=False) == pi/100.0
    assert nsimplify(pi/1e-7) == 10000000*pi
Exemplo n.º 2
0
 def _expr_big_minus(cls, a, z, n):
     from sympy import I, pi, exp, sqrt, atan, sin
     if n.is_even:
         return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z)*sin(2*a*atan(sqrt(z)))
     else:
         return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z) \
                *sin(2*a*atan(sqrt(z)) - 2*pi*a)
Exemplo n.º 3
0
def log_to_atan(f, g):
    """Convert complex logarithms to real arctangents.

       Given a real field K and polynomials f and g in K[x], with g != 0,
       returns a sum h of arctangents of polynomials in K[x], such that:

                       df   d         f + I g
                       -- = -- I log( ------- )
                       dx   dx        f - I g

    """
    if f.degree() < g.degree():
        f, g = -g, f

    f = f.to_field()
    g = g.to_field()

    p, q = f.div(g)

    if q.is_zero:
        return 2*atan(p.as_expr())
    else:
        s, t, h = g.gcdex(-f)
        u = (f*s+g*t).quo(h)
        A = 2*atan(u.as_expr())

        return A + log_to_atan(s, t)
Exemplo n.º 4
0
def test_evalf_integrals():
    assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000'
    gauss = Integral(exp(-x**2), (x, -oo, oo))
    assert NS(gauss, 15) == '1.77245385090552'
    assert NS(gauss**2 - pi + E*Rational(1,10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20')
    # A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html
    t = Symbol('t')
    a = 8*sqrt(3)/(1+3*t**2)
    b = 16*sqrt(2)*(3*t+1)*(4*t**2+t+1)**Rational(3,2)
    c = (3*t**2+1)*(11*t**2+2*t+3)**2
    d = sqrt(2)*(249*t**2+54*t+65)/(11*t**2+2*t+3)**2
    f = a - b/c - d
    assert NS(Integral(f, (t, 0, 1)), 50) == NS((3*sqrt(2)-49*pi+162*atan(sqrt(2)))/12,50)
    # http://mathworld.wolfram.com/VardisIntegral.html
    assert NS(Integral(log(log(1/x))/(1+x+x**2), (x, 0, 1)), 15) == NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15)
    # http://mathworld.wolfram.com/AhmedsIntegral.html
    assert NS(Integral(atan(sqrt(x**2+2))/(sqrt(x**2+2)*(x**2+1)), (x, 0, 1)), 15) == NS(5*pi**2/96, 15)
    # http://mathworld.wolfram.com/AbelsIntegral.html
    assert NS(Integral(x/((exp(pi*x)-exp(-pi*x))*(x**2+1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4',15)
    # Complex part trimming
    # http://mathworld.wolfram.com/VardisIntegral.html
    assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \
        NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15)
    #
    # Endpoints causing trouble (rounding error in integration points -> complex log)
    assert NS(2+Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17)
    assert NS(2+Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20)
    assert NS(2+Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22)
    # Needs zero handling
    assert NS(pi - 4*Integral('sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0')
    # Oscillatory quadrature
    a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15)
    assert 0.49 < a < 0.51
    assert NS(Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928'
    assert NS(Integral(cos(pi*x+1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365'
Exemplo n.º 5
0
def test_solve_sqrt_3():
    R = Symbol("R")
    eq = sqrt(2) * R * sqrt(1 / (R + 1)) + (R + 1) * (sqrt(2) * sqrt(1 / (R + 1)) - 1)
    sol = solveset_complex(eq, R)

    assert sol == FiniteSet(
        *[
            S(5) / 3 + 4 * sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3,
            -sqrt(10) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
            + 40 * re(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            + sqrt(30) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
            + S(5) / 3
            + I
            * (
                -sqrt(30) * cos(atan(3 * sqrt(111) / 251) / 3) / 3
                - sqrt(10) * sin(atan(3 * sqrt(111) / 251) / 3) / 3
                + 40 * im(1 / ((-S(1) / 2 - sqrt(3) * I / 2) * (S(251) / 27 + sqrt(111) * I / 9) ** (S(1) / 3))) / 9
            ),
        ]
    )

    # the number of real roots will depend on the value of m: for m=1 there are 4
    # and for m=-1 there are none.
    eq = -sqrt((m - q) ** 2 + (-m / (2 * q) + S(1) / 2) ** 2) + sqrt(
        (-m ** 2 / 2 - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
        + (m ** 2 / 2 - m - sqrt(4 * m ** 4 - 4 * m ** 2 + 8 * m + 1) / 4 - S(1) / 4) ** 2
    )
    raises(NotImplementedError, lambda: solveset_real(eq, q))
Exemplo n.º 6
0
    def eval(cls, arg):
        from sympy import atan
        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Zero:
                return S.Zero
            elif arg is S.One:
                return S.Infinity
            elif arg is S.NegativeOne:
                return S.NegativeInfinity
            elif arg is S.Infinity:
                return -S.ImaginaryUnit * atan(arg)
            elif arg is S.NegativeInfinity:
                return S.ImaginaryUnit * atan(-arg)
            elif arg.is_negative:
                return -cls(-arg)
        else:
            if arg is S.ComplexInfinity:
                from sympy.calculus.util import AccumBounds
                return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2)

            i_coeff = arg.as_coefficient(S.ImaginaryUnit)

            if i_coeff is not None:
                return S.ImaginaryUnit * atan(i_coeff)
            else:
                if _coeff_isneg(arg):
                    return -cls(-arg)
Exemplo n.º 7
0
def test_issue_2850():
    assert manualintegrate(asin(x)*log(x), x) == -x*asin(x) - sqrt(-x**2 + 1) \
            + (x*asin(x) + sqrt(-x**2 + 1))*log(x) - Integral(sqrt(-x**2 + 1)/x, x)
    assert manualintegrate(acos(x)*log(x), x) == -x*acos(x) + sqrt(-x**2 + 1) + \
        (x*acos(x) - sqrt(-x**2 + 1))*log(x) + Integral(sqrt(-x**2 + 1)/x, x)
    assert manualintegrate(atan(x)*log(x), x) == -x*atan(x) + (x*atan(x) - \
            log(x**2 + 1)/2)*log(x) + log(x**2 + 1)/2 + Integral(log(x**2 + 1)/x, x)/2
Exemplo n.º 8
0
    def _expr_big_minus(cls, x, n):
        from sympy import atan, sqrt, pi

        if n.is_even:
            return atan(sqrt(x)) / sqrt(x)
        else:
            return (atan(sqrt(x)) - pi) / sqrt(x)
Exemplo n.º 9
0
def test_heurisch_trigonometric():
    assert heurisch(sin(x), x) == -cos(x)
    assert heurisch(pi*sin(x) + 1, x) == x - pi*cos(x)

    assert heurisch(cos(x), x) == sin(x)
    assert heurisch(tan(x), x) in [
        log(1 + tan(x)**2)/2,
        log(tan(x) + I) + I*x,
        log(tan(x) - I) - I*x,
    ]

    assert heurisch(sin(x)*sin(y), x) == -cos(x)*sin(y)
    assert heurisch(sin(x)*sin(y), y) == -cos(y)*sin(x)

    # gives sin(x) in answer when run via setup.py and cos(x) when run via py.test
    assert heurisch(sin(x)*cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2]
    assert heurisch(cos(x)/sin(x), x) == log(sin(x))

    assert heurisch(x*sin(7*x), x) == sin(7*x) / 49 - x*cos(7*x) / 7
    assert heurisch(1/pi/4 * x**2*cos(x), x) == 1/pi/4*(x**2*sin(x) -
                    2*sin(x) + 2*x*cos(x))

    assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \
        + (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)

    assert heurisch(sin(x)/(cos(x)**2+1), x) == -atan(cos(x)) #fixes issue 13723
    assert heurisch(1/(cos(x)+2), x) == 2*sqrt(3)*atan(sqrt(3)*tan(x/2)/3)/3
    assert heurisch(2*sin(x)*cos(x)/(sin(x)**4 + 1), x) == atan(sqrt(2)*sin(x)
        - 1) - atan(sqrt(2)*sin(x) + 1)

    assert heurisch(1/cosh(x), x) == 2*atan(tanh(x/2))
Exemplo n.º 10
0
def test_atan2_expansion():
    assert cancel(atan2(x + 1, x ** 2).diff(x) - atan((x + 1) / x ** 2).diff(x)) == 0
    assert cancel(atan(x / y).series(x, 0, 5) - atan2(x, y).series(x, 0, 5) + atan2(0, y) - atan(0)) == O(x ** 5)
    assert cancel(atan(x / y).series(y, 1, 4) - atan2(x, y).series(y, 1, 4) + atan2(x, 1) - atan(x)) == O(y ** 4)
    assert cancel(
        atan((x + y) / y).series(y, 1, 3) - atan2(x + y, y).series(y, 1, 3) + atan2(1 + x, 1) - atan(1 + x)
    ) == O(y ** 3)
    assert Matrix([atan2(x, y)]).jacobian([x, y]) == Matrix([[y / (x ** 2 + y ** 2), -x / (x ** 2 + y ** 2)]])
Exemplo n.º 11
0
def test_atan2_expansion():
    assert cancel(atan2(x ** 2, x + 1).diff(x) - atan(x ** 2 / (x + 1)).diff(x)) == 0
    assert cancel(atan(y / x).series(y, 0, 5) - atan2(y, x).series(y, 0, 5) + atan2(0, x) - atan(0)) == O(y ** 5)
    assert cancel(atan(y / x).series(x, 1, 4) - atan2(y, x).series(x, 1, 4) + atan2(y, 1) - atan(y)) == O(x ** 4)
    assert cancel(
        atan((y + x) / x).series(x, 1, 3) - atan2(y + x, x).series(x, 1, 3) + atan2(1 + y, 1) - atan(1 + y)
    ) == O(x ** 3)
    assert Matrix([atan2(y, x)]).jacobian([y, x]) == Matrix([[x / (y ** 2 + x ** 2), -y / (y ** 2 + x ** 2)]])
Exemplo n.º 12
0
def test_atan2():
    assert refine(atan2(y, x), Q.real(y) & Q.positive(x)) == atan(y/x)
    assert refine(atan2(y, x), Q.negative(y) & Q.positive(x)) == atan(y/x)
    assert refine(atan2(y, x), Q.negative(y) & Q.negative(x)) == atan(y/x) - pi
    assert refine(atan2(y, x), Q.positive(y) & Q.negative(x)) == atan(y/x) + pi
    assert refine(atan2(y, x), Q.zero(y) & Q.negative(x)) == pi
    assert refine(atan2(y, x), Q.positive(y) & Q.zero(x)) == pi/2
    assert refine(atan2(y, x), Q.negative(y) & Q.zero(x)) == -pi/2
    assert refine(atan2(y, x), Q.zero(y) & Q.zero(x)) == nan
Exemplo n.º 13
0
def test_manualintegrate_parts():
    assert manualintegrate(exp(x) * sin(x), x) == \
        (exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2
    assert manualintegrate(2*x*cos(x), x) == 2*x*sin(x) + 2*cos(x)
    assert manualintegrate(x * log(x), x) == x**2*log(x)/2 - x**2/4
    assert manualintegrate(log(x), x) == x * log(x) - x
    assert manualintegrate((3*x**2 + 5) * exp(x), x) == \
        -6*x*exp(x) + (3*x**2 + 5)*exp(x) + 6*exp(x)
    assert manualintegrate(atan(x), x) == x*atan(x) - log(x**2 + 1)/2
Exemplo n.º 14
0
def test_atan2():
    assert atan2.nargs == FiniteSet(2)
    assert atan2(0, 0) == S.NaN
    assert atan2(0, 1) == 0
    assert atan2(1, 1) == pi/4
    assert atan2(1, 0) == pi/2
    assert atan2(1, -1) == 3*pi/4
    assert atan2(0, -1) == pi
    assert atan2(-1, -1) == -3*pi/4
    assert atan2(-1, 0) == -pi/2
    assert atan2(-1, 1) == -pi/4
    i = symbols('i', imaginary=True)
    r = symbols('r', real=True)
    eq = atan2(r, i)
    ans = -I*log((i + I*r)/sqrt(i**2 + r**2))
    reps = ((r, 2), (i, I))
    assert eq.subs(reps) == ans.subs(reps)

    x = Symbol('x', negative=True)
    y = Symbol('y', negative=True)
    assert atan2(y, x) == atan(y/x) - pi
    y = Symbol('y', nonnegative=True)
    assert atan2(y, x) == atan(y/x) + pi
    y = Symbol('y')
    assert atan2(y, x) == atan2(y, x, evaluate=False)

    u = Symbol("u", positive=True)
    assert atan2(0, u) == 0
    u = Symbol("u", negative=True)
    assert atan2(0, u) == pi

    assert atan2(y, oo) ==  0
    assert atan2(y, -oo)==  2*pi*Heaviside(re(y)) - pi

    assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2))
    assert atan2(y, x).rewrite(atan) == 2*atan(y/(x + sqrt(x**2 + y**2)))

    ex = atan2(y, x) - arg(x + I*y)
    assert ex.subs({x:2, y:3}).rewrite(arg) == 0
    assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5)
    assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I)
    assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(2/S(3)) + atan(3/S(2))
    i = symbols('i', imaginary=True)
    r = symbols('r', real=True)
    e = atan2(i, r)
    rewrite = e.rewrite(arg)
    reps = {i: I, r: -2}
    assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2))
    assert (e - rewrite).subs(reps).equals(0)

    assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y))

    assert diff(atan2(y, x), x) == -y/(x**2 + y**2)
    assert diff(atan2(y, x), y) == x/(x**2 + y**2)

    assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2)
    assert simplify(diff(atan2(y, x).rewrite(log), y)) ==  x/(x**2 + y**2)
Exemplo n.º 15
0
def test_invert_real():
    x = Symbol('x', real=True)
    x = Dummy(real=True)
    n = Symbol('n')
    d = Dummy()
    assert solveset(abs(x) - n, x) == solveset(abs(x) - d, x) == EmptySet()

    n = Symbol('n', real=True)
    assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))

    assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
    assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
    assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))

    assert invert_real(exp(x) + 3, y, x) == (x, FiniteSet(log(y - 3)))
    assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))

    assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
    assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
    assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))

    assert invert_real(Abs(x), y, x) == (x, FiniteSet(-y, y))

    assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
    assert invert_real(2**exp(x), y, x) == (x, FiniteSet(log(log(y)/log(2))))

    assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
    assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))

    raises(ValueError, lambda: invert_real(x, x, x))
    raises(ValueError, lambda: invert_real(x**pi, y, x))
    raises(ValueError, lambda: invert_real(S.One, y, x))

    assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))

    assert invert_real(Abs(x**31 + x + 1), y, x) == (x**31 + x,
                                                     FiniteSet(-y - 1, y - 1))

    assert invert_real(tan(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    assert invert_real(tan(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))

    assert invert_real(cot(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))
    assert invert_real(cot(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))

    assert invert_real(tan(tan(x)), y, x) == \
        (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    x = Symbol('x', positive=True)
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
Exemplo n.º 16
0
def test_nsimplify():
    x = Symbol("x")
    assert nsimplify(0) == 0
    assert nsimplify(-1) == -1
    assert nsimplify(1) == 1
    assert nsimplify(1 + x) == 1 + x
    assert nsimplify(2.7) == Rational(27, 10)
    assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5)) / 2
    assert nsimplify((1 + sqrt(5)) / 4, [GoldenRatio]) == GoldenRatio / 2
    assert nsimplify(2 / GoldenRatio, [GoldenRatio]) == 2 * GoldenRatio - 2
    assert nsimplify(exp(5 * pi * I / 3, evaluate=False)) == sympify("1/2 - sqrt(3)*I/2")
    assert nsimplify(sin(3 * pi / 5, evaluate=False)) == sympify("sqrt(sqrt(5)/8 + 5/8)")
    assert nsimplify(sqrt(atan("1", evaluate=False)) * (2 + I), [pi]) == sqrt(pi) + sqrt(pi) / 2 * I
    assert nsimplify(2 + exp(2 * atan("1/4") * I)) == sympify("49/17 + 8*I/17")
    assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
    assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
    assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
    assert nsimplify(2.0 ** (1 / 3.0), tolerance=0.001) == Rational(635, 504)
    assert nsimplify(2.0 ** (1 / 3.0), tolerance=0.001, full=True) == 2 ** Rational(1, 3)
    assert nsimplify(x + 0.5, rational=True) == Rational(1, 2) + x
    assert nsimplify(1 / 0.3 + x, rational=True) == Rational(10, 3) + x
    assert nsimplify(log(3).n(), rational=True) == sympify("109861228866811/100000000000000")
    assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi * log(2) / 8
    assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == -pi / 4 - log(2) + S(7) / 4
    assert nsimplify(x / 7.0) == x / 7
    assert nsimplify(pi / 1e2) == pi / 100
    assert nsimplify(pi / 1e2, rational=False) == pi / 100.0
    assert nsimplify(pi / 1e-7) == 10000000 * pi
    assert not nsimplify(factor(-3.0 * z ** 2 * (z ** 2) ** (-2.5) + 3 * (z ** 2) ** (-1.5))).atoms(Float)
    e = x ** 0.0
    assert e.is_Pow and nsimplify(x ** 0.0) == 1
    assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
    assert nsimplify(3.333333, tolerance=0.01, rational=True) == Rational(10, 3)
    assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
    assert nsimplify(3.666666, tolerance=0.01, rational=True) == Rational(11, 3)
    assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
    assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
    assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
    assert nsimplify(-203.1) == -S(2031) / 10
    assert nsimplify(0.2, tolerance=0) == S.One / 5
    assert nsimplify(-0.2, tolerance=0) == -S.One / 5
    assert nsimplify(0.2222, tolerance=0) == S(1111) / 5000
    assert nsimplify(-0.2222, tolerance=0) == -S(1111) / 5000
    # issue 7211, PR 4112
    assert nsimplify(S(2e-8)) == S(1) / 50000000
    # issue 7322 direct test
    assert nsimplify(1e-42, rational=True) != 0
    # issue 10336
    inf = Float("inf")
    infs = (-oo, oo, inf, -inf)
    for i in infs:
        ans = sign(i) * oo
        assert nsimplify(i) == ans
        assert nsimplify(i + x) == x + ans
Exemplo n.º 17
0
def test_manualintegrate_inversetrig():
    # atan
    assert manualintegrate(exp(x) / (1 + exp(2*x)), x) == atan(exp(x))
    assert manualintegrate(1 / (4 + 9 * x**2), x) == atan(3 * x/2) / 6
    assert manualintegrate(1 / (16 + 16 * x**2), x) == atan(x) / 16
    assert manualintegrate(1 / (4 + x**2), x) == atan(x / 2) / 2
    assert manualintegrate(1 / (1 + 4 * x**2), x) == atan(2*x) / 2
    assert manualintegrate(1/(a + b*x**2), x) == \
        Piecewise(((sqrt(a/b)*atan(x*sqrt(b/a))/a), And(a > 0, b > 0)))
    assert manualintegrate(1/(4 + b*x**2), x) == \
        Piecewise((sqrt(1/b)*atan(sqrt(b)*x/2)/2, b > 0))
    assert manualintegrate(1/(a + 4*x**2), x) == \
        Piecewise((atan(2*x*sqrt(1/a))/(2*sqrt(a)), a > 0))
    assert manualintegrate(1/(4 + 4*x**2), x) == atan(x) / 4

    # asin
    assert manualintegrate(1/sqrt(1-x**2), x) == asin(x)
    assert manualintegrate(1/sqrt(4-4*x**2), x) == asin(x)/2
    assert manualintegrate(3/sqrt(1-9*x**2), x) == asin(3*x)
    assert manualintegrate(1/sqrt(4-9*x**2), x) == asin(3*x/2)/3

    # asinh
    assert manualintegrate(1/sqrt(x**2 + 1), x) == \
        asinh(x)
    assert manualintegrate(1/sqrt(x**2 + 4), x) == \
        asinh(x/2)
    assert manualintegrate(1/sqrt(4*x**2 + 4), x) == \
        asinh(x)/2
    assert manualintegrate(1/sqrt(4*x**2 + 1), x) == \
        asinh(2*x)/2
    assert manualintegrate(1/sqrt(a*x**2 + 1), x) == \
        Piecewise((sqrt(-1/a)*asin(x*sqrt(-a)), a < 0), (sqrt(1/a)*asinh(sqrt(a)*x), a > 0))
    assert manualintegrate(1/sqrt(a + x**2), x) == \
        Piecewise((asinh(x*sqrt(1/a)), a > 0), (acosh(x*sqrt(-1/a)), a < 0))

    # acosh
    assert manualintegrate(1/sqrt(x**2 - 1), x) == \
        acosh(x)
    assert manualintegrate(1/sqrt(x**2 - 4), x) == \
        acosh(x/2)
    assert manualintegrate(1/sqrt(4*x**2 - 4), x) == \
        acosh(x)/2
    assert manualintegrate(1/sqrt(9*x**2 - 1), x) == \
        acosh(3*x)/3
    assert manualintegrate(1/sqrt(a*x**2 - 4), x) == \
        Piecewise((sqrt(1/a)*acosh(sqrt(a)*x/2), a > 0))
    assert manualintegrate(1/sqrt(-a + 4*x**2), x) == \
        Piecewise((asinh(2*x*sqrt(-1/a))/2, -a > 0), (acosh(2*x*sqrt(1/a))/2, -a < 0))

    # piecewise
    assert manualintegrate(1/sqrt(a-b*x**2), x) == \
        Piecewise((sqrt(a/b)*asin(x*sqrt(b/a))/sqrt(a), And(-b < 0, a > 0)),
                  (sqrt(-a/b)*asinh(x*sqrt(-b/a))/sqrt(a), And(-b > 0, a > 0)),
                  (sqrt(a/b)*acosh(x*sqrt(b/a))/sqrt(-a), And(-b > 0, a < 0)))
    assert manualintegrate(1/sqrt(a + b*x**2), x) == \
        Piecewise((sqrt(-a/b)*asin(x*sqrt(-b/a))/sqrt(a), And(a > 0, b < 0)),
                  (sqrt(a/b)*asinh(x*sqrt(b/a))/sqrt(a), And(a > 0, b > 0)),
                  (sqrt(-a/b)*acosh(x*sqrt(-b/a))/sqrt(-a), And(a < 0, b > 0)))
Exemplo n.º 18
0
    def test_main_trig_functions_numeric(self):
        print "\n\n\n" + " Test if sin, cos and tan and inverses Work Numerically ".center(75, "#")
        from sympy import symbols, sin, cos, tan, asin, acos, atan
        x, y = symbols('x,y')
        test_expr = sin(x) + cos(x) + tan(x) + asin(y) + acos(y) + atan(y)
        target_expr = sin(x) + cos(x) + tan(x) + asin(y) + acos(y) + atan(y)

        print "Target expression: '%s'" % target_expr
        print "Test expression: '%s'" % test_expr
        equal = api.numeric_equality(test_expr, target_expr)

        self.assertTrue(equal, "Expected expressions to be found numerically equal!")
        print "   PASS   ".center(75, "#")
Exemplo n.º 19
0
def test_fps__hyper():
    f = sin(x)
    assert fps(f, x).truncate() == x - x ** 3 / 6 + x ** 5 / 120 + O(x ** 6)

    f = cos(x)
    assert fps(f, x).truncate() == 1 - x ** 2 / 2 + x ** 4 / 24 + O(x ** 6)

    f = exp(x)
    assert fps(f, x).truncate() == 1 + x + x ** 2 / 2 + x ** 3 / 6 + x ** 4 / 24 + x ** 5 / 120 + O(x ** 6)

    f = atan(x)
    assert fps(f, x).truncate() == x - x ** 3 / 3 + x ** 5 / 5 + O(x ** 6)

    f = exp(acos(x))
    assert fps(f, x).truncate() == (
        exp(pi / 2)
        - x * exp(pi / 2)
        + x ** 2 * exp(pi / 2) / 2
        - x ** 3 * exp(pi / 2) / 3
        + 5 * x ** 4 * exp(pi / 2) / 24
        - x ** 5 * exp(pi / 2) / 6
        + O(x ** 6)
    )

    f = exp(acosh(x))
    assert fps(f, x).truncate() == I + x - I * x ** 2 / 2 - I * x ** 4 / 8 + O(x ** 6)

    f = atan(1 / x)
    assert fps(f, x).truncate() == pi / 2 - x + x ** 3 / 3 - x ** 5 / 5 + O(x ** 6)

    f = x * atan(x) - log(1 + x ** 2) / 2
    assert fps(f, x, rational=False).truncate() == x ** 2 / 2 - x ** 4 / 12 + O(x ** 6)

    f = log(1 + x)
    assert fps(f, x, rational=False).truncate() == x - x ** 2 / 2 + x ** 3 / 3 - x ** 4 / 4 + x ** 5 / 5 + O(x ** 6)

    f = airyai(x ** 2)
    assert fps(f, x).truncate() == (
        3 ** Rational(5, 6) * gamma(Rational(1, 3)) / (6 * pi)
        - 3 ** Rational(2, 3) * x ** 2 / (3 * gamma(Rational(1, 3)))
        + O(x ** 6)
    )

    f = exp(x) * sin(x)
    assert fps(f, x).truncate() == x + x ** 2 + x ** 3 / 3 - x ** 5 / 30 + O(x ** 6)

    f = exp(x) * sin(x) / x
    assert fps(f, x).truncate() == 1 + x + x ** 2 / 3 - x ** 4 / 30 - x ** 5 / 90 + O(x ** 6)

    f = sin(x) * cos(x)
    assert fps(f, x).truncate() == x - 2 * x ** 3 / 3 + 2 * x ** 5 / 15 + O(x ** 6)
Exemplo n.º 20
0
def test_rational_algorithm():
    f = 1 / ((x - 1) ** 2 * (x - 2))
    assert rational_algorithm(f, x, k) == (-2 ** (-k - 1) + 1 - (factorial(k + 1) / factorial(k)), 0, 0)

    f = (1 + x + x ** 2 + x ** 3) / ((x - 1) * (x - 2))
    assert rational_algorithm(f, x, k) == (-15 * 2 ** (-k - 1) + 4, x + 4, 0)

    f = z / (y * m - m * x - y * x + x ** 2)
    assert rational_algorithm(f, x, k) == (((-y ** (-k - 1) * z) / (y - m)) + ((m ** (-k - 1) * z) / (y - m)), 0, 0)

    f = x / (1 - x - x ** 2)
    assert rational_algorithm(f, x, k) is None
    assert rational_algorithm(f, x, k, full=True) == (
        ((-Rational(1, 2) + sqrt(5) / 2) ** (-k - 1) * (-sqrt(5) / 10 + Rational(1, 2)))
        + ((-sqrt(5) / 2 - Rational(1, 2)) ** (-k - 1) * (sqrt(5) / 10 + Rational(1, 2))),
        0,
        0,
    )

    f = 1 / (x ** 2 + 2 * x + 2)
    assert rational_algorithm(f, x, k) is None
    assert rational_algorithm(f, x, k, full=True) == (
        (I * (-1 + I) ** (-k - 1)) / 2 - (I * (-1 - I) ** (-k - 1)) / 2,
        0,
        0,
    )

    f = log(1 + x)
    assert rational_algorithm(f, x, k) == (-(-1) ** (-k) / k, 0, 1)

    f = atan(x)
    assert rational_algorithm(f, x, k) is None
    assert rational_algorithm(f, x, k, full=True) == (((I * I ** (-k)) / 2 - (I * (-I) ** (-k)) / 2) / k, 0, 1)

    f = x * atan(x) - log(1 + x ** 2) / 2
    assert rational_algorithm(f, x, k) is None
    assert rational_algorithm(f, x, k, full=True) == (
        ((I * I ** (-k + 1)) / 2 - (I * (-I) ** (-k + 1)) / 2) / (k * (k - 1)),
        0,
        2,
    )

    f = log((1 + x) / (1 - x)) / 2 - atan(x)
    assert rational_algorithm(f, x, k) is None
    assert rational_algorithm(f, x, k, full=True) == (
        (-(-1) ** (-k) / 2 - (I * I ** (-k)) / 2 + (I * (-I) ** (-k)) / 2 + Rational(1, 2)) / k,
        0,
        1,
    )

    assert rational_algorithm(cos(x), x, k) is None
Exemplo n.º 21
0
def test_fps__rational():
    assert fps(1/x) == (1/x)
    assert fps((x**2 + x + 1) / x**3, dir=-1) == (x**2 + x + 1) / x**3

    f = 1 / ((x - 1)**2 * (x - 2))
    assert fps(f, x).truncate() == \
        (-Rational(1, 2) - 5*x/4 - 17*x**2/8 - 49*x**3/16 - 129*x**4/32 -
         321*x**5/64 + O(x**6))

    f = (1 + x + x**2 + x**3) / ((x - 1) * (x - 2))
    assert fps(f, x).truncate() == \
        (Rational(1, 2) + 5*x/4 + 17*x**2/8 + 49*x**3/16 + 113*x**4/32 +
         241*x**5/64 + O(x**6))

    f = x / (1 - x - x**2)
    assert fps(f, x, full=True).truncate() == \
        x + x**2 + 2*x**3 + 3*x**4 + 5*x**5 + O(x**6)

    f = 1 / (x**2 + 2*x + 2)
    assert fps(f, x, full=True).truncate() == \
        Rational(1, 2) - x/2 + x**2/4 - x**4/8 + x**5/8 + O(x**6)

    f = log(1 + x)
    assert fps(f, x).truncate() == \
        x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
    assert fps(f, x, dir=1).truncate() == fps(f, x, dir=-1).truncate()
    assert fps(f, x, 2).truncate() == \
        (log(3) - Rational(2, 3) - (x - 2)**2/18 + (x - 2)**3/81 -
         (x - 2)**4/324 + (x - 2)**5/1215 + x/3 + O((x - 2)**6, (x, 2)))
    assert fps(f, x, 2, dir=-1).truncate() == \
        (log(3) - Rational(2, 3) - (-x + 2)**2/18 - (-x + 2)**3/81 -
         (-x + 2)**4/324 - (-x + 2)**5/1215 + x/3 + O((x - 2)**6, (x, 2)))

    f = atan(x)
    assert fps(f, x, full=True).truncate() == x - x**3/3 + x**5/5 + O(x**6)
    assert fps(f, x, full=True, dir=1).truncate() == \
        fps(f, x, full=True, dir=-1).truncate()
    assert fps(f, x, 2, full=True).truncate() == \
        (atan(2) - Rational(2, 5) - 2*(x - 2)**2/25 + 11*(x - 2)**3/375 -
         6*(x - 2)**4/625 + 41*(x - 2)**5/15625 + x/5 + O((x - 2)**6, (x, 2)))
    assert fps(f, x, 2, full=True, dir=-1).truncate() == \
        (atan(2) - Rational(2, 5) - 2*(-x + 2)**2/25 - 11*(-x + 2)**3/375 -
         6*(-x + 2)**4/625 - 41*(-x + 2)**5/15625 + x/5 + O((x - 2)**6, (x, 2)))

    f = x*atan(x) - log(1 + x**2) / 2
    assert fps(f, x, full=True).truncate() == x**2/2 - x**4/12 + O(x**6)

    f = log((1 + x) / (1 - x)) / 2 - atan(x)
    assert fps(f, x, full=True).truncate(n=10) == 2*x**3/3 + 2*x**7/7 + O(x**10)
Exemplo n.º 22
0
def test_atan():
    assert atan(nan) == nan

    assert atan(oo) == pi/2
    assert atan(-oo) == -pi/2

    assert atan(0) == 0
    assert atan(1) == pi/4
    assert atan(sqrt(3)) == pi/3
    assert atan(oo) == pi/2
    assert atan(x).diff(x) == 1/(1 + x**2)

    assert atan(r).is_real is True

    assert atan(-2*I) == -I*atanh(2)
Exemplo n.º 23
0
def test_issue_1572_1364_1368():
    assert solve((sqrt(x**2 - 1) - 2)) in ([sqrt(5), -sqrt(5)],
                                           [-sqrt(5), sqrt(5)])
    assert set(solve((2**exp(y**2/x) + 2)/(x**2 + 15), y)) == set([
        -sqrt(x)*sqrt(-log(log(2)) + log(log(2) + I*pi)),
        sqrt(x)*sqrt(-log(log(2)) + log(log(2) + I*pi))])

    C1, C2 = symbols('C1 C2')
    f = Function('f')
    assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))]
    a = Symbol('a')
    E = S.Exp1
    assert solve(1 - log(a + 4*x**2), x) in (
        [-sqrt(-a + E)/2, sqrt(-a + E)/2],
        [sqrt(-a + E)/2, -sqrt(-a + E)/2]
    )
    assert solve(log(a**(-3) - x**2)/a, x) in (
        [-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))],
        [sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],)
    assert solve(1 - log(a + 4*x**2), x) in (
        [-sqrt(-a + E)/2, sqrt(-a + E)/2],
        [sqrt(-a + E)/2, -sqrt(-a + E)/2],)
    assert set(solve((
        a**2 + 1) * (sin(a*x) + cos(a*x)), x)) == set([-pi/(4*a), 3*pi/(4*a)])
    assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [2*atanh(S.Half)/a]
    assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \
        set([
            2*atanh(-1 + sqrt(2))/a,
            2*atanh(S(1)/2 + sqrt(5)/2)/a,
            2*atanh(-sqrt(2) - 1)/a,
            2*atanh(-sqrt(5)/2 + S(1)/2)/a
             ])
    assert solve(atan(x) - 1) == [tan(1)]
Exemplo n.º 24
0
def test_acos_rewrite():
    assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2))
    assert acos(x).rewrite(atan) == \
           atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2))
    assert acos(0).rewrite(atan) == S.Pi/2
    assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log)
    assert acos(x).rewrite(asin) == S.Pi/2 - asin(x)
Exemplo n.º 25
0
def test_atan2():
    assert atan2(0, 0) == S.NaN
    assert atan2(0, 1) == 0
    assert atan2(1, 1) == pi/4
    assert atan2(1, 0) == pi/2
    assert atan2(1, -1) == 3*pi/4
    assert atan2(0, -1) == pi
    assert atan2(-1, -1) == -3*pi/4
    assert atan2(-1, 0) == -pi/2
    assert atan2(-1, 1) == -pi/4

    u = Symbol("u", positive=True)
    assert atan2(0, u) == 0
    u = Symbol("u", negative=True)
    assert atan2(0, u) == pi

    assert atan2(y, oo) ==  0
    assert atan2(y, -oo)==  2*pi*Heaviside(re(y)) - pi

    assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2))
    assert atan2(y, x).rewrite(atan) == 2*atan(y/(x + sqrt(x**2 + y**2)))

    assert diff(atan2(y, x), x) == -y/(x**2 + y**2)
    assert diff(atan2(y, x), y) == x/(x**2 + y**2)

    assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2)
    assert simplify(diff(atan2(y, x).rewrite(log), y)) ==  x/(x**2 + y**2)

    assert isinstance(atan2(2, 3*I).n(), atan2)
Exemplo n.º 26
0
def eval_trigsubstitution(theta, func, rewritten, substep, restriction, integrand, symbol):
    func = func.subs(sympy.sec(theta), 1/sympy.cos(theta))

    trig_function = list(func.find(TrigonometricFunction))
    assert len(trig_function) == 1
    trig_function = trig_function[0]
    relation = sympy.solve(symbol - func, trig_function)
    assert len(relation) == 1
    numer, denom = sympy.fraction(relation[0])

    if isinstance(trig_function, sympy.sin):
        opposite = numer
        hypotenuse = denom
        adjacent = sympy.sqrt(denom**2 - numer**2)
        inverse = sympy.asin(relation[0])
    elif isinstance(trig_function, sympy.cos):
        adjacent = numer
        hypotenuse = denom
        opposite = sympy.sqrt(denom**2 - numer**2)
        inverse = sympy.acos(relation[0])
    elif isinstance(trig_function, sympy.tan):
        opposite = numer
        adjacent = denom
        hypotenuse = sympy.sqrt(denom**2 + numer**2)
        inverse = sympy.atan(relation[0])

    substitution = [
        (sympy.sin(theta), opposite/hypotenuse),
        (sympy.cos(theta), adjacent/hypotenuse),
        (sympy.tan(theta), opposite/adjacent),
        (theta, inverse)
    ]
    return sympy.Piecewise(
        (_manualintegrate(substep).subs(substitution).trigsimp(), restriction)
    )
Exemplo n.º 27
0
def test_issue_6746():
    y = Symbol('y')
    n = Symbol('n')
    assert manualintegrate(y**x, x) == \
        Piecewise((x, Eq(log(y), 0)), (y**x/log(y), True))
    assert manualintegrate(y**(n*x), x) == \
        Piecewise(
            (x, Eq(n, 0)),
            (Piecewise(
                (n*x, Eq(log(y), 0)),
                (y**(n*x)/log(y), True))/n, True))
    assert manualintegrate(exp(n*x), x) == \
        Piecewise((x, Eq(n, 0)), (exp(n*x)/n, True))

    y = Symbol('y', positive=True)
    assert manualintegrate((y + 1)**x, x) == (y + 1)**x/log(y + 1)
    y = Symbol('y', zero=True)
    assert manualintegrate((y + 1)**x, x) == x
    y = Symbol('y')
    n = Symbol('n', nonzero=True)
    assert manualintegrate(y**(n*x), x) == \
        Piecewise((n*x, Eq(log(y), 0)), (y**(n*x)/log(y), True))/n
    y = Symbol('y', positive=True)
    assert manualintegrate((y + 1)**(n*x), x) == \
        (y + 1)**(n*x)/(n*log(y + 1))
    a = Symbol('a', negative=True)
    assert manualintegrate(1 / (a + b*x**2), x) == \
        Piecewise((atan(x/sqrt(a/b))/(b*sqrt(a/b)), a/b > 0), \
        (-acoth(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 > -a/b)), \
        (-atanh(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 < -a/b)))
Exemplo n.º 28
0
def test_intrinsic_math1_codegen():
    # not included: log10
    from sympy import acos, asin, atan, ceiling, cos, cosh, floor, log, ln, \
        sin, sinh, sqrt, tan, tanh, N
    x = symbols('x')
    name_expr = [
        ("test_fabs", abs(x)),
        ("test_acos", acos(x)),
        ("test_asin", asin(x)),
        ("test_atan", atan(x)),
        ("test_cos", cos(x)),
        ("test_cosh", cosh(x)),
        ("test_log", log(x)),
        ("test_ln", ln(x)),
        ("test_sin", sin(x)),
        ("test_sinh", sinh(x)),
        ("test_sqrt", sqrt(x)),
        ("test_tan", tan(x)),
        ("test_tanh", tanh(x)),
    ]
    numerical_tests = []
    for name, expr in name_expr:
        for xval in 0.2, 0.5, 0.8:
            expected = N(expr.subs(x, xval))
            numerical_tests.append((name, (xval,), expected, 1e-14))
    for lang, commands in valid_lang_commands:
        if lang == "C":
            name_expr_C = [("test_floor", floor(x)), ("test_ceil", ceiling(x))]
        else:
            name_expr_C = []
        run_test("intrinsic_math1", name_expr + name_expr_C, numerical_tests, lang, commands)
Exemplo n.º 29
0
def test_messy():
    from sympy import (laplace_transform, Si, Shi, Chi, atan, Piecewise,
                       acoth, E1, besselj, acosh, asin, And, re,
                       fourier_transform, sqrt)
    assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi/2)/s, 0, True)

    assert laplace_transform(Shi(x), x, s) == (acoth(s)/s, 1, True)

    # where should the logs be simplified?
    assert laplace_transform(Chi(x), x, s) == \
        ((log(s**(-2)) - log((s**2 - 1)/s**2))/(2*s), 1, True)

    # TODO maybe simplify the inequalities?
    assert laplace_transform(besselj(a, x), x, s)[1:] == \
        (0, And(S(0) < re(a/2) + S(1)/2, S(0) < re(a/2) + 1))

    # NOTE s < 0 can be done, but argument reduction is not good enough yet
    assert fourier_transform(besselj(1, x)/x, x, s, noconds=False) == \
        (Piecewise((0, 4*abs(pi**2*s**2) > 1),
                   (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0)
    # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons)
    #                       - folding could be better

    assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \
        log(1 + sqrt(2))
    assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \
        log(S(1)/2 + sqrt(2)/2)

    assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \
        Piecewise((-acosh(1/x), 1 < abs(x**(-2))), (I*asin(1/x), True))
Exemplo n.º 30
0
def test_heuristic():
    x = Symbol("x", real=True)
    assert heuristics(sin(1 / x) + atan(x), x, 0, '+') == AccumBounds(-1, 1)
    assert limit(log(2 + sqrt(atan(x)) * sqrt(sin(1 / x))), x, 0) == log(2)
def eval_arctan(a, b, c, integrand, symbol):
    return a / b * 1 / sympy.sqrt(c / b) * sympy.atan(
        symbol / sympy.sqrt(c / b))
Exemplo n.º 32
0
def test_heuristic_function_sum():
    eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x +
       (1 - 3*f(x))*(x/f(x)**2))
    i = infinitesimals(eq, hint='function_sum')
    assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}]
    assert checkinfsol(eq, i)[0]
Exemplo n.º 33
0
def test_Abs():
    raises(TypeError, lambda: Abs(Interval(2, 3)))  # issue 8717

    x, y = symbols('x,y')
    assert sign(sign(x)) == sign(x)
    assert sign(x*y).func is sign
    assert Abs(0) == 0
    assert Abs(1) == 1
    assert Abs(-1) == 1
    assert Abs(I) == 1
    assert Abs(-I) == 1
    assert Abs(nan) == nan
    assert Abs(zoo) == oo
    assert Abs(I * pi) == pi
    assert Abs(-I * pi) == pi
    assert Abs(I * x) == Abs(x)
    assert Abs(-I * x) == Abs(x)
    assert Abs(-2*x) == 2*Abs(x)
    assert Abs(-2.0*x) == 2.0*Abs(x)
    assert Abs(2*pi*x*y) == 2*pi*Abs(x*y)
    assert Abs(conjugate(x)) == Abs(x)
    assert conjugate(Abs(x)) == Abs(x)
    assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2)

    a = Symbol('a', positive=True)
    assert Abs(2*pi*x*a) == 2*pi*a*Abs(x)
    assert Abs(2*pi*I*x*a) == 2*pi*a*Abs(x)

    x = Symbol('x', real=True)
    n = Symbol('n', integer=True)
    assert Abs((-1)**n) == 1
    assert x**(2*n) == Abs(x)**(2*n)
    assert Abs(x).diff(x) == sign(x)
    assert abs(x) == Abs(x)  # Python built-in
    assert Abs(x)**3 == x**2*Abs(x)
    assert Abs(x)**4 == x**4
    assert (
        Abs(x)**(3*n)).args == (Abs(x), 3*n)  # leave symbolic odd unchanged
    assert (1/Abs(x)).args == (Abs(x), -1)
    assert 1/Abs(x)**3 == 1/(x**2*Abs(x))
    assert Abs(x)**-3 == Abs(x)/(x**4)
    assert Abs(x**3) == x**2*Abs(x)
    assert Abs(I**I) == exp(-pi/2)
    assert Abs((4 + 5*I)**(6 + 7*I)) == 68921*exp(-7*atan(S(5)/4))
    y = Symbol('y', real=True)
    assert Abs(I**y) == 1
    y = Symbol('y')
    assert Abs(I**y) == exp(-pi*im(y)/2)

    x = Symbol('x', imaginary=True)
    assert Abs(x).diff(x) == -sign(x)

    eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
    # if there is a fast way to know when you can and when you cannot prove an
    # expression like this is zero then the equality to zero is ok
    assert abs(eq).func is Abs or abs(eq) == 0
    # but sometimes it's hard to do this so it's better not to load
    # abs down with tests that will be very slow
    q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
    p = expand(q**3)**Rational(1, 3)
    d = p - q
    assert abs(d).func is Abs or abs(d) == 0

    assert Abs(4*exp(pi*I/4)) == 4
    assert Abs(3**(2 + I)) == 9
    assert Abs((-3)**(1 - I)) == 3*exp(pi)

    assert Abs(oo) is oo
    assert Abs(-oo) is oo
    assert Abs(oo + I) is oo
    assert Abs(oo + I*oo) is oo

    a = Symbol('a', algebraic=True)
    t = Symbol('t', transcendental=True)
    x = Symbol('x')
    assert re(a).is_algebraic
    assert re(x).is_algebraic is None
    assert re(t).is_algebraic is False
    assert Abs(x).fdiff() == sign(x)
    raises(ArgumentIndexError, lambda: Abs(x).fdiff(2))

    # doesn't have recursion error
    arg = sqrt(acos(1 - I)*acos(1 + I))
    assert abs(arg) == arg

    # special handling to put Abs in denom
    assert abs(1/x) == 1/Abs(x)
    e = abs(2/x**2)
    assert e.is_Mul and e == 2/Abs(x**2)
    assert unchanged(Abs, y/x)
    assert unchanged(Abs, x/(x + 1))
    assert unchanged(Abs, x*y)
    p = Symbol('p', positive=True)
    assert abs(x/p) == abs(x)/p

    # coverage
    assert unchanged(Abs, Symbol('x', real=True)**y)
Exemplo n.º 34
0
def test_asin_rewrite():
    assert asin(x).rewrite(log) == -I * log(I * x + sqrt(1 - x**2))
    assert asin(x).rewrite(atan) == 2 * atan(x / (1 + sqrt(1 - x**2)))
    assert asin(x).rewrite(acos) == S.Pi / 2 - acos(x)
Exemplo n.º 35
0
def test_atan_rewrite():
    assert atan(x).rewrite(log) == I * log((1 - I * x) / (1 + I * x)) / 2
Exemplo n.º 36
0
def test_nsimplify():
    x = Symbol("x")
    assert nsimplify(0) == 0
    assert nsimplify(-1) == -1
    assert nsimplify(1) == 1
    assert nsimplify(1 + x) == 1 + x
    assert nsimplify(2.7) == Rational(27, 10)
    assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5)) / 2
    assert nsimplify((1 + sqrt(5)) / 4, [GoldenRatio]) == GoldenRatio / 2
    assert nsimplify(2 / GoldenRatio, [GoldenRatio]) == 2 * GoldenRatio - 2
    assert nsimplify(exp(5*pi*I/3, evaluate=False)) == \
        sympify('1/2 - sqrt(3)*I/2')
    assert nsimplify(sin(3*pi/5, evaluate=False)) == \
        sympify('sqrt(sqrt(5)/8 + 5/8)')
    assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \
        sqrt(pi) + sqrt(pi)/2*I
    assert nsimplify(2 + exp(2 * atan('1/4') * I)) == sympify('49/17 + 8*I/17')
    assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
    assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
    assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
    assert nsimplify(2.0**(1 / 3.), tolerance=0.001) == Rational(635, 504)
    assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \
        2**Rational(1, 3)
    assert nsimplify(x + .5, rational=True) == Rational(1, 2) + x
    assert nsimplify(1 / .3 + x, rational=True) == Rational(10, 3) + x
    assert nsimplify(log(3).n(), rational=True) == \
        sympify('109861228866811/100000000000000')
    assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi * log(2) / 8
    assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \
        -pi/4 - log(2) + S(7)/4
    assert nsimplify(x / 7.0) == x / 7
    assert nsimplify(pi / 1e2) == pi / 100
    assert nsimplify(pi / 1e2, rational=False) == pi / 100.0
    assert nsimplify(pi / 1e-7) == 10000000 * pi
    assert not nsimplify(
        factor(-3.0 * z**2 * (z**2)**(-2.5) + 3 * (z**2)**(-1.5))).atoms(Float)
    e = x**0.0
    assert e.is_Pow and nsimplify(x**0.0) == 1
    assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
    assert nsimplify(3.333333, tolerance=0.01,
                     rational=True) == Rational(10, 3)
    assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
    assert nsimplify(3.666666, tolerance=0.01,
                     rational=True) == Rational(11, 3)
    assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
    assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
    assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
    assert nsimplify(-203.1) == -S(2031) / 10
    assert nsimplify(.2, tolerance=0) == S.One / 5
    assert nsimplify(-.2, tolerance=0) == -S.One / 5
    assert nsimplify(.2222, tolerance=0) == S(1111) / 5000
    assert nsimplify(-.2222, tolerance=0) == -S(1111) / 5000
    # issue 7211, PR 4112
    assert nsimplify(S(2e-8)) == S(1) / 50000000
    # issue 7322 direct test
    assert nsimplify(1e-42, rational=True) != 0
    # issue 10336
    inf = Float('inf')
    infs = (-oo, oo, inf, -inf)
    for i in infs:
        ans = sign(i) * oo
        assert nsimplify(i) == ans
        assert nsimplify(i + x) == x + ans

    assert nsimplify(0.33333333, rational=True,
                     rational_conversion='exact') == Rational(0.33333333)

    # Make sure nsimplify on expressions uses full precision
    assert nsimplify(
        pi.evalf(100) * x,
        rational_conversion='exact').evalf(100) == pi.evalf(100) * x
Exemplo n.º 37
0
 def _ex_atan(self, e):
     return sp.atan(self.ex(e[0]))
Exemplo n.º 38
0
def test_aseries_trig():
    assert cancel(
        gruntz(1 / log(atan(x)), x, oo) - 1 / (log(pi) + log(S(1) / 2))) == 0
    assert gruntz(1 / acot(x), x, -oo) == -oo
Exemplo n.º 39
0
def test_issue689():
    assert integrate(1 / (1 + x**2), x) == atan(x)
Exemplo n.º 40
0
def AXIMOCdesigner(p_e, F_T, gamma, M_e, T_c, R, r_c, num_of_char_lines, numiter, theta_max_rad, L, pressure_type, q_factor):

    global outbox

    fig = Figure(figsize=(8, 5), dpi=100)

    c_v = float(R / (gamma - 1))
    c_p = float(c_v + R)
    p_c = float(p_e/(1+((gamma-1)/2)*M_e**2)**(-gamma/(gamma-1)))
    rho_c = float(p_c/(R*T_c))
    rho_e = float(rho_c*(1+((gamma-1)/2)*M_e**2)**(-1/(gamma-1)))
    p_t = float(p_c * ((2 / (gamma + 1)) ** (gamma / (gamma - 1))))
    T_e = float(T_c/(p_c/p_e)**((gamma-1)/gamma))
    u_e = M_e * sp.sqrt(gamma * R * T_e)
    A_e = float(F_T / (u_e ** 2 * rho_e))
    M_t = float(1.0001)
    A_t = float(A_e/sp.sqrt((1/M_e**2)*((2/(gamma+1))*(1+((gamma-1)/2)*M_e**2))**((gamma+1)/(gamma-1))))
    r_e = float(sp.sqrt(A_e/sp.pi))
    r_t = float(sp.sqrt(A_t/sp.pi))
    alpha = float(sp.sqrt(2 / ((gamma + 1) * 1.5 * r_t * r_t)))
    x_t = float(0)
    print(x_t)
    if r_cset.get() == 1:
        r_c = float(sp.sqrt(3)*r_t)


    dec3 = Decimal(10) ** -3
    dec4 = Decimal(10) ** -4
    dec1 = Decimal(10) ** -2

    warnings.filterwarnings("ignore")

    # _________________________________MOC_________________________________________

    book = openpyxl.load_workbook('export.xlsx')
    sheet = book.active

    v_PMerad = float(sp.sqrt((gamma + 1) / (gamma - 1))) * sp.atan(
        sp.sqrt((gamma - 1) * (M_e ** 2 - 1) / (gamma + 1))) - sp.atan(sp.sqrt(M_e ** 2 - 1))
    v_PMedeg = float(math.degrees(v_PMerad))

    theta_max_deg = float(math.degrees(theta_max_rad))

    first_point = x_t

    # _____________________________________________________________________________

    z = 0

    x_list = []
    y_list = []
    p_xx_list = []
    M_xx_list = []
    v_PM_xx_rad_list = []
    T_xx_list = []
    V_xx_list = []
    mu_xx_rad_list = []
    theta_xx_rad_list = []
    K_neg_xx_rad_list = []
    K_pos_xx_rad_list = []

    K_neg_xx_deg_list = []
    K_pos_xx_deg_list = []
    theta_xx_deg_list = []
    v_PM_xx_deg_list = []
    mu_xx_deg_list = []

    xerr_list = []
    yerr_list = []
    thetaerr_list = []
    Verr_list = []
    iteration_list = []

    sheet.cell(row=1, column=1).value = "K_neg"
    sheet.cell(row=1, column=2).value = "K_pos"
    sheet.cell(row=1, column=3).value = "Theta"
    sheet.cell(row=1, column=4).value = "v"
    sheet.cell(row=1, column=5).value = "M"
    sheet.cell(row=1, column=6).value = "mu"
    sheet.cell(row=1, column=7).value = "V"
    sheet.cell(row=1, column=8).value = "x"
    sheet.cell(row=1, column=9).value = "y"
    sheet.cell(row=1, column=10).value = "p"
    sheet.cell(row=1, column=11).value = "T"


    if num_of_char_lines > 80:

        outbox = Text(tab1, borderwidth=2, width=90, height=10, fg="yellow")
        outbox.grid(row=26, column=0, columnspan=100, padx=5, pady=40)

        outbox.insert(END,
                      "CAUTION: For number of characteristic lines above 80, the plot window and plot resizing functions may take longer to respond. It is recommended that the user is patient." + '\n')
        outbox.see("end")

    for x in np.linspace(first_point, L, num=num_of_char_lines, endpoint=True):

        x_list.append(x)

        y = float(0)
        y_list.append(y)

        if pressure_type == 'parabolic':
            p_xx = float(mp.e ** ((L ** (-2)) * (x - L) ** 2 * (sp.ln(p_t) - sp.ln(p_e)) + ln(p_e)))

        if pressure_type == 'cubic':
            p_xx = float(sp.exp(((q_factor * L + 2 * (sp.ln(p_t) - sp.ln(p_e))) / L ** 3) * x ** 3 - ((2 * q_factor * L + 3 * (sp.ln(p_t) - sp.ln(p_e))) / L ** 2) * x ** 2 + q_factor * x + sp.ln(p_t)))

        p_xx_list.append(p_xx)

        M_xx = float(sp.sqrt(((p_c / p_xx) ** ((gamma - 1) / gamma) - 1) * (2 / (gamma - 1))))
        M_xx_list.append(M_xx)


        v_PM_xx_rad = float((math.sqrt((gamma + 1) / (gamma - 1))) * sp.atan(
            math.sqrt((gamma - 1) * (M_xx ** 2 - 1) / (gamma + 1))) - sp.atan(math.sqrt(M_xx ** 2 - 1)))
        v_PM_xx_rad_list.append(v_PM_xx_rad)

        T_xx = T_c * (p_xx / p_c) ** ((gamma - 1) / gamma)
        T_xx_list.append(T_xx)

        V_xx = float(M_xx * sp.sqrt(gamma * R * T_xx))
        V_xx_list.append(V_xx)

        mu_xx_rad = float(sp.asin(1 / M_xx))
        mu_xx_rad_list.append(mu_xx_rad)

        theta_xx_rad = float(0)

        theta_xx_rad_list.append(theta_xx_rad)

        K_neg_xx_rad = float(theta_xx_rad + v_PM_xx_rad)
        K_neg_xx_rad_list.append(K_neg_xx_rad)

        K_pos_xx_rad = float(theta_xx_rad - v_PM_xx_rad)
        K_pos_xx_rad_list.append(K_pos_xx_rad)

        plt.plot(x_list, y_list, 'k.', markersize=1)

        z += 1

    w = 1
    for g in range(0, z, 1):

        sheet.cell(row=w + 1, column=1).value = math.degrees(K_neg_xx_rad_list[g])
        sheet.cell(row=w + 1, column=2).value = math.degrees(K_pos_xx_rad_list[g])
        sheet.cell(row=w + 1, column=3).value = math.degrees(theta_xx_rad_list[g])
        sheet.cell(row=w + 1, column=4).value = math.degrees(v_PM_xx_rad_list[g])
        sheet.cell(row=w + 1, column=5).value = M_xx_list[g]
        sheet.cell(row=w + 1, column=6).value = math.degrees(mu_xx_rad_list[g])
        sheet.cell(row=w + 1, column=7).value = V_xx_list[g]
        sheet.cell(row=w + 1, column=8).value = x_list[g]
        sheet.cell(row=w + 1, column=9).value = y_list[g]
        sheet.cell(row=w + 1, column=10).value = p_xx_list[g]
        sheet.cell(row=w + 1, column=11).value = T_xx_list[g]

        w = w + z + 1 - g

    for j in range(z - 1, 0, -1):

        f = 0

        progress['value'] = 0
        perbox.delete(0, END)
        tab1.update_idletasks()
        percentage = int(round(float(abs((j/(z)*100)-100))))
        percentagestr = str(percentage)
        strtotal = str(percentagestr+str('%'))
        perbox.insert(0, strtotal)
        progress['value'] = percentage
        tab1.update_idletasks()
        root.update()

        if j == 1:
            perbox.delete(0, END)
            progress['value'] = 100
            perbox.insert(0, 'Done')
            strtotal = str('')
            tab1.update_idletasks()
            root.update()

        remaining.delete(0, j)
        remaining.insert(0, j)

        for i in range(0, j, 1):


            if j == z - 1:

                x = float((y_list[i] - y_list[i + 1] + x_list[i + 1] * sp.tan(
                    theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1]) - x_list[i] * sp.tan(
                    theta_xx_rad_list[i] + mu_xx_rad_list[i])) / (
                                  sp.tan(theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1]) - sp.tan(
                              theta_xx_rad_list[i] + mu_xx_rad_list[i])))

                y = float(y_list[i] + (x - x_list[i]) * sp.tan(theta_xx_rad_list[i] + mu_xx_rad_list[i]))

                A = float((sp.tan(mu_xx_rad_list[i]) * sp.sin(mu_xx_rad_list[i]) * sp.sin(theta_xx_rad_list[i])) / (
                        y * sp.cos(theta_xx_rad_list[i] + mu_xx_rad_list[i])))
                B = float((sp.tan(mu_xx_rad_list[i + 1]) * sp.sin(mu_xx_rad_list[i + 1]) * sp.sin(
                    theta_xx_rad_list[i + 1])) / (y * sp.cos(theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1])))

                V = float(((sp.cot(mu_xx_rad_list[i]) * (1 + (A * (x - x_list[i])))) + (
                        sp.cot(mu_xx_rad_list[i + 1]) * (1 + (B * (x - x_list[i + 1])))) + theta_xx_rad_list[
                               i + 1] - theta_xx_rad_list[i]) / ((sp.cot(mu_xx_rad_list[i]) / V_xx_list[i]) + (
                        sp.cot(mu_xx_rad_list[i + 1]) / V_xx_list[i + 1])))

                theta = float(theta_xx_rad_list[i] + sp.cot(mu_xx_rad_list[i]) * (
                        ((V - V_xx_list[i]) / V_xx_list[i]) - (A * (x - x_list[i]))))

                T = float(T_c - (V ** 2 / (2 * c_p)))

                a = float(sp.sqrt(gamma * R * T))

                M = float(V / a)

                mu = float(sp.asin(1 / M))

                v = float((math.sqrt((gamma + 1) / (gamma - 1))) * sp.atan(
                    math.sqrt((gamma - 1) * (M ** 2 - 1) / (gamma + 1))) - sp.atan(math.sqrt(M ** 2 - 1)))

                K_neg = float(theta + v)
                K_pos = float(theta - v)

                counting = 1
                # --------------------iterations
                for iteration in range(1, numiter + 1, 1):

                    x_2 = float((y_list[i] - y_list[i + 1] + x_list[i + 1] * 0.5 * (
                            sp.tan(theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1]) + sp.tan(theta - mu)) -
                                 x_list[i] * 0.5 * (sp.tan(theta_xx_rad_list[i] + mu_xx_rad_list[i]) + sp.tan(
                                theta + mu))) / (0.5 * (
                            sp.tan(theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1]) - sp.tan(
                        theta_xx_rad_list[i] + mu_xx_rad_list[i]) + sp.tan(theta - mu) - sp.tan(theta + mu))))

                    y_2 = float(y_list[i] + (x - x_list[i]) * 0.5 * (
                            sp.tan(theta_xx_rad_list[i] + mu_xx_rad_list[i]) + sp.tan(theta + mu)))

                    A_2A = float(
                        (sp.tan(mu_xx_rad_list[i]) * sp.sin(mu_xx_rad_list[i]) * sp.sin(theta_xx_rad_list[i])) / (
                                y * sp.cos(theta_xx_rad_list[i] + mu_xx_rad_list[i])))

                    A_2C = float((sp.tan(mu) * sp.sin(mu) * sp.sin(theta)) / (y * sp.cos(theta + mu)))

                    B_2B = float((sp.tan(mu_xx_rad_list[i + 1]) * sp.sin(mu_xx_rad_list[i + 1]) * sp.sin(
                        theta_xx_rad_list[i + 1])) / (y * sp.cos(theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1])))

                    B_2C = float((sp.tan(mu) * sp.sin(mu) * sp.sin(theta)) / (y * sp.cos(theta - mu)))

                    A_2 = float((2 / (sp.tan(mu_xx_rad_list[i]) + sp.tan(mu))) * (
                            ((2 * V_xx_list[i]) / (V_xx_list[i] + V)) + ((A_2A + A_2C) / 2) * (x - x_list[i])))

                    B_2 = float((2 / (sp.tan(mu_xx_rad_list[i + 1]) + sp.tan(mu))) * (
                            ((2 * V_xx_list[i + 1]) / (V_xx_list[i + 1] + V)) + ((B_2B + B_2C) / 2) * (
                            x - x_list[i + 1])))

                    V_2 = float((A_2 + B_2 + theta_xx_rad_list[i + 1] - theta_xx_rad_list[i]) / (4 * (
                            (V_xx_list[i] + V) ** (-1) * (sp.tan(mu_xx_rad_list[i]) + sp.tan(mu)) ** (-1) + (
                            V_xx_list[i + 1] + V) ** (-1) * (
                                    sp.tan(mu_xx_rad_list[i + 1]) + sp.tan(mu)) ** (-1))))

                    theta_2 = float(theta_xx_rad_list[i] + (2 / (sp.tan(mu_xx_rad_list[i]) + sp.tan(mu))) * (
                            ((2 * (V_2 - V_xx_list[i])) / (V + V_xx_list[i])) - ((A_2A + A_2C) / 2) * (
                            x - x_list[i])))

                    T_2 = float(T_c - (V_2 ** 2 / (2 * c_p)))

                    a_2 = float(sp.sqrt(gamma * R * T_2))

                    M_2 = float(V_2 / a_2)

                    mu_2 = float(sp.asin(1 / M_2))

                    v_2 = float((math.sqrt((gamma + 1) / (gamma - 1))) * sp.atan(
                        math.sqrt((gamma - 1) * (M_2 ** 2 - 1) / (gamma + 1))) - sp.atan(math.sqrt(M_2 ** 2 - 1)))

                    K_neg_2 = float(theta_2 + v_2)
                    K_pos_2 = float(theta_2 - v_2)

                    xdiff = float(x - x_2)
                    if xdiff == 0:
                        xerr = float(0)
                    else:
                        xerr = float(x_2 / xdiff)

                    ydiff = float(y - y_2)
                    if ydiff == 0:
                        yerr = float(0)
                    else:
                        yerr = float(y_2 / ydiff)

                    thetadiff = float(theta - theta_2)
                    if thetadiff == 0:
                        thetaerr = float(0)
                    else:
                        thetaerr = float(theta_2 / thetadiff)

                    Vdiff = float(V - V_2)
                    if Vdiff == 0:
                        Verr = float(0)
                    else:
                        Verr = float(V_2 / Vdiff)

                    x = x_2
                    y = y_2
                    V = V_2
                    theta = theta_2
                    T = T_2
                    a = a_2
                    M = M_2
                    mu = mu_2
                    v = v_2
                    K_neg = K_neg_2
                    K_pos = K_pos_2

                    counting += 1
            else:

                x = float((y_list[i] - y_list[i + 1] + x_list[i + 1] * sp.tan(
                    theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1]) - x_list[i] * sp.tan(
                    theta_xx_rad_list[i] + mu_xx_rad_list[i])) / (
                                  sp.tan(theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1]) - sp.tan(
                              theta_xx_rad_list[i] + mu_xx_rad_list[i])))

                y = float(y_list[i] + (x - x_list[i]) * sp.tan(theta_xx_rad_list[i] + mu_xx_rad_list[i]))

                A = float((sp.tan(mu_xx_rad_list[i]) * sp.sin(mu_xx_rad_list[i]) * sp.sin(theta_xx_rad_list[i])) / (
                        y_list[i] * sp.cos(theta_xx_rad_list[i] + mu_xx_rad_list[i])))
                B = float((sp.tan(mu_xx_rad_list[i + 1]) * sp.sin(mu_xx_rad_list[i + 1]) * sp.sin(
                    theta_xx_rad_list[i + 1])) / (
                                  y_list[i + 1] * sp.cos(theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1])))

                V = float(((sp.cot(mu_xx_rad_list[i]) * (1 + (A * (x - x_list[i])))) + (
                        sp.cot(mu_xx_rad_list[i + 1]) * (1 + (B * (x - x_list[i + 1])))) + theta_xx_rad_list[
                               i + 1] - theta_xx_rad_list[i]) / ((sp.cot(mu_xx_rad_list[i]) / V_xx_list[i]) + (
                        sp.cot(mu_xx_rad_list[i + 1]) / V_xx_list[i + 1])))

                theta = float(theta_xx_rad_list[i] + sp.cot(mu_xx_rad_list[i]) * (
                        ((V - V_xx_list[i]) / V_xx_list[i]) - (A * (x - x_list[i]))))

                T = float(T_c - (V ** 2 / (2 * c_p)))

                a = float(sp.sqrt(gamma * R * T))

                M = float(V / a)

                v = float((math.sqrt((gamma + 1) / (gamma - 1))) * sp.atan(
                    math.sqrt((gamma - 1) * (M ** 2 - 1) / (gamma + 1))) - sp.atan(math.sqrt(M ** 2 - 1)))

                K_neg = float(theta + v)
                K_pos = float(theta - v)

                mu = float(sp.asin(1 / M))

                kkk = 0
                # --------------------iterations
                for iteration in range(1, numiter + 1, 1):


                    if iteration == numiter + 1:
                        kkk = kkk + numiter + 1

                    iteration_num = kkk + iteration

                    x_2 = float((y_list[i] - y_list[i + 1] + x_list[i + 1] * 0.5 * (
                            sp.tan(theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1]) + sp.tan(theta - mu)) -
                                 x_list[i] * 0.5 * (sp.tan(theta_xx_rad_list[i] + mu_xx_rad_list[i]) + sp.tan(
                                theta + mu))) / (0.5 * (
                            sp.tan(theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1]) - sp.tan(
                        theta_xx_rad_list[i] + mu_xx_rad_list[i]) + sp.tan(theta - mu) - sp.tan(theta + mu))))

                    y_2 = float(y_list[i] + (x - x_list[i]) * 0.5 * (
                            sp.tan(theta_xx_rad_list[i] + mu_xx_rad_list[i]) + sp.tan(theta + mu)))

                    A_2A = float(
                        (sp.tan(mu_xx_rad_list[i]) * sp.sin(mu_xx_rad_list[i]) * sp.sin(theta_xx_rad_list[i])) / (
                                y_list[i] * sp.cos(theta_xx_rad_list[i] + mu_xx_rad_list[i])))

                    A_2C = float((sp.tan(mu) * sp.sin(mu) * sp.sin(theta)) / (y * sp.cos(theta + mu)))

                    B_2B = float((sp.tan(mu_xx_rad_list[i + 1]) * sp.sin(mu_xx_rad_list[i + 1]) * sp.sin(
                        theta_xx_rad_list[i + 1])) / (y_list[i + 1] * sp.cos(
                        theta_xx_rad_list[i + 1] - mu_xx_rad_list[i + 1])))

                    B_2C = float((sp.tan(mu) * sp.sin(mu) * sp.sin(theta)) / (y * sp.cos(theta - mu)))

                    A_2 = float((2 / (sp.tan(mu_xx_rad_list[i]) + sp.tan(mu))) * (
                            ((2 * V_xx_list[i]) / (V_xx_list[i] + V)) + ((A_2A + A_2C) / 2) * (x - x_list[i])))

                    B_2 = float((2 / (sp.tan(mu_xx_rad_list[i + 1]) + sp.tan(mu))) * (
                            ((2 * V_xx_list[i + 1]) / (V_xx_list[i + 1] + V)) + ((B_2B + B_2C) / 2) * (
                            x - x_list[i + 1])))

                    V_2 = float((A_2 + B_2 + theta_xx_rad_list[i + 1] - theta_xx_rad_list[i]) / (4 * (
                            (V_xx_list[i] + V) ** (-1) * (sp.tan(mu_xx_rad_list[i]) + sp.tan(mu)) ** (-1) + (
                            V_xx_list[i + 1] + V) ** (-1) * (
                                    sp.tan(mu_xx_rad_list[i + 1]) + sp.tan(mu)) ** (-1))))

                    theta_2 = float(theta_xx_rad_list[i] + (2 / (sp.tan(mu_xx_rad_list[i]) + sp.tan(mu))) * (
                            ((2 * (V_2 - V_xx_list[i])) / (V + V_xx_list[i])) - ((A_2A + A_2C) / 2) * (
                            x - x_list[i])))

                    T_2 = float(T_c - (V_2 ** 2 / (2 * c_p)))

                    a_2 = float(sp.sqrt(gamma * R * T_2))

                    M_2 = float(V_2 / a_2)

                    mu_2 = float(sp.asin(1 / M_2))

                    v_2 = float((math.sqrt((gamma + 1) / (gamma - 1))) * sp.atan(
                        math.sqrt((gamma - 1) * (M_2 ** 2 - 1) / (gamma + 1))) - sp.atan(math.sqrt(M_2 ** 2 - 1)))

                    K_neg_2 = float(theta_2 + v_2)
                    K_pos_2 = float(theta_2 - v_2)

                    xdiff = float(x - x_2)
                    if xdiff == 0:
                        xerr = float(0)
                    else:
                        xerr = float(x_2 / xdiff)

                    ydiff = float(y - y_2)
                    if ydiff == 0:
                        yerr = float(0)
                    else:
                        yerr = float(y_2 / ydiff)

                    thetadiff = float(theta - theta_2)
                    if thetadiff == 0:
                        thetaerr = float(0)
                    else:
                        thetaerr = float(theta_2 / thetadiff)

                    Vdiff = float(V - V_2)
                    if Vdiff == 0:
                        Verr = float(0)
                    else:
                        Verr = float(V_2 / Vdiff)

                    x = x_2
                    y = y_2
                    V = V_2
                    theta = theta_2
                    T = T_2
                    a = a_2
                    M = M_2
                    mu = mu_2
                    v = v_2
                    K_neg = K_neg_2
                    K_pos = K_pos_2

            x_list[i] = x
            y_list[i] = y
            V_xx_list[i] = V
            theta_xx_rad_list[i] = theta
            v_PM_xx_rad_list[i] = v
            K_neg_xx_rad_list[i] = K_neg
            K_pos_xx_rad_list[i] = K_pos
            M_xx_list[i] = M
            mu_xx_rad_list[i] = mu
            T_xx_list[i] = T



            plt.plot(x_list, y_list, 'k.', markersize=1)

            n = (z - j + 1) + f


            f = f + z + 1 - i
            sheet.cell(row=n + 1, column=1).value = math.degrees(K_neg_xx_rad_list[i])
            sheet.cell(row=n + 1, column=2).value = math.degrees(K_pos_xx_rad_list[i])
            sheet.cell(row=n + 1, column=3).value = math.degrees(theta_xx_rad_list[i])
            sheet.cell(row=n + 1, column=4).value = math.degrees(v_PM_xx_rad_list[i])
            sheet.cell(row=n + 1, column=5).value = M_xx_list[i]
            sheet.cell(row=n + 1, column=6).value = math.degrees(mu_xx_rad_list[i])
            sheet.cell(row=n + 1, column=7).value = V_xx_list[i]
            sheet.cell(row=n + 1, column=8).value = x_list[i]
            sheet.cell(row=n + 1, column=9).value = y_list[i]
            sheet.cell(row=n + 1, column=11).value = T_xx_list[i]

    counter = 1

    sheet.cell(row=1, column=12).value = "x nozzle wall"
    sheet.cell(row=1, column=13).value = "y nozzle wall"

    d = 0
    for q in range(0, z, 1):


        if q == 0:

            x = float((-x_list[q] * sp.tan(theta_xx_rad_list[q] + mu_xx_rad_list[q]) + y_list[q] - r_t) / (
                    sp.tan(theta_max_rad) - sp.tan(theta_xx_rad_list[q] + mu_xx_rad_list[q])))
            y = float(sp.tan(theta_xx_rad_list[q] + mu_xx_rad_list[q]) * (x - x_list[q]) + y_list[q])
            theta = float((theta_max_rad + theta_xx_rad_list[q]) / 2)

        else:

            x = float((-x_list[q] * sp.tan(theta_xx_rad_list[q] + mu_xx_rad_list[q]) + y_list[q] + x_list[
                q - 1] * sp.tan(theta) - y_list[q - 1]) / (
                              sp.tan(theta) - sp.tan(theta_xx_rad_list[q] + mu_xx_rad_list[q])))
            y = float(sp.tan(theta_xx_rad_list[q] + mu_xx_rad_list[q]) * (x - x_list[q]) + y_list[q])
            theta = float((theta + theta_xx_rad_list[q]) / 2)

        x_list[q] = x
        y_list[q] = y



        d = d + z + 1 - q

        sheet.cell(row=d + 1, column=1).value = math.degrees(K_neg_xx_rad_list[q])
        sheet.cell(row=d + 1, column=2).value = math.degrees(K_pos_xx_rad_list[q])
        sheet.cell(row=d + 1, column=3).value = math.degrees(theta_xx_rad_list[q])
        sheet.cell(row=d + 1, column=4).value = math.degrees(v_PM_xx_rad_list[q])
        sheet.cell(row=d + 1, column=5).value = M_xx_list[q]
        sheet.cell(row=d + 1, column=6).value = math.degrees(mu_xx_rad_list[q])
        sheet.cell(row=d + 1, column=7).value = V_xx_list[q]
        sheet.cell(row=d + 1, column=8).value = x_list[q]
        sheet.cell(row=d + 1, column=9).value = y_list[q]

        sheet.cell(row=counter + 1, column=12).value = x
        sheet.cell(row=counter + 1, column=13).value = y

        counter += 1

    sheet.cell(row=1, column=15).value = "x_conv"
    sheet.cell(row=1, column=16).value = "y_conv"

    x_conv_list = []
    y_conv_list = []

    counter = 1
    for beta in np.arange(-90, -136, -1):


        x_conv = float(1.5 * r_t * sp.cos(math.radians(beta)))
        y_conv = float(1.5 * r_t * sp.sin(math.radians(beta)) + 1.5 * r_t + r_t)

        sheet.cell(row=counter + 1, column=15).value = x_conv
        sheet.cell(row=counter + 1, column=16).value = y_conv

        x_conv_list.append(x_conv)
        y_conv_list.append(y_conv)

        counter += 1

    outbox = Text(tab1, borderwidth=2, width=90, height=10, fg="black")
    outbox.grid(row=26, column=0, columnspan=100, padx=5, pady=40)

    outbox.insert(END,"All data from calculation has been exported in 'export1.xlsx'. If another calculation is initiated, the data from the previous calculation will be overwritten." + '\n')
    outbox.see("end")

    x_line = ((r_c - y_conv) / sp.tan(math.radians(-45))) + x_conv

    x_conv_list.insert(45, x_line)
    y_conv_list.insert(45, r_c)

    plt.plot(x_conv_list, y_conv_list, 'ko', linewidth=2, linestyle='-', markersize=2)

    x_list.insert(0, 0)
    y_list.insert(0, r_t)



    plt.plot(x_list, y_list, 'ko', linewidth=2, linestyle='-', markersize=4)
    plt.ylabel("Radius [m]")
    plt.xlabel("Length [m]")

    plt.axis('equal')

    rerr = float((r_e - y_list[z]) / y_list[z] * 100)

    exhaust_radius.insert(0, y_list[z])
    nozzle_length.insert(0, x_list[z])
    isen_exhaust_radius.insert(0, r_e)
    error.insert(0, rerr)

    textstr = "Combustion Pressure: "+str(p_c)+" [Pa]\n" \
              "Combusiton Temperature: "+str(T_c)+" [K]\n" \
              "Ratio of Spec. Heat: "+str(gamma)+" [-]\n" \
              "Specific Gas Constant: "+str(R)+" [J/kgK]\n" \
              "Throat Radius: "+str(r_t)+" [m]\n" \
              "Combustion Chamber Radius: "+str(r_c)+" [m]\n" \
              "Number of Char. Lines: "+str(num_of_char_lines)+" \n" \
              "Number of Iterations: "+str(numiter)+" \n" \
              "Initial Expansion Angle: "+str(theta_max_deg)+" [deg]\n" \
              "Characteristic Net Length: "+str(L)+" [m]\n" \
              "Pressure Distribution Type: "+str(pressure_type)+" \n" \
              "Cubic q-factor: "+str(q_factor_value)+" [-]\n"

    exhauststr = "Exhaust Mach Number: " + str(M_e) + " [-]\n" \
              "Exhaust velocity: " + str(u_e) + " [m/s]\n" \
              "Exhaust Pressure: " + str(p_e) + " [Pa]\n" \
              "Exhaust Temperature: " + str(T_e) + " [K]\n" \
              "Exhaust Density: " + str(rho_e) + " [kg/m^3]\n" \
              "MOC Exahust Radius: " + str(y_list[z]) + " [m]\n" \
              "Isentropic Exhaust Radius: " + str(r_e) + " [m]\n" \

    T_t = float(T_c*(2/(gamma+1)))
    rho_t = float(rho_c*(2/(gamma+1))**(1/(gamma-1)))

    throatstr = "Throat Mach Number: "+str(M_t)+" [-]\n" \
                "Throat velocity: " + str(float(sp.sqrt(gamma*R*T_t))) + " [m/s]\n" \
                "Throat Pressure: " + str(p_t) + " [Pa]\n" \
                "Throat Temperature: " + str(T_t) + " [K]\n" \
                "Throat Density: " + str(rho_t) + " [kg/m^3]\n" \
                "Initial Expansion Angle: " + str(theta_max_deg) + " [deg]\n" \
                "Isentropic Throat Radius: " + str(r_t) + " [m]\n" \

    combstr = "Combustion Pressure: " + str(p_c) + " [Pa]\n" \
                "Combustion Temperature: " + str(T_c) + " [K]\n" \
                "Combustion Density: " + str(rho_c) + " [kg/m^3]\n" \
                "Combustion Chamber Radius: " + str(r_c) + " [m]\n" \

    lengthstr = "Characteristic Net Length: "+str(L)+" [m] \n" \
                                                     "Nozzle Length: "+str(x_list[z])+" [m]"

    plt.title("AXIMOC Nozzle with "+str(num_of_char_lines)+" char. lines; "+str(numiter)+" iterations. Pressure type: "+str(pressure_type)+"; Expansion angle: "+str(theta_max_deg)+" [deg].")

    m_dot = float(rho_e*u_e*A_e)
    print(m_dot)

    plt.text(x_list[z-round(num_of_char_lines/4)], y_list[z], exhauststr, fontsize=8)
    plt.text(x_list[z-round(num_of_char_lines)], y_list[z], throatstr, fontsize=8)
    plt.text(x_line, -0.06, combstr, fontsize=8)
    plt.text(x_list[round(z/3)], -0.025, lengthstr, fontsize=8)

    book.save('export1.xlsx')

    calculatebutton = Button(tab1, text="Calculate", padx=35, pady=10, command=calculate).grid(row=11, column=3,
                                                                                               rowspan=2,
                                                                                               columnspan=10,
                                                                                               sticky=W)

    return plt.show()
Exemplo n.º 41
0
def test_issue_4403_2():
    assert integrate(sqrt(-x**2 - 4), x) == \
        -2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2
Exemplo n.º 42
0
def test_invert_real():
    x = Dummy(real=True)
    n = Symbol('n')

    minus_n = Intersection(Interval(-oo, 0), FiniteSet(-n))
    plus_n = Intersection(Interval(0, oo), FiniteSet(n))
    assert solveset(abs(x) - n, x, S.Reals) == Union(minus_n, plus_n)

    n = Symbol('n', real=True)
    assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_real(x * 3, y, x) == (x, FiniteSet(y / 3))

    assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
    assert invert_real(exp(3 * x), y, x) == (x, FiniteSet(log(y) / 3))
    assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))

    assert invert_real(exp(x) + 3, y, x) == (x, FiniteSet(log(y - 3)))
    assert invert_real(exp(x) * 3, y, x) == (x, FiniteSet(log(y / 3)))

    assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
    assert invert_real(log(3 * x), y, x) == (x, FiniteSet(exp(y) / 3))
    assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))

    minus_y = Intersection(Interval(-oo, 0), FiniteSet(-y))
    plus_y = Intersection(Interval(0, oo), FiniteSet(y))
    assert invert_real(Abs(x), y, x) == (x, Union(minus_y, plus_y))

    assert invert_real(2**x, y, x) == (x, FiniteSet(log(y) / log(2)))
    assert invert_real(2**exp(x), y, x) == (x, FiniteSet(log(log(y) / log(2))))

    assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
    assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))

    raises(ValueError, lambda: invert_real(x, x, x))
    raises(ValueError, lambda: invert_real(x**pi, y, x))
    raises(ValueError, lambda: invert_real(S.One, y, x))

    assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))

    y_1 = Intersection(Interval(-1, oo), FiniteSet(y - 1))
    y_2 = Intersection(Interval(-oo, -1), FiniteSet(-y - 1))
    assert invert_real(Abs(x**31 + x + 1), y,
                       x) == (x**31 + x, Union(y_1, y_2))

    assert invert_real(sin(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))

    assert invert_real(sin(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))

    assert invert_real(csc(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))

    assert invert_real(csc(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))

    assert invert_real(cos(x), y, x) == \
        (x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
                imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))

    assert invert_real(cos(exp(x)), y, x) == \
        (x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \
                imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers)))

    assert invert_real(sec(x), y, x) == \
        (x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
                imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))

    assert invert_real(sec(exp(x)), y, x) == \
        (x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \
                imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers)))

    assert invert_real(tan(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    assert invert_real(tan(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))

    assert invert_real(cot(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))

    assert invert_real(cot(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))

    assert invert_real(tan(tan(x)), y, x) == \
        (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    x = Symbol('x', positive=True)
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1 / pi)))

    # Test for ``set_h`` containing information about the domain

    n = Dummy('n')
    x = Symbol('x')

    h1 = Intersection(Interval(-3, oo), FiniteSet(a + b - 3),
                      imageset(Lambda(n, -n + a - 3), Interval(-oo, 0)))

    h2 = Intersection(Interval(-oo, -3), FiniteSet(-a + b - 3),
                      imageset(Lambda(n, n - a - 3), Interval(0, oo)))

    h3 = Intersection(Interval(-3, oo), FiniteSet(a - b - 3),
                      imageset(Lambda(n, -n + a - 3), Interval(0, oo)))

    h4 = Intersection(Interval(-oo, -3), FiniteSet(-a - b - 3),
                      imageset(Lambda(n, n - a - 3), Interval(-oo, 0)))

    assert invert_real(Abs(Abs(x + 3) - a) - b, 0,
                       x) == (x, Union(h1, h2, h3, h4))
Exemplo n.º 43
0
def test_cos():
    x, y = symbols('x y')

    assert cos.nargs == FiniteSet(1)
    assert cos(nan) == nan

    assert cos(oo * I) == oo
    assert cos(-oo * I) == oo

    assert cos(0) == 1

    assert cos(acos(x)) == x
    assert cos(atan(x)) == 1 / sqrt(1 + x**2)
    assert cos(asin(x)) == sqrt(1 - x**2)
    assert cos(acot(x)) == 1 / sqrt(1 + 1 / x**2)
    assert cos(atan2(y, x)) == x / sqrt(x**2 + y**2)

    assert cos(pi * I) == cosh(pi)
    assert cos(-pi * I) == cosh(pi)
    assert cos(-2 * I) == cosh(2)

    assert cos(pi / 2) == 0
    assert cos(-pi / 2) == 0
    assert cos(pi / 2) == 0
    assert cos(-pi / 2) == 0
    assert cos((-3 * 10**73 + 1) * pi / 2) == 0
    assert cos((7 * 10**103 + 1) * pi / 2) == 0

    n = symbols('n', integer=True)
    assert cos(pi * n / 2) == 0

    assert cos(pi) == -1
    assert cos(-pi) == -1
    assert cos(2 * pi) == 1
    assert cos(5 * pi) == -1
    assert cos(8 * pi) == 1

    assert cos(pi / 3) == S.Half
    assert cos(-2 * pi / 3) == -S.Half

    assert cos(pi / 4) == S.Half * sqrt(2)
    assert cos(-pi / 4) == S.Half * sqrt(2)
    assert cos(11 * pi / 4) == -S.Half * sqrt(2)
    assert cos(-3 * pi / 4) == -S.Half * sqrt(2)

    assert cos(pi / 6) == S.Half * sqrt(3)
    assert cos(-pi / 6) == S.Half * sqrt(3)
    assert cos(7 * pi / 6) == -S.Half * sqrt(3)
    assert cos(-5 * pi / 6) == -S.Half * sqrt(3)

    assert cos(1 * pi / 5) == (sqrt(5) + 1) / 4
    assert cos(2 * pi / 5) == (sqrt(5) - 1) / 4
    assert cos(3 * pi / 5) == -cos(2 * pi / 5)
    assert cos(4 * pi / 5) == -cos(1 * pi / 5)
    assert cos(6 * pi / 5) == -cos(1 * pi / 5)
    assert cos(8 * pi / 5) == cos(2 * pi / 5)

    assert cos(-1273 * pi / 5) == -cos(2 * pi / 5)

    assert cos(pi / 8) == sqrt((2 + sqrt(2)) / 4)

    assert cos(104 * pi / 105) == -cos(pi / 105)
    assert cos(106 * pi / 105) == -cos(pi / 105)

    assert cos(-104 * pi / 105) == -cos(pi / 105)
    assert cos(-106 * pi / 105) == -cos(pi / 105)

    assert cos(x * I) == cosh(x)
    assert cos(k * pi * I) == cosh(k * pi)

    assert cos(r).is_real is True

    assert cos(k * pi) == (-1)**k
    assert cos(2 * k * pi) == 1

    for d in list(range(1, 22)) + [60, 85]:
        for n in xrange(0, 2 * d + 1):
            x = n * pi / d
            e = abs(float(cos(x)) - cos(float(x)))
            assert e < 1e-12
Exemplo n.º 44
0
 def log(self):
     """ logarithmic map"""
     n = sympy.sqrt(sophus.squared_norm(self.q.vec))
     return 2 * sympy.atan(n / self.q.real) / n * self.q.vec
Exemplo n.º 45
0
def test_sin():
    x, y = symbols('x y')

    assert sin.nargs == FiniteSet(1)
    assert sin(nan) == nan

    assert sin(oo * I) == oo * I
    assert sin(-oo * I) == -oo * I
    assert sin(oo).args[0] == oo

    assert sin(0) == 0

    assert sin(asin(x)) == x
    assert sin(atan(x)) == x / sqrt(1 + x**2)
    assert sin(acos(x)) == sqrt(1 - x**2)
    assert sin(acot(x)) == 1 / (sqrt(1 + 1 / x**2) * x)
    assert sin(atan2(y, x)) == y / sqrt(x**2 + y**2)

    assert sin(pi * I) == sinh(pi) * I
    assert sin(-pi * I) == -sinh(pi) * I
    assert sin(-2 * I) == -sinh(2) * I

    assert sin(pi) == 0
    assert sin(-pi) == 0
    assert sin(2 * pi) == 0
    assert sin(-2 * pi) == 0
    assert sin(-3 * 10**73 * pi) == 0
    assert sin(7 * 10**103 * pi) == 0

    assert sin(pi / 2) == 1
    assert sin(-pi / 2) == -1
    assert sin(5 * pi / 2) == 1
    assert sin(7 * pi / 2) == -1

    n = symbols('n', integer=True)
    assert sin(pi * n / 2) == (-1)**(n / 2 - S.Half)

    assert sin(pi / 3) == S.Half * sqrt(3)
    assert sin(-2 * pi / 3) == -S.Half * sqrt(3)

    assert sin(pi / 4) == S.Half * sqrt(2)
    assert sin(-pi / 4) == -S.Half * sqrt(2)
    assert sin(17 * pi / 4) == S.Half * sqrt(2)
    assert sin(-3 * pi / 4) == -S.Half * sqrt(2)

    assert sin(pi / 6) == S.Half
    assert sin(-pi / 6) == -S.Half
    assert sin(7 * pi / 6) == -S.Half
    assert sin(-5 * pi / 6) == -S.Half

    assert sin(1 * pi / 5) == sqrt((5 - sqrt(5)) / 8)
    assert sin(2 * pi / 5) == sqrt((5 + sqrt(5)) / 8)
    assert sin(3 * pi / 5) == sin(2 * pi / 5)
    assert sin(4 * pi / 5) == sin(1 * pi / 5)
    assert sin(6 * pi / 5) == -sin(1 * pi / 5)
    assert sin(8 * pi / 5) == -sin(2 * pi / 5)

    assert sin(-1273 * pi / 5) == -sin(2 * pi / 5)

    assert sin(pi / 8) == sqrt((2 - sqrt(2)) / 4)

    assert sin(104 * pi / 105) == sin(pi / 105)
    assert sin(106 * pi / 105) == -sin(pi / 105)

    assert sin(-104 * pi / 105) == -sin(pi / 105)
    assert sin(-106 * pi / 105) == sin(pi / 105)

    assert sin(x * I) == sinh(x) * I

    assert sin(k * pi) == 0
    assert sin(17 * k * pi) == 0

    assert sin(k * pi * I) == sinh(k * pi) * I

    assert sin(r).is_real is True

    assert isinstance(sin(re(x) - im(y)), sin) is True
    assert isinstance(sin(-re(x) + im(y)), sin) is False

    for d in list(range(1, 22)) + [60, 85]:
        for n in xrange(0, d * 2 + 1):
            x = n * pi / d
            e = abs(float(sin(x)) - sin(float(x)))
            assert e < 1e-12
Exemplo n.º 46
0
def eval_arctan(integrand, symbol):
    return sympy.atan(symbol)
Exemplo n.º 47
0
def test_ratint():
    assert ratint(S(0), x) == 0
    assert ratint(S(7), x) == 7*x

    assert ratint(x, x) == x**2/2
    assert ratint(2*x, x) == x**2
    assert ratint(-2*x, x) == -x**2

    assert ratint(8*x**7+2*x+1, x) == x**8+x**2+x

    f = S(1)
    g = x + 1

    assert ratint(f / g, x) == log(x + 1)
    assert ratint((f,g), x) == log(x + 1)

    f = x**3 - x
    g = x - 1

    assert ratint(f/g, x) == x**3/3 + x**2/2

    f = x
    g = (x - a)*(x + a)

    assert ratint(f/g, x) == log(x**2 - a**2)/2

    f = S(1)
    g = x**2 + 1

    assert ratint(f/g, x, real=None) == atan(x)
    assert ratint(f/g, x, real=True) == atan(x)

    assert ratint(f/g, x, real=False) == I*log(x + I)/2 - I*log(x - I)/2

    f = S(36)
    g = x**5-2*x**4-2*x**3+4*x**2+x-2

    assert ratint(f/g, x) == \
        -4*log(x + 1) + 4*log(x - 2) + (12*x + 6)/(x**2 - 1)

    f = x**4-3*x**2+6
    g = x**6-5*x**4+5*x**2+4

    assert ratint(f/g, x) == \
        atan(x) + atan(x**3) + atan(x/2 - 3*x**S(3)/2 + S(1)/2*x**5)

    f = x**7-24*x**4-4*x**2+8*x-8
    g = x**8+6*x**6+12*x**4+8*x**2

    assert ratint(f/g, x) == \
        (4 + 6*x + 8*x**2 + 3*x**3)/(4*x + 4*x**3 + x**5) + log(x)

    assert ratint((x**3*f)/(x*g), x) == \
        -(12 - 16*x + 6*x**2 - 14*x**3)/(4 + 4*x**2 + x**4) - \
        5*sqrt(2)*atan(x*sqrt(2)/2) + S(1)/2*x**2 - 3*log(2 + x**2)

    f = x**5-x**4+4*x**3+x**2-x+5
    g = x**4-2*x**3+5*x**2-4*x+4

    assert ratint(f/g, x) == \
        x + S(1)/2*x**2 + S(1)/2*log(2-x+x**2) - (4*x-9)/(14-7*x+7*x**2) + \
        13*sqrt(7)*atan(-S(1)/7*sqrt(7) + 2*x*sqrt(7)/7)/49

    assert ratint(1/(x**2+x+1), x) == \
        2*sqrt(3)*atan(sqrt(3)/3 + 2*x*sqrt(3)/3)/3

    assert ratint(1/(x**3+1), x) == \
        -log(1 - x + x**2)/6 + log(1 + x)/3 + sqrt(3)*atan(-sqrt(3)/3 + 2*x*sqrt(3)/3)/3

    assert ratint(1/(x**2+x+1), x, real=False) == \
        -I*3**half*log(half + x - half*I*3**half)/3 + \
        I*3**half*log(half + x + half*I*3**half)/3

    assert ratint(1/(x**3+1), x, real=False) == log(1 + x)/3 + \
        (-S(1)/6 + I*3**half/6)*log(-half + x + I*3**half/2) + \
        (-S(1)/6 - I*3**half/6)*log(-half + x - I*3**half/2)

    # Issue 1892
    assert ratint(1/(x*(a+b*x)**3), x) == \
        (sqrt(a**(-6))*log(x + (a - a**4*sqrt(a**(-6)))/(2*b)) +
        (3*a + 2*b*x)/(2*a**2*b**2*x**2 + 4*b*x*a**3 + 2*a**4) -
        sqrt(a**(-6))*log(x + (a + a**4*sqrt(a**(-6)))/(2*b)))

    assert ratint(x/(1 - x**2), x) == -log(x**2 - 1)/2
    assert ratint(-x/(1 - x**2), x) == log(x**2 - 1)/2

    ans = atan(x)
    assert ratint(1/(x**2 + 1), x, symbol=x) == ans
    assert ratint(1/(x**2 + 1), x, symbol='x') == ans
    assert ratint(1/(x**2 + 1), x, symbol=a) == ans
Exemplo n.º 48
0
def test_issue_8520():
    assert manualintegrate(x / (x**4 + 1), x) == atan(x**2) / 2
    assert manualintegrate(x**2 / (x**6 + 25), x) == atan(x**3 / 5) / 15
    f = x / (9 * x**4 + 4)**2
    assert manualintegrate(f, x).diff(x).factor() == f
Exemplo n.º 49
0
def test_issue_10847_slow():
    assert manualintegrate((4*x**4 + 4*x**3 + 16*x**2 + 12*x + 8)
                           / (x**6 + 2*x**5 + 3*x**4 + 4*x**3 + 3*x**2 + 2*x + 1), x) == \
                           2*x/(x**2 + 1) + 3*atan(x) - 1/(x**2 + 1) - 3/(x + 1)
Exemplo n.º 50
0
def test_log_to_atan():
    f, g = (Poly(x + S(1)/2, x, domain='QQ'), Poly(sqrt(3)/2, x, domain='EX'))
    fg_ans = 2*atan(2*sqrt(3)*x/3 + sqrt(3)/3)
    assert log_to_atan(f, g) == fg_ans
    assert log_to_atan(g, f) == -fg_ans
Exemplo n.º 51
0
def test_atan():
    x = Symbol("x", real=True)
    assert limit(atan(x) * sin(1 / x), x, 0) == 0
    assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi / 2
Exemplo n.º 52
0
def test_issue_2882():
    u = symbols('u')
    assert integrate(1/(u**2 + 1)) == atan(u)
Exemplo n.º 53
0
def test_issue_2718():
    a, b, c = symbols('a,b,c', positive=True)

    assert simplify(ratint(a/(b*c*x**2 + a**2 + b*a), x)) == \
        sqrt(a)*atan(sqrt(b)*sqrt(c)*x/(sqrt(a)*sqrt(a + b)))/(sqrt(b)*sqrt(c)*sqrt(a + b))
Exemplo n.º 54
0
def test_manualintegrate_inversetrig():
    # atan
    assert manualintegrate(exp(x) / (1 + exp(2 * x)), x) == atan(exp(x))
    assert manualintegrate(1 / (4 + 9 * x**2), x) == atan(3 * x / 2) / 6
    assert manualintegrate(1 / (16 + 16 * x**2), x) == atan(x) / 16
    assert manualintegrate(1 / (4 + x**2), x) == atan(x / 2) / 2
    assert manualintegrate(1 / (1 + 4 * x**2), x) == atan(2 * x) / 2
    ra = Symbol('a', real=True)
    rb = Symbol('b', real=True)
    assert manualintegrate(1/(ra + rb*x**2), x) == \
        Piecewise((atan(x/sqrt(ra/rb))/(rb*sqrt(ra/rb)), ra/rb > 0),
                  (-acoth(x/sqrt(-ra/rb))/(rb*sqrt(-ra/rb)), And(ra/rb < 0, x**2 > -ra/rb)),
                  (-atanh(x/sqrt(-ra/rb))/(rb*sqrt(-ra/rb)), And(ra/rb < 0, x**2 < -ra/rb)))
    assert manualintegrate(1/(4 + rb*x**2), x) == \
        Piecewise((atan(x/(2*sqrt(1/rb)))/(2*rb*sqrt(1/rb)), 4/rb > 0),
                  (-acoth(x/(2*sqrt(-1/rb)))/(2*rb*sqrt(-1/rb)), And(4/rb < 0, x**2 > -4/rb)),
                  (-atanh(x/(2*sqrt(-1/rb)))/(2*rb*sqrt(-1/rb)), And(4/rb < 0, x**2 < -4/rb)))
    assert manualintegrate(1/(ra + 4*x**2), x) == \
        Piecewise((atan(2*x/sqrt(ra))/(2*sqrt(ra)), ra/4 > 0),
                  (-acoth(2*x/sqrt(-ra))/(2*sqrt(-ra)), And(ra/4 < 0, x**2 > -ra/4)),
                  (-atanh(2*x/sqrt(-ra))/(2*sqrt(-ra)), And(ra/4 < 0, x**2 < -ra/4)))
    assert manualintegrate(1 / (4 + 4 * x**2), x) == atan(x) / 4

    assert manualintegrate(1 / (a + b * x**2),
                           x) == atan(x / sqrt(a / b)) / (b * sqrt(a / b))

    # asin
    assert manualintegrate(1 / sqrt(1 - x**2), x) == asin(x)
    assert manualintegrate(1 / sqrt(4 - 4 * x**2), x) == asin(x) / 2
    assert manualintegrate(3 / sqrt(1 - 9 * x**2), x) == asin(3 * x)
    assert manualintegrate(1 / sqrt(4 - 9 * x**2),
                           x) == asin(x * Rational(3, 2)) / 3

    # asinh
    assert manualintegrate(1/sqrt(x**2 + 1), x) == \
        asinh(x)
    assert manualintegrate(1/sqrt(x**2 + 4), x) == \
        asinh(x/2)
    assert manualintegrate(1/sqrt(4*x**2 + 4), x) == \
        asinh(x)/2
    assert manualintegrate(1/sqrt(4*x**2 + 1), x) == \
        asinh(2*x)/2
    assert manualintegrate(1/sqrt(a*x**2 + 1), x) == \
        Piecewise((sqrt(-1/a)*asin(x*sqrt(-a)), a < 0), (sqrt(1/a)*asinh(sqrt(a)*x), a > 0))
    assert manualintegrate(1/sqrt(a + x**2), x) == \
        Piecewise((asinh(x*sqrt(1/a)), a > 0), (acosh(x*sqrt(-1/a)), a < 0))

    # acosh
    assert manualintegrate(1/sqrt(x**2 - 1), x) == \
        acosh(x)
    assert manualintegrate(1/sqrt(x**2 - 4), x) == \
        acosh(x/2)
    assert manualintegrate(1/sqrt(4*x**2 - 4), x) == \
        acosh(x)/2
    assert manualintegrate(1/sqrt(9*x**2 - 1), x) == \
        acosh(3*x)/3
    assert manualintegrate(1/sqrt(a*x**2 - 4), x) == \
        Piecewise((sqrt(1/a)*acosh(sqrt(a)*x/2), a > 0))
    assert manualintegrate(1/sqrt(-a + 4*x**2), x) == \
        Piecewise((asinh(2*x*sqrt(-1/a))/2, -a > 0), (acosh(2*x*sqrt(1/a))/2, -a < 0))

    # piecewise
    assert manualintegrate(1/sqrt(a-b*x**2), x) == \
        Piecewise((sqrt(a/b)*asin(x*sqrt(b/a))/sqrt(a), And(-b < 0, a > 0)),
                  (sqrt(-a/b)*asinh(x*sqrt(-b/a))/sqrt(a), And(-b > 0, a > 0)),
                  (sqrt(a/b)*acosh(x*sqrt(b/a))/sqrt(-a), And(-b > 0, a < 0)))
    assert manualintegrate(1/sqrt(a + b*x**2), x) == \
        Piecewise((sqrt(-a/b)*asin(x*sqrt(-b/a))/sqrt(a), And(a > 0, b < 0)),
                  (sqrt(a/b)*asinh(x*sqrt(b/a))/sqrt(a), And(a > 0, b > 0)),
                  (sqrt(-a/b)*acosh(x*sqrt(-b/a))/sqrt(-a), And(a < 0, b > 0)))
Exemplo n.º 55
0
def test_issue_2315():
    assert ratint(1/(x**2 + 16), x) == atan(x/4)/4
Exemplo n.º 56
0
from sympy import var, sqrt, sin, pprint, simplify, ccode, atan2, atan, exp, S
var("x y alpha_w alpha_p omega pi x_w y_w x_p y_p epsilon r0")


def diff_f_x(f):
    return f.diff(x, 1)


r = sqrt(x**2 + y**2)
r_w = sqrt((x - x_w)**2 + (y - y_w)**2)
r_p_squared = (x - x_p)**2 + (y - y_p)**2
theta = atan(y / x)
u = r**(pi / omega) * sin(theta * pi / omega) + atan(
    alpha_w *
    (r_w - r0)) + exp(-alpha_p * r_p_squared) + exp(-(1 + y) / epsilon)
params = {
    omega: 3 * pi / 2,
    x_w: 0,
    y_w: -S(3) / 4,
    r0: S(3) / 4,
    alpha_p: 1000,
    alpha_w: 200,
    x_p: sqrt(5) / 4,
    y_p: -S(1) / 4,
    epsilon: S(1) / 100,
}
u = u.subs(params)
lhs = diff_f_x(u)

print "lhs, as a formula:"
pprint(lhs)
Exemplo n.º 57
0
def test_issue_15539():
    assert series(atan(x), x, -oo) == (-1 / (5 * x**5) + 1 / (3 * x**3) -
                                       1 / x - pi / 2 + O(x**(-6), (x, -oo)))
    assert series(atan(x), x, oo) == (-1 / (5 * x**5) + 1 / (3 * x**3) -
                                      1 / x + pi / 2 + O(x**(-6), (x, oo)))
Exemplo n.º 58
0
def test_issue_1707():
    assert integrate(atan(x)**2, (x, -1, 1)).evalf().round(1) == 0.5
    assert atan(0, evaluate=False).n() == 0
Exemplo n.º 59
0
 'square': lambda x: x**2,
 'cube': lambda x: x**3,
 'plus': lambda x, y: x + y,
 'sub': lambda x, y: x - y,
 'neg': lambda x: -x,
 'pow': lambda x, y: sympy.sign(x) * abs(x)**y,
 'cos': lambda x: sympy.cos(x),
 'sin': lambda x: sympy.sin(x),
 'tan': lambda x: sympy.tan(x),
 'cosh': lambda x: sympy.cosh(x),
 'sinh': lambda x: sympy.sinh(x),
 'tanh': lambda x: sympy.tanh(x),
 'exp': lambda x: sympy.exp(x),
 'acos': lambda x: sympy.acos(x),
 'asin': lambda x: sympy.asin(x),
 'atan': lambda x: sympy.atan(x),
 'acosh': lambda x: sympy.acosh(x),
 'asinh': lambda x: sympy.asinh(x),
 'atanh': lambda x: sympy.atanh(x),
 'abs': lambda x: abs(x),
 'mod': lambda x, y: sympy.Mod(x, y),
 'erf': lambda x: sympy.erf(x),
 'erfc': lambda x: sympy.erfc(x),
 'logm': lambda x: sympy.log(abs(x)),
 'logm10': lambda x: sympy.log10(abs(x)),
 'logm2': lambda x: sympy.log2(abs(x)),
 'log1p': lambda x: sympy.log(x + 1),
 'floor': lambda x: sympy.floor(x),
 'ceil': lambda x: sympy.ceil(x),
 'sign': lambda x: sympy.sign(x),
 'round': lambda x: sympy.round(x),
Exemplo n.º 60
-1
def test_linearize_pendulum_lagrange_nonminimal():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # A.x is along the pendulum
    theta1 = atan(q2/q1)
    A = N.orientnew('A', 'axis', [theta1, N.z])
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Compose operating point
    op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
    # Solve for multiplier operating point
    lam_op = LM.solve_multipliers(op_point=op_point)
    op_point.update(lam_op)
    # Perform the Linearization
    A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
            op_point=op_point, A_and_B=True)
    assert A == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])