Exemplo n.º 1
0
 def E(expr):
     res1 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                      (x, 0, oo), (y, -oo, oo), meijerg=True)
     res2 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                     (y, -oo, oo), (x, 0, oo), meijerg=True)
     assert expand_mul(res1) == expand_mul(res2)
     return res1
Exemplo n.º 2
0
def test_issue841():
    from sympy import expand_mul
    from sympy.abc import k

    assert expand_mul(integrate(exp(-x ** 2) * exp(I * k * x), (x, -oo, oo))) == sqrt(pi) * exp(-k ** 2 / 4)
    a, d = symbols("a d", positive=True)
    assert expand_mul(integrate(exp(-a * x ** 2 + 2 * d * x), (x, -oo, oo))) == sqrt(pi) * exp(d ** 2 / a) / sqrt(a)
Exemplo n.º 3
0
 def eval(cls, arg):
     from sympy.simplify.simplify import signsimp
     if hasattr(arg, '_eval_Abs'):
         obj = arg._eval_Abs()
         if obj is not None:
             return obj
     # handle what we can
     arg = signsimp(arg, evaluate=False)
     if arg.is_Mul:
         known = []
         unk = []
         for t in arg.args:
             tnew = cls(t)
             if tnew.func is cls:
                 unk.append(tnew.args[0])
             else:
                 known.append(tnew)
         known = Mul(*known)
         unk = cls(Mul(*unk), evaluate=False) if unk else S.One
         return known*unk
     if arg is S.NaN:
         return S.NaN
     if arg.is_Pow:
         base, exponent = arg.as_base_exp()
         if base.is_real:
             if exponent.is_integer:
                 if exponent.is_even:
                     return arg
                 if base is S.NegativeOne:
                     return S.One
                 if base.func is cls and exponent is S.NegativeOne:
                     return arg
                 return Abs(base)**exponent
             if base.is_positive == True:
                 return base**re(exponent)
             return (-base)**re(exponent)*C.exp(-S.Pi*im(exponent))
     if isinstance(arg, C.exp):
         return C.exp(re(arg.args[0]))
     if arg.is_zero:  # it may be an Expr that is zero
         return S.Zero
     if arg.is_nonnegative:
         return arg
     if arg.is_nonpositive:
         return -arg
     if arg.is_imaginary:
         arg2 = -S.ImaginaryUnit * arg
         if arg2.is_nonnegative:
             return arg2
     if arg.is_Add:
         if arg.has(S.Infinity, S.NegativeInfinity):
             if any(a.is_infinite for a in arg.as_real_imag()):
                 return S.Infinity
         if arg.is_real is None and arg.is_imaginary is None:
             if all(a.is_real or a.is_imaginary or (S.ImaginaryUnit*a).is_real for a in arg.args):
                 from sympy import expand_mul
                 return sqrt(expand_mul(arg*arg.conjugate()))
     if arg.is_real is False and arg.is_imaginary is False:
         from sympy import expand_mul
         return sqrt(expand_mul(arg*arg.conjugate()))
Exemplo n.º 4
0
def test_acsch():
    x = Symbol('x')

    assert acsch(-x) == acsch(-x)
    assert acsch(x) == -acsch(-x)

    # values at fixed points
    assert acsch(1) == log(1 + sqrt(2))
    assert acsch(-1) == - log(1 + sqrt(2))
    assert acsch(0) == zoo
    assert acsch(2) == log((1+sqrt(5))/2)
    assert acsch(-2) == - log((1+sqrt(5))/2)

    assert acsch(I) == - I*pi/2
    assert acsch(-I) == I*pi/2
    assert acsch(-I*(sqrt(6) + sqrt(2))) == I*pi / 12
    assert acsch(I*(sqrt(2) + sqrt(6))) == -I*pi / 12
    assert acsch(-I*(1 + sqrt(5))) == I*pi / 10
    assert acsch(I*(1 + sqrt(5))) == -I*pi / 10
    assert acsch(-I*2 / sqrt(2 - sqrt(2))) == I*pi / 8
    assert acsch(I*2 / sqrt(2 - sqrt(2))) == -I*pi / 8
    assert acsch(-I*2) == I*pi / 6
    assert acsch(I*2) == -I*pi / 6
    assert acsch(-I*sqrt(2 + 2/sqrt(5))) == I*pi / 5
    assert acsch(I*sqrt(2 + 2/sqrt(5))) == -I*pi / 5
    assert acsch(-I*sqrt(2)) == I*pi / 4
    assert acsch(I*sqrt(2)) == -I*pi / 4
    assert acsch(-I*(sqrt(5)-1)) == 3*I*pi / 10
    assert acsch(I*(sqrt(5)-1)) == -3*I*pi / 10
    assert acsch(-I*2 / sqrt(3)) == I*pi / 3
    assert acsch(I*2 / sqrt(3)) == -I*pi / 3
    assert acsch(-I*2 / sqrt(2 + sqrt(2))) == 3*I*pi / 8
    assert acsch(I*2 / sqrt(2 + sqrt(2))) == -3*I*pi / 8
    assert acsch(-I*sqrt(2 - 2/sqrt(5))) == 2*I*pi / 5
    assert acsch(I*sqrt(2 - 2/sqrt(5))) == -2*I*pi / 5
    assert acsch(-I*(sqrt(6) - sqrt(2))) == 5*I*pi / 12
    assert acsch(I*(sqrt(6) - sqrt(2))) == -5*I*pi / 12

    # properties
    # acsch(x) == asinh(1/x)
    assert acsch(-I*sqrt(2)) == asinh(I/sqrt(2))
    assert acsch(-I*2 / sqrt(3)) == asinh(I*sqrt(3) / 2)

    # acsch(x) == -I*asin(I/x)
    assert acsch(-I*sqrt(2)) == -I*asin(-1/sqrt(2))
    assert acsch(-I*2 / sqrt(3)) == -I*asin(-sqrt(3)/2)

    # csch(acsch(x)) / x == 1
    assert expand_mul(csch(acsch(-I*(sqrt(6) + sqrt(2)))) / (-I*(sqrt(6) + sqrt(2)))) == 1
    assert expand_mul(csch(acsch(I*(1 + sqrt(5)))) / ((I*(1 + sqrt(5))))) == 1
    assert (csch(acsch(I*sqrt(2 - 2/sqrt(5)))) / (I*sqrt(2 - 2/sqrt(5)))).simplify() == 1
    assert (csch(acsch(-I*sqrt(2 - 2/sqrt(5)))) / (-I*sqrt(2 - 2/sqrt(5)))).simplify() == 1

    # numerical evaluation
    assert str(acsch(5*I+1).n(6)) == '0.0391819 - 0.193363*I'
    assert str(acsch(-5*I+1).n(6)) == '0.0391819 + 0.193363*I'
Exemplo n.º 5
0
def test_asech():
    x = Symbol('x')

    assert asech(-x) == asech(-x)

    # values at fixed points
    assert asech(1) == 0
    assert asech(-1) == pi*I
    assert asech(0) == oo
    assert asech(2) == I*pi/3
    assert asech(-2) == 2*I*pi / 3

    # at infinites
    assert asech(oo) == I*pi/2
    assert asech(-oo) == I*pi/2
    assert asech(zoo) == nan

    assert asech(I) == log(1 + sqrt(2)) - I*pi/2
    assert asech(-I) == log(1 + sqrt(2)) + I*pi/2
    assert asech(sqrt(2) - sqrt(6)) == 11*I*pi / 12
    assert asech(sqrt(2 - 2/sqrt(5))) == I*pi / 10
    assert asech(-sqrt(2 - 2/sqrt(5))) == 9*I*pi / 10
    assert asech(2 / sqrt(2 + sqrt(2))) == I*pi / 8
    assert asech(-2 / sqrt(2 + sqrt(2))) == 7*I*pi / 8
    assert asech(sqrt(5) - 1) == I*pi / 5
    assert asech(1 - sqrt(5)) == 4*I*pi / 5
    assert asech(-sqrt(2*(2 + sqrt(2)))) == 5*I*pi / 8

    # properties
    # asech(x) == acosh(1/x)
    assert asech(sqrt(2)) == acosh(1/sqrt(2))
    assert asech(2/sqrt(3)) == acosh(sqrt(3)/2)
    assert asech(2/sqrt(2 + sqrt(2))) == acosh(sqrt(2 + sqrt(2))/2)
    assert asech(S(2)) == acosh(1/S(2))

    # asech(x) == I*acos(1/x)
    # (Note: the exact formula is asech(x) == +/- I*acos(1/x))
    assert asech(-sqrt(2)) == I*acos(-1/sqrt(2))
    assert asech(-2/sqrt(3)) == I*acos(-sqrt(3)/2)
    assert asech(-S(2)) == I*acos(-S.Half)
    assert asech(-2/sqrt(2)) == I*acos(-sqrt(2)/2)

    # sech(asech(x)) / x == 1
    assert expand_mul(sech(asech(sqrt(6) - sqrt(2))) / (sqrt(6) - sqrt(2))) == 1
    assert expand_mul(sech(asech(sqrt(6) + sqrt(2))) / (sqrt(6) + sqrt(2))) == 1
    assert (sech(asech(sqrt(2 + 2/sqrt(5)))) / (sqrt(2 + 2/sqrt(5)))).simplify() == 1
    assert (sech(asech(-sqrt(2 + 2/sqrt(5)))) / (-sqrt(2 + 2/sqrt(5)))).simplify() == 1
    assert (sech(asech(sqrt(2*(2 + sqrt(2))))) / (sqrt(2*(2 + sqrt(2))))).simplify() == 1
    assert expand_mul(sech(asech((1 + sqrt(5)))) / ((1 + sqrt(5)))) == 1
    assert expand_mul(sech(asech((-1 - sqrt(5)))) / ((-1 - sqrt(5)))) == 1
    assert expand_mul(sech(asech((-sqrt(6) - sqrt(2)))) / ((-sqrt(6) - sqrt(2)))) == 1

    # numerical evaluation
    assert str(asech(5*I).n(6)) == '0.19869 - 1.5708*I'
    assert str(asech(-5*I).n(6)) == '0.19869 + 1.5708*I'
Exemplo n.º 6
0
def test_issue_3940():
    a, b, c, d = symbols('a:d', positive=True, finite=True)
    assert integrate(exp(-x**2 + I*c*x), x) == \
        -sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2
    assert integrate(exp(a*x**2 + b*x + c), x) == \
        sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a))

    from sympy import expand_mul
    from sympy.abc import k
    assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \
        sqrt(pi)*exp(-k**2/4)
    a, d = symbols('a d', positive=True)
    assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \
        sqrt(pi)*exp(d**2/a)/sqrt(a)
Exemplo n.º 7
0
    def eval(cls, arg):
        from sympy.simplify.simplify import signsimp

        if hasattr(arg, "_eval_Abs"):
            obj = arg._eval_Abs()
            if obj is not None:
                return obj
        # handle what we can
        arg = signsimp(arg, evaluate=False)
        if arg.is_Mul:
            known = []
            unk = []
            for t in arg.args:
                tnew = cls(t)
                if tnew.func is cls:
                    unk.append(tnew.args[0])
                else:
                    known.append(tnew)
            known = Mul(*known)
            unk = cls(Mul(*unk), evaluate=False) if unk else S.One
            return known * unk
        if arg is S.NaN:
            return S.NaN
        if arg.is_zero:  # it may be an Expr that is zero
            return S.Zero
        if arg.is_nonnegative:
            return arg
        if arg.is_nonpositive:
            return -arg
        if arg.is_imaginary:
            arg2 = -S.ImaginaryUnit * arg
            if arg2.is_nonnegative:
                return arg2
        if arg.is_real is False and arg.is_imaginary is False:
            from sympy import expand_mul

            return sqrt(expand_mul(arg * arg.conjugate()))
        if arg.is_real is None and arg.is_imaginary is None and arg.is_Add:
            if all(a.is_real or a.is_imaginary or (S.ImaginaryUnit * a).is_real for a in arg.args):
                from sympy import expand_mul

                return sqrt(expand_mul(arg * arg.conjugate()))
        if arg.is_Pow:
            base, exponent = arg.as_base_exp()
            if exponent.is_even and base.is_real:
                return arg
            if exponent.is_integer and base is S.NegativeOne:
                return S.One
Exemplo n.º 8
0
    def _eval_expand_trig(self, **hints):
        from sympy import expand_mul
        arg = self.args[0]
        x = None
        if arg.is_Add:  # TODO, implement more if deep stuff here
            # TODO: Do this more efficiently for more than two terms
            x, y = arg.as_two_terms()
            sx = sin(x, evaluate=False)._eval_expand_trig()
            sy = sin(y, evaluate=False)._eval_expand_trig()
            cx = cos(x, evaluate=False)._eval_expand_trig()
            cy = cos(y, evaluate=False)._eval_expand_trig()
            return sx*cy + sy*cx
        else:
            n, x = arg.as_coeff_Mul(rational=True)
            if n.is_Integer:  # n will be positive because of .eval
                # canonicalization

                # See http://mathworld.wolfram.com/Multiple-AngleFormulas.html
                if n.is_odd:
                    return (-1)**((n - 1)/2)*C.chebyshevt(n, sin(x))
                else:
                    return expand_mul((-1)**(n/2 - 1)*cos(x)*C.chebyshevu(n -
                        1, sin(x)), deep=False)
            pi_coeff = _pi_coeff(arg)
            if pi_coeff is not None:
                if pi_coeff.is_Rational:
                    return self.rewrite(sqrt)
        return sin(arg)
Exemplo n.º 9
0
    def _eval_as_leading_term(self, x):
        from sympy import expand_mul, factor_terms

        old = self

        self = expand_mul(self)
        if not self.is_Add:
            return self.as_leading_term(x)

        unbounded = [t for t in self.args if t.is_unbounded]

        self = self.func(*[t.as_leading_term(x) for t in self.args]).removeO()
        if not self:
            # simple leading term analysis gave us 0 but we have to send
            # back a term, so compute the leading term (via series)
            return old.compute_leading_term(x)
        elif self is S.NaN:
            return old.func._from_args(unbounded)
        elif not self.is_Add:
            return self
        else:
            plain = self.func(*[s for s, _ in self.extract_leading_order(x)])
            rv = factor_terms(plain, fraction=False)
            rv_simplify = rv.simplify()
            # if it simplifies to an x-free expression, return that;
            # tests don't fail if we don't but it seems nicer to do this
            if x not in rv_simplify.free_symbols:
                if rv_simplify.is_zero and plain.is_zero is not True:
                    return (self - plain)._eval_as_leading_term(x)
                return rv_simplify
            return rv
Exemplo n.º 10
0
 def _bell_poly(n, prev):
     s = 1
     a = 1
     for k in xrange(2, n+1):
         a = a * (n-k+1) // (k-1)
         s += a * prev[k-1]
     return expand_mul(_sym * s)
Exemplo n.º 11
0
def test_sqrtdenest():
    d = {sqrt(5 + 2 * sqrt(6)): sqrt(2) + sqrt(3),
        sqrt(sqrt(2)): sqrt(sqrt(2)),
        sqrt(5+sqrt(7)): sqrt(5+sqrt(7)),
        sqrt(3+sqrt(5+2*sqrt(7))):
            sqrt(6+3*sqrt(7))/(sqrt(2)*(5+2*sqrt(7))**Rational(1,4)) +
            3*(5+2*sqrt(7))**Rational(1,4)/(sqrt(2)*sqrt(6+3*sqrt(7))),
        sqrt(3+2*sqrt(3)): 3**Rational(1,4)/sqrt(2)+3/(sqrt(2)*3**Rational(1,4))}
    for i in d:
        assert sqrtdenest(i) == d[i] or denester([i])[0] == d[i]

    # this test caused a pattern recognition failure in sqrtdenest
    # nest = sqrt(2) + sqrt(5) - sqrt(7)
    nest = symbols('nest')
    x0, x1, x2, x3, x4, x5, x6 = symbols('x:7')
    l = sqrt(2) + sqrt(5)
    r = sqrt(7) + nest
    s = (l**2 - r**2).expand() + nest**2 # == nest**2
    ok = solve(nest**4 - s**2, nest)[1] # this will change if results order changes
    assert abs((l - r).subs(nest, ok).n()) < 1e-12
    x0 = sqrt(3)
    x2 = root(45*I*x0 - 28, 3)
    x3 = 19/x2
    x4 = x2 + x3
    x5 = -x4 - 14
    x6 = sqrt(-x5)
    ans = -x0*x6/3 + x0*sqrt(-x4 + 28 - 6*sqrt(210)*x6/x5)/3
    assert expand_mul(radsimp(ok) - ans) == 0
    # issue 2554
    eq = sqrt(sqrt(sqrt(2) + 2) + 2)
    assert sqrtdenest(eq) == eq
Exemplo n.º 12
0
    def _bell_incomplete_poly(n, k, symbols):
        r"""
        The second kind of Bell polynomials (incomplete Bell polynomials).

        Calculated by recurrence formula:

        .. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) =
                \sum_{m=1}^{n-k+1}
                \x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k})

        where
            B_{0,0} = 1;
            B_{n,0} = 0; for n>=1
            B_{0,k} = 0; for k>=1

        """
        if (n==0) and (k==0):
            return S.One
        elif (n==0) or (k==0):
            return S.Zero
        s = S.Zero
        a = S.One
        for m in xrange(1, n-k+2):
            s += a*bell._bell_incomplete_poly(n-m, k-1, symbols)*symbols[m-1]
            a = a*(n-m)/m
        return expand_mul(s)
Exemplo n.º 13
0
    def _eval_as_leading_term(self, x):
        from sympy import expand_mul, factor_terms

        old = self

        self = expand_mul(self)
        if not self.is_Add:
            return self.as_leading_term(x)

        unbounded = [t for t in self.args if t.is_unbounded]
        if unbounded:
            return Add._from_args(unbounded)

        self = Add(*[t.as_leading_term(x) for t in self.args]).removeO()
        if not self:
            # simple leading term analysis gave us 0 but we have to send
            # back a term, so compute the leading term (via series)
            return old.compute_leading_term(x)
        elif not self.is_Add:
            return self
        else:
            plain = Add(*[s for s, _ in self.extract_leading_order(x)])
            rv = factor_terms(plain, fraction=False)
            rv_fraction = factor_terms(rv, fraction=True)
            # if it simplifies to an x-free expression, return that;
            # tests don't fail if we don't but it seems nicer to do this
            if x not in rv_fraction.free_symbols:
                return rv_fraction
            return rv
Exemplo n.º 14
0
 def eval(cls, arg):
     if arg.is_Mul:
         known = []
         unk = []
         for t in arg.args:
             tnew = cls(t)
             if tnew.func is cls:
                 unk.append(tnew.args[0])
             else:
                 known.append(tnew)
         known = Mul(*known)
         unk = cls(Mul(*unk), evaluate=False) if unk else S.One
         return known*unk
     if arg is S.NaN:
         return S.NaN
     if arg.is_zero:
         return arg
     if arg.is_positive:
         return arg
     if arg.is_negative:
         return -arg
     if arg.is_real is False:
         from sympy import expand_mul
         return sqrt( expand_mul(arg * arg.conjugate()) )
     if arg.is_Pow:
         base, exponent = arg.as_base_exp()
         if exponent.is_even and base.is_real:
             return arg
Exemplo n.º 15
0
    def eval(cls, arg):
        if hasattr(arg, "_eval_Abs"):
            obj = arg._eval_Abs()
            if obj is not None:
                return obj
        if arg.is_Mul:
            known = []
            unk = []
            for t in arg.args:
                tnew = cls(t)
                if tnew.func is cls:
                    unk.append(tnew.args[0])
                else:
                    known.append(tnew)
            known = Mul(*known)
            unk = cls(Mul(*unk), evaluate=False) if unk else S.One
            return known * unk
        if arg is S.NaN:
            return S.NaN
        if arg.is_nonnegative:
            return arg
        if arg.is_nonpositive:
            return -arg
        if arg.is_imaginary:
            arg2 = -S.ImaginaryUnit * arg
            if arg2.is_nonnegative:
                return arg2
        if arg.is_real is False and arg.is_imaginary is False:
            from sympy import expand_mul

            return sqrt(expand_mul(arg * arg.conjugate()))
        if arg.is_Pow:
            base, exponent = arg.as_base_exp()
            if exponent.is_even and base.is_real:
                return arg
Exemplo n.º 16
0
Arquivo: add.py Projeto: ENuge/sympy
 def _combine_inverse(lhs, rhs):
     """
     Returns lhs - rhs, but treats arguments like symbols, so things like
     oo - oo return 0, instead of a nan.
     """
     from sympy import oo, I, expand_mul
     if lhs == oo and rhs == oo or lhs == oo*I and rhs == oo*I:
         return S.Zero
     return expand_mul(lhs - rhs)
Exemplo n.º 17
0
 def _eval_expand_func(self, **hints):
     from sympy import log, expand_mul, Dummy, exp_polar, I
     s, z = self.args
     if s == 1:
         return -log(1 + exp_polar(-I*pi)*z)
     if s.is_Integer and s <= 0:
         u = Dummy('u')
         start = u/(1 - u)
         for _ in range(-s):
             start = u*start.diff(u)
         return expand_mul(start).subs(u, z)
     return polylog(s, z)
Exemplo n.º 18
0
def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False):
    """ A helper for the real inverse_mellin_transform function, this one here
        assumes x to be real and positive. """
    from sympy import (expand, expand_mul, hyperexpand, meijerg, And, Or,
                       arg, pi, re, factor, Heaviside, gamma, Add)
    x = _dummy('t', 'inverse-mellin-transform', F, positive=True)
    # Actually, we won't try integration at all. Instead we use the definition
    # of the Meijer G function as a fairly general inverse mellin transform.
    F = F.rewrite(gamma)
    for g in [factor(F), expand_mul(F), expand(F)]:
        if g.is_Add:
            # do all terms separately
            ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg,
                                              noconds=False) \
                    for G in g.args]
            conds = [p[1] for p in ress]
            ress = [p[0] for p in ress]
            res = Add(*ress)
            if not as_meijerg:
                res = factor(res, gens=res.atoms(Heaviside))
            return res.subs(x, x_), And(*conds)

        try:
            a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1])
        except IntegralTransformError:
            continue
        G = meijerg(a, b, C/x**e)
        if as_meijerg:
            h = G
        else:
            h = hyperexpand(G)
            if h.is_Piecewise and len(h.args) == 3:
                # XXX we break modularity here!
                h = Heaviside(x - abs(C))*h.args[0].args[0] \
                  + Heaviside(abs(C) - x)*h.args[1].args[0]
        # We must ensure that the intgral along the line we want converges,
        # and return that value.
        # See [L], 5.2
        cond = [abs(arg(G.argument)) < G.delta*pi]
        # Note: we allow ">=" here, this corresponds to convergence if we let
        # limits go to oo symetrically. ">" corresponds to absolute convergence.
        cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1),
                     abs(arg(G.argument)) == G.delta*pi)]
        cond = Or(*cond)
        if cond is False:
            raise IntegralTransformError('Inverse Mellin', F, 'does not converge')
        return (h*fac).subs(x, x_), cond

    raise IntegralTransformError('Inverse Mellin', F, '')
Exemplo n.º 19
0
def solution(pars):
    (a2,a1,a0),(t1,t2),(k1,k2),(y0,yd0)=pars
    a2,a1,a0 = map(int,[a2,a1,a0])
    den = a2*s**2+a1*s+a0
    V1 = apart(1/s/den).as_ordered_terms()            # const.
    V2 = apart(1/s**2/den).as_ordered_terms()         # lin.
    Iv1,Iv2 = ilt_pfe(V1),ilt_pfe(V2)
    LIC  = (a2*(s*y0+yd0) + a1*y0)/den
    y1 = ILT(LIC, s,t)
    y2 = k1*Iv2                                       #        k1,  t
    y3 = (k2-k1)*Iv2.subs(t,t-t1)*H(t-t1)             #  k2-k1,(t-t1)*H(t-t1)
    y4 = (t1*(k2-k1)-k2*t2)*Iv1.subs(t,t-t1)*H(t-t1)  # t1*(k2-k1)-k2*t2,H(t-t1), nulove pre spojite
    y5 = -k2*Iv2.subs(t,t-t2)*H(t-t2)                 #  -k2, (t-t2)*H(t-t2)
    y = expand_mul(simplify(y1+y2+y3+y4+y5))
    return y
Exemplo n.º 20
0
 def _eval_expand_func(self, **hints):
     from sympy import log, expand_mul, Dummy, exp_polar, I
     if hints.get('deep', False):
         s, z = map(lambda x: x._eval_expand_func(**hints), self.args)
     else:
         s, z = self.args
     if s == 1:
         return -log(1 + exp_polar(-I*pi)*z)
     if s.is_Integer and s <= 0:
         u = Dummy('u')
         start = u/(1 - u)
         for _ in range(-s):
             start = u*start.diff(u)
         return expand_mul(start).subs(u, z)
     return polylog(s, z)
Exemplo n.º 21
0
 def eval(cls, arg):
     if arg is S.NaN:
         return S.NaN
     if arg.is_zero:     return arg
     if arg.is_positive: return arg
     if arg.is_negative: return -arg
     coeff, terms = arg.as_coeff_mul()
     if coeff is not S.One:
         return cls(coeff) * cls(Mul(*terms))
     if arg.is_real is False:
         from sympy import expand_mul
         return sqrt( expand_mul(arg * arg.conjugate()) )
     if arg.is_Pow:
         base, exponent = arg.as_base_exp()
         if exponent.is_even and base.is_real:
             return arg
     return
Exemplo n.º 22
0
    def eval(cls, nu, z):
        from sympy import unpolarify, expand_mul, uppergamma, exp, gamma, factorial

        nu2 = unpolarify(nu)
        if nu != nu2:
            return expint(nu2, z)
        if nu.is_Integer and nu <= 0 or (not nu.is_Integer and (2 * nu).is_Integer):
            return unpolarify(expand_mul(z ** (nu - 1) * uppergamma(1 - nu, z)))

        # Extract branching information. This can be deduced from what is
        # explained in lowergamma.eval().
        z, n = z.extract_branch_factor()
        if n == 0:
            return
        if nu.is_integer:
            if (nu > 0) is not True:
                return
            return expint(nu, z) - 2 * pi * I * n * (-1) ** (nu - 1) / factorial(nu - 1) * unpolarify(z) ** (nu - 1)
        else:
            return (exp(2 * I * pi * nu * n) - 1) * z ** (nu - 1) * gamma(1 - nu) + expint(nu, z)
Exemplo n.º 23
0
    def _eval_expand_mul(self, **hints):
        from sympy import fraction, expand_mul

        # Handle things like 1/(x*(x + 1)), which are automatically converted
        # to 1/x*1/(x + 1)
        expr = self
        n, d = fraction(expr)
        if d.is_Mul:
            expr = n/d._eval_expand_mul(**hints)
            if not expr.is_Mul:
                return expand_mul(expr, deep=False)

        plain, sums, rewrite = [], [], False
        for factor in expr.args:
            if factor.is_Add:
                sums.append(factor)
                rewrite = True
            else:
                if factor.is_commutative:
                    plain.append(factor)
                else:
                    sums.append(Basic(factor))  # Wrapper

        if not rewrite:
            return expr
        else:
            plain = Mul(*plain)
            if sums:
                terms = Mul._expandsums(sums)
                args = []
                for term in terms:
                    t = Mul(plain, term)
                    if t.is_Mul and any(a.is_Add for a in t.args):
                        t = t._eval_expand_mul()
                    args.append(t)
                return Add(*args)
            else:
                return plain
Exemplo n.º 24
0
    def doit(self, **hints):
        """
        Try to evaluate the transform in closed form.

        This general function handles linearity, but apart from that leaves
        pretty much everything to _compute_transform.

        Standard hints are the following:

        - ``simplify``: whether or not to simplify the result
        - ``noconds``: if True, don't return convergence conditions
        - ``needeval``: if True, raise IntegralTransformError instead of
                        returning IntegralTransform objects

        The default values of these hints depend on the concrete transform,
        usually the default is
        ``(simplify, noconds, needeval) = (True, False, False)``.
        """
        from sympy import Add, expand_mul, Mul
        from sympy.core.function import AppliedUndef
        needeval = hints.pop('needeval', False)
        try_directly = not any(func.has(self.function_variable) \
                               for func in self.function.atoms(AppliedUndef))
        if try_directly:
            try:
                return self._compute_transform(self.function,
                    self.function_variable, self.transform_variable, **hints)
            except IntegralTransformError:
                pass

        fn = self.function
        if not fn.is_Add:
            fn = expand_mul(fn)

        if fn.is_Add:
            hints['needeval'] = needeval
            res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints)
                   for x in fn.args]
            extra = []
            ress = []
            for x in res:
                if not isinstance(x, tuple):
                    x = [x]
                ress.append(x[0])
                if len(x) > 1:
                    extra += [x[1:]]
            res = Add(*ress)
            if not extra:
                return res
            try:
                extra = self._collapse_extra(extra)
                return tuple([res]) + tuple(extra)
            except IntegralTransformError:
                pass

        if needeval:
            raise IntegralTransformError(self.__class__._name, self.function, 'needeval')

        # TODO handle derivatives etc

        # pull out constant coefficients
        coeff, rest = fn.as_coeff_mul(self.function_variable)
        return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:])))
Exemplo n.º 25
0
    >>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2)
    (gamma(2*s), gamma(-2*s + 1), pi)
    >>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1)
    (gamma(2*s - 1), gamma(-2*s + 2), -pi)
    """
    # (This is a separate function because it is moderately complicated,
    #  and I want to doctest it.)
    # We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x).
    # But there is one comlication: the gamma functions determine the
    # inegration contour in the definition of the G-function. Usually
    # it would not matter if this is slightly shifted, unless this way
    # we create an undefined function!
    # So we try to write this in such a way that the gammas are
    # eminently on the right side of the strip.
    from sympy import expand_mul, pi, ceiling, gamma, re
    m = expand_mul(m/pi)
    n = expand_mul(n/pi)
    r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand
    return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi

class MellinTransformStripError(ValueError):
    """
    Exception raised by _rewrite_gamma. Mainly for internal use.
    """
    pass

def _rewrite_gamma(f, s, a, b):
    """
    Try to rewrite the product f(s) as a product of gamma functions,
    so that the inverse mellin transform of f can be expressed as a meijer
    G function.
Exemplo n.º 26
0
def test_pinjoint_arbitrary_axis():
    theta, omega = dynamicsymbols('theta_J, omega_J')

    # When the bodies are attached though masscenters but axess are opposite.
    N, A, P, C = _generate_body()
    PinJoint('J', P, C, child_axis=-A.x)

    assert (-A.x).angle_between(N.x) == 0
    assert -A.x.express(N) == N.x
    assert A.dcm(N) == Matrix([[-1, 0, 0],
                            [0, -cos(theta), -sin(theta)],
                            [0, -sin(theta), cos(theta)]])
    assert A.ang_vel_in(N) == omega*N.x
    assert A.ang_vel_in(N).magnitude() == sqrt(omega**2)
    assert C.masscenter.pos_from(P.masscenter) == 0
    assert C.masscenter.pos_from(P.masscenter).express(N).simplify() == 0
    assert C.masscenter.vel(N) == 0

    # When axes are different and parent joint is at masscenter but child joint
    # is at a unit vector from child masscenter.
    N, A, P, C = _generate_body()
    PinJoint('J', P, C, child_axis=A.y, child_joint_pos=A.x)

    assert A.y.angle_between(N.x) == 0  # Axis are aligned
    assert A.y.express(N) == N.x
    assert A.dcm(N) == Matrix([[0, -cos(theta), -sin(theta)],
                               [1, 0, 0],
                               [0, -sin(theta), cos(theta)]])
    assert A.ang_vel_in(N) == omega*N.x
    assert A.ang_vel_in(N).express(A) == omega * A.y
    assert A.ang_vel_in(N).magnitude() == sqrt(omega**2)
    angle = A.ang_vel_in(N).angle_between(A.y)
    assert angle.xreplace({omega: 1}) == 0
    assert C.masscenter.vel(N) == omega*A.z
    assert C.masscenter.pos_from(P.masscenter) == -A.x
    assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() ==
            cos(theta)*N.y + sin(theta)*N.z)
    assert C.masscenter.vel(N).angle_between(A.x) == pi/2

    # Similar to previous case but wrt parent body
    N, A, P, C = _generate_body()
    PinJoint('J', P, C, parent_axis=N.y, parent_joint_pos=N.x)

    assert N.y.angle_between(A.x) == 0  # Axis are aligned
    assert N.y.express(A) == A.x
    assert A.dcm(N) == Matrix([[0, 1, 0],
                               [-cos(theta), 0, sin(theta)],
                               [sin(theta), 0, cos(theta)]])
    assert A.ang_vel_in(N) == omega*N.y
    assert A.ang_vel_in(N).express(A) == omega*A.x
    assert A.ang_vel_in(N).magnitude() == sqrt(omega**2)
    angle = A.ang_vel_in(N).angle_between(A.x)
    assert angle.xreplace({omega: 1}) == 0
    assert C.masscenter.vel(N).simplify() == - omega*N.z
    assert C.masscenter.pos_from(P.masscenter) == N.x

    # Both joint pos id defined but different axes
    N, A, P, C = _generate_body()
    PinJoint('J', P, C, parent_joint_pos=N.x, child_joint_pos=A.x,
             child_axis=A.x+A.y)
    assert expand_mul(N.x.angle_between(A.x + A.y)) == 0  # Axis are aligned
    assert (A.x + A.y).express(N).simplify() == sqrt(2)*N.x
    assert _simplify_matrix(A.dcm(N)) == Matrix([
        [sqrt(2)/2, -sqrt(2)*cos(theta)/2, -sqrt(2)*sin(theta)/2],
        [sqrt(2)/2, sqrt(2)*cos(theta)/2, sqrt(2)*sin(theta)/2],
        [0, -sin(theta), cos(theta)]])
    assert A.ang_vel_in(N) == omega*N.x
    assert (A.ang_vel_in(N).express(A).simplify() ==
            (omega*A.x + omega*A.y)/sqrt(2))
    assert A.ang_vel_in(N).magnitude() == sqrt(omega**2)
    angle = A.ang_vel_in(N).angle_between(A.x + A.y)
    assert angle.xreplace({omega: 1}) == 0
    assert C.masscenter.vel(N).simplify() == (omega * A.z)/sqrt(2)
    assert C.masscenter.pos_from(P.masscenter) == N.x - A.x
    assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() ==
            (1 - sqrt(2)/2)*N.x + sqrt(2)*cos(theta)/2*N.y +
            sqrt(2)*sin(theta)/2*N.z)
    assert (C.masscenter.vel(N).express(N).simplify() ==
            -sqrt(2)*omega*sin(theta)/2*N.y + sqrt(2)*omega*cos(theta)/2*N.z)
    assert C.masscenter.vel(N).angle_between(A.x) == pi/2

    N, A, P, C = _generate_body()
    PinJoint('J', P, C, parent_joint_pos=N.x, child_joint_pos=A.x,
             child_axis=A.x+A.y-A.z)
    assert expand_mul(N.x.angle_between(A.x + A.y - A.z)) == 0  # Axis aligned
    assert (A.x + A.y - A.z).express(N).simplify() == sqrt(3)*N.x
    assert _simplify_matrix(A.dcm(N)) == Matrix([
        [sqrt(3)/3, -sqrt(6)*sin(theta + pi/4)/3,
         sqrt(6)*cos(theta + pi/4)/3],
        [sqrt(3)/3, sqrt(6)*cos(theta + pi/12)/3,
         sqrt(6)*sin(theta + pi/12)/3],
        [-sqrt(3)/3, sqrt(6)*cos(theta + 5*pi/12)/3,
         sqrt(6)*sin(theta + 5*pi/12)/3]])
    assert A.ang_vel_in(N) == omega*N.x
    assert A.ang_vel_in(N).express(A).simplify() == (omega*A.x + omega*A.y -
                                                     omega*A.z)/sqrt(3)
    assert A.ang_vel_in(N).magnitude() == sqrt(omega**2)
    angle = A.ang_vel_in(N).angle_between(A.x + A.y-A.z)
    assert angle.xreplace({omega: 1}) == 0
    assert C.masscenter.vel(N).simplify() == (omega*A.y + omega*A.z)/sqrt(3)
    assert C.masscenter.pos_from(P.masscenter) == N.x - A.x
    assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() ==
            (1 - sqrt(3)/3)*N.x + sqrt(6)*sin(theta + pi/4)/3*N.y -
            sqrt(6)*cos(theta + pi/4)/3*N.z)
    assert (C.masscenter.vel(N).express(N).simplify() ==
            sqrt(6)*omega*cos(theta + pi/4)/3*N.y +
            sqrt(6)*omega*sin(theta + pi/4)/3*N.z)
    assert C.masscenter.vel(N).angle_between(A.x) == pi/2

    N, A, P, C = _generate_body()
    m, n = symbols('m n')
    PinJoint('J', P, C, parent_joint_pos=m*N.x, child_joint_pos=n*A.x,
             child_axis=A.x+A.y-A.z, parent_axis=N.x-N.y+N.z)
    angle = (N.x-N.y+N.z).angle_between(A.x+A.y-A.z)
    assert expand_mul(angle) == 0  # Axis are aligned
    assert ((A.x-A.y+A.z).express(N).simplify() ==
            (-4*cos(theta)/3 - S(1)/3)*N.x + (S(1)/3 - 4*sin(theta + pi/6)/3)*N.y +
            (4*cos(theta + pi/3)/3 - S(1)/3)*N.z)
    assert _simplify_matrix(A.dcm(N)) == Matrix([
        [S(1)/3 - 2*cos(theta)/3, -2*sin(theta + pi/6)/3 - S(1)/3,
         2*cos(theta + pi/3)/3 + S(1)/3],
        [2*cos(theta + pi/3)/3 + S(1)/3, 2*cos(theta)/3 - S(1)/3,
         2*sin(theta + pi/6)/3 + S(1)/3],
        [-2*sin(theta + pi/6)/3 - S(1)/3, 2*cos(theta + pi/3)/3 + S(1)/3,
         2*cos(theta)/3 - S(1)/3]])
    assert A.ang_vel_in(N) == (omega*N.x - omega*N.y + omega*N.z)/sqrt(3)
    assert A.ang_vel_in(N).express(A).simplify() == (omega*A.x + omega*A.y -
                                                     omega*A.z)/sqrt(3)
    assert A.ang_vel_in(N).magnitude() == sqrt(omega**2)
    angle = A.ang_vel_in(N).angle_between(A.x+A.y-A.z)
    assert angle.xreplace({omega: 1}) == 0
    assert (C.masscenter.vel(N).simplify() ==
            (m*omega*N.y + m*omega*N.z + n*omega*A.y + n*omega*A.z)/sqrt(3))
    assert C.masscenter.pos_from(P.masscenter) == m*N.x - n*A.x
    assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() ==
            (m + n*(2*cos(theta) - 1)/3)*N.x + n*(2*sin(theta + pi/6) +
            1)/3*N.y - n*(2*cos(theta + pi/3) + 1)/3*N.z)
    assert (C.masscenter.vel(N).express(N).simplify() ==
            -2*n*omega*sin(theta)/3*N.x + (sqrt(3)*m +
                                           2*n*cos(theta + pi/6))*omega/3*N.y
            + (sqrt(3)*m + 2*n*sin(theta + pi/3))*omega/3*N.z)
    assert expand_mul(C.masscenter.vel(N).angle_between(m*N.x - n*A.x)) == pi/2
Exemplo n.º 27
0
def test_acsch():
    x = Symbol('x')

    assert unchanged(acsch, x)
    assert acsch(-x) == -acsch(x)

    # values at fixed points
    assert acsch(1) == log(1 + sqrt(2))
    assert acsch(-1) == -log(1 + sqrt(2))
    assert acsch(0) is zoo
    assert acsch(2) == log((1 + sqrt(5)) / 2)
    assert acsch(-2) == -log((1 + sqrt(5)) / 2)

    assert acsch(I) == -I * pi / 2
    assert acsch(-I) == I * pi / 2
    assert acsch(-I * (sqrt(6) + sqrt(2))) == I * pi / 12
    assert acsch(I * (sqrt(2) + sqrt(6))) == -I * pi / 12
    assert acsch(-I * (1 + sqrt(5))) == I * pi / 10
    assert acsch(I * (1 + sqrt(5))) == -I * pi / 10
    assert acsch(-I * 2 / sqrt(2 - sqrt(2))) == I * pi / 8
    assert acsch(I * 2 / sqrt(2 - sqrt(2))) == -I * pi / 8
    assert acsch(-I * 2) == I * pi / 6
    assert acsch(I * 2) == -I * pi / 6
    assert acsch(-I * sqrt(2 + 2 / sqrt(5))) == I * pi / 5
    assert acsch(I * sqrt(2 + 2 / sqrt(5))) == -I * pi / 5
    assert acsch(-I * sqrt(2)) == I * pi / 4
    assert acsch(I * sqrt(2)) == -I * pi / 4
    assert acsch(-I * (sqrt(5) - 1)) == 3 * I * pi / 10
    assert acsch(I * (sqrt(5) - 1)) == -3 * I * pi / 10
    assert acsch(-I * 2 / sqrt(3)) == I * pi / 3
    assert acsch(I * 2 / sqrt(3)) == -I * pi / 3
    assert acsch(-I * 2 / sqrt(2 + sqrt(2))) == 3 * I * pi / 8
    assert acsch(I * 2 / sqrt(2 + sqrt(2))) == -3 * I * pi / 8
    assert acsch(-I * sqrt(2 - 2 / sqrt(5))) == 2 * I * pi / 5
    assert acsch(I * sqrt(2 - 2 / sqrt(5))) == -2 * I * pi / 5
    assert acsch(-I * (sqrt(6) - sqrt(2))) == 5 * I * pi / 12
    assert acsch(I * (sqrt(6) - sqrt(2))) == -5 * I * pi / 12
    assert acsch(nan) is nan

    # properties
    # acsch(x) == asinh(1/x)
    assert acsch(-I * sqrt(2)) == asinh(I / sqrt(2))
    assert acsch(-I * 2 / sqrt(3)) == asinh(I * sqrt(3) / 2)

    # acsch(x) == -I*asin(I/x)
    assert acsch(-I * sqrt(2)) == -I * asin(-1 / sqrt(2))
    assert acsch(-I * 2 / sqrt(3)) == -I * asin(-sqrt(3) / 2)

    # csch(acsch(x)) / x == 1
    assert expand_mul(
        csch(acsch(-I * (sqrt(6) + sqrt(2)))) / (-I *
                                                 (sqrt(6) + sqrt(2)))) == 1
    assert expand_mul(csch(acsch(I * (1 + sqrt(5)))) / (I *
                                                        (1 + sqrt(5)))) == 1
    assert (csch(acsch(I * sqrt(2 - 2 / sqrt(5)))) /
            (I * sqrt(2 - 2 / sqrt(5)))).simplify() == 1
    assert (csch(acsch(-I * sqrt(2 - 2 / sqrt(5)))) /
            (-I * sqrt(2 - 2 / sqrt(5)))).simplify() == 1

    # numerical evaluation
    assert str(acsch(5 * I + 1).n(6)) == '0.0391819 - 0.193363*I'
    assert str(acsch(-5 * I + 1).n(6)) == '0.0391819 + 0.193363*I'
Exemplo n.º 28
0
def test_probability():
    # various integrals from probability theory
    from sympy.abc import x, y
    from sympy import symbols, Symbol, Abs, expand_mul, combsimp, powsimp, sin

    mu1, mu2 = symbols("mu1 mu2", real=True, nonzero=True, finite=True)
    sigma1, sigma2 = symbols("sigma1 sigma2", real=True, nonzero=True, finite=True, positive=True)
    rate = Symbol("lambda", real=True, positive=True, finite=True)

    def normal(x, mu, sigma):
        return 1 / sqrt(2 * pi * sigma ** 2) * exp(-(x - mu) ** 2 / 2 / sigma ** 2)

    def exponential(x, rate):
        return rate * exp(-rate * x)

    assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
    assert integrate(x * normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == mu1
    assert integrate(x ** 2 * normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == mu1 ** 2 + sigma1 ** 2
    assert integrate(x ** 3 * normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == mu1 ** 3 + 3 * mu1 * sigma1 ** 2
    assert integrate(normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1
    assert (
        integrate(x * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1
    )
    assert (
        integrate(y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu2
    )
    assert (
        integrate(x * y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True)
        == mu1 * mu2
    )
    assert (
        integrate(
            (x + y + 1) * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True
        )
        == 1 + mu1 + mu2
    )
    assert (
        integrate(
            (x + y - 1) * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True
        )
        == -1 + mu1 + mu2
    )

    i = integrate(x ** 2 * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True)
    assert not i.has(Abs)
    assert simplify(i) == mu1 ** 2 + sigma1 ** 2
    assert (
        integrate(y ** 2 * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True)
        == sigma2 ** 2 + mu2 ** 2
    )

    assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
    assert integrate(x * exponential(x, rate), (x, 0, oo), meijerg=True) == 1 / rate
    assert integrate(x ** 2 * exponential(x, rate), (x, 0, oo), meijerg=True) == 2 / rate ** 2

    def E(expr):
        res1 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1), (x, 0, oo), (y, -oo, oo), meijerg=True)
        res2 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1), (y, -oo, oo), (x, 0, oo), meijerg=True)
        assert expand_mul(res1) == expand_mul(res2)
        return res1

    assert E(1) == 1
    assert E(x * y) == mu1 / rate
    assert E(x * y ** 2) == mu1 ** 2 / rate + sigma1 ** 2 / rate
    ans = sigma1 ** 2 + 1 / rate ** 2
    assert simplify(E((x + y + 1) ** 2) - E(x + y + 1) ** 2) == ans
    assert simplify(E((x + y - 1) ** 2) - E(x + y - 1) ** 2) == ans
    assert simplify(E((x + y) ** 2) - E(x + y) ** 2) == ans

    # Beta' distribution
    alpha, beta = symbols("alpha beta", positive=True)
    betadist = x ** (alpha - 1) * (1 + x) ** (-alpha - beta) * gamma(alpha + beta) / gamma(alpha) / gamma(beta)
    assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
    i = integrate(x * betadist, (x, 0, oo), meijerg=True, conds="separate")
    assert (combsimp(i[0]), i[1]) == (alpha / (beta - 1), 1 < beta)
    j = integrate(x ** 2 * betadist, (x, 0, oo), meijerg=True, conds="separate")
    assert j[1] == (1 < beta - 1)
    assert combsimp(j[0] - i[0] ** 2) == (alpha + beta - 1) * alpha / (beta - 2) / (beta - 1) ** 2

    # Beta distribution
    # NOTE: this is evaluated using antiderivatives. It also tests that
    #       meijerint_indefinite returns the simplest possible answer.
    a, b = symbols("a b", positive=True)
    betadist = x ** (a - 1) * (-x + 1) ** (b - 1) * gamma(a + b) / (gamma(a) * gamma(b))
    assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1
    assert simplify(integrate(x * betadist, (x, 0, 1), meijerg=True)) == a / (a + b)
    assert simplify(integrate(x ** 2 * betadist, (x, 0, 1), meijerg=True)) == a * (a + 1) / (a + b) / (a + b + 1)
    assert simplify(integrate(x ** y * betadist, (x, 0, 1), meijerg=True)) == gamma(a + b) * gamma(a + y) / gamma(
        a
    ) / gamma(a + b + y)

    # Chi distribution
    k = Symbol("k", integer=True, positive=True)
    chi = 2 ** (1 - k / 2) * x ** (k - 1) * exp(-x ** 2 / 2) / gamma(k / 2)
    assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x * chi, (x, 0, oo), meijerg=True)) == sqrt(2) * gamma((k + 1) / 2) / gamma(k / 2)
    assert simplify(integrate(x ** 2 * chi, (x, 0, oo), meijerg=True)) == k

    # Chi^2 distribution
    chisquared = 2 ** (-k / 2) / gamma(k / 2) * x ** (k / 2 - 1) * exp(-x / 2)
    assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x * chisquared, (x, 0, oo), meijerg=True)) == k
    assert simplify(integrate(x ** 2 * chisquared, (x, 0, oo), meijerg=True)) == k * (k + 2)
    assert combsimp(integrate(((x - k) / sqrt(2 * k)) ** 3 * chisquared, (x, 0, oo), meijerg=True)) == 2 * sqrt(
        2
    ) / sqrt(k)

    # Dagum distribution
    a, b, p = symbols("a b p", positive=True)
    # XXX (x/b)**a does not work
    dagum = a * p / x * (x / b) ** (a * p) / (1 + x ** a / b ** a) ** (p + 1)
    assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
    # XXX conditions are a mess
    arg = x * dagum
    assert simplify(integrate(arg, (x, 0, oo), meijerg=True, conds="none")) == a * b * gamma(1 - 1 / a) * gamma(
        p + 1 + 1 / a
    ) / ((a * p + 1) * gamma(p))
    assert simplify(integrate(x * arg, (x, 0, oo), meijerg=True, conds="none")) == a * b ** 2 * gamma(
        1 - 2 / a
    ) * gamma(p + 1 + 2 / a) / ((a * p + 2) * gamma(p))

    # F-distribution
    d1, d2 = symbols("d1 d2", positive=True)
    f = (
        sqrt(((d1 * x) ** d1 * d2 ** d2) / (d1 * x + d2) ** (d1 + d2))
        / x
        / gamma(d1 / 2)
        / gamma(d2 / 2)
        * gamma((d1 + d2) / 2)
    )
    assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
    # TODO conditions are a mess
    assert simplify(integrate(x * f, (x, 0, oo), meijerg=True, conds="none")) == d2 / (d2 - 2)
    assert simplify(integrate(x ** 2 * f, (x, 0, oo), meijerg=True, conds="none")) == d2 ** 2 * (d1 + 2) / d1 / (
        d2 - 4
    ) / (d2 - 2)

    # TODO gamma, rayleigh

    # inverse gaussian
    lamda, mu = symbols("lamda mu", positive=True)
    dist = sqrt(lamda / 2 / pi) * x ** (-S(3) / 2) * exp(-lamda * (x - mu) ** 2 / x / 2 / mu ** 2)
    mysimp = lambda expr: simplify(expr.rewrite(exp))
    assert mysimp(integrate(dist, (x, 0, oo))) == 1
    assert mysimp(integrate(x * dist, (x, 0, oo))) == mu
    assert mysimp(integrate((x - mu) ** 2 * dist, (x, 0, oo))) == mu ** 3 / lamda
    assert mysimp(integrate((x - mu) ** 3 * dist, (x, 0, oo))) == 3 * mu ** 5 / lamda ** 2

    # Levi
    c = Symbol("c", positive=True)
    assert integrate(sqrt(c / 2 / pi) * exp(-c / 2 / (x - mu)) / (x - mu) ** S("3/2"), (x, mu, oo)) == 1
    # higher moments oo

    # log-logistic
    distn = (beta / alpha) * x ** (beta - 1) / alpha ** (beta - 1) / (1 + x ** beta / alpha ** beta) ** 2
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    # NOTE the conditions are a mess, but correctly state beta > 1
    assert simplify(integrate(x * distn, (x, 0, oo), conds="none")) == pi * alpha / beta / sin(pi / beta)
    # (similar comment for conditions applies)
    assert simplify(integrate(x ** y * distn, (x, 0, oo), conds="none")) == pi * alpha ** y * y / beta / sin(
        pi * y / beta
    )

    # weibull
    k = Symbol("k", positive=True)
    n = Symbol("n", positive=True)
    distn = k / lamda * (x / lamda) ** (k - 1) * exp(-(x / lamda) ** k)
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    assert simplify(integrate(x ** n * distn, (x, 0, oo))) == lamda ** n * gamma(1 + n / k)

    # rice distribution
    from sympy import besseli

    nu, sigma = symbols("nu sigma", positive=True)
    rice = x / sigma ** 2 * exp(-(x ** 2 + nu ** 2) / 2 / sigma ** 2) * besseli(0, x * nu / sigma ** 2)
    assert integrate(rice, (x, 0, oo), meijerg=True) == 1
    # can someone verify higher moments?

    # Laplace distribution
    mu = Symbol("mu", real=True)
    b = Symbol("b", positive=True)
    laplace = exp(-abs(x - mu) / b) / 2 / b
    assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
    assert integrate(x * laplace, (x, -oo, oo), meijerg=True) == mu
    assert integrate(x ** 2 * laplace, (x, -oo, oo), meijerg=True) == 2 * b ** 2 + mu ** 2

    # TODO are there other distributions supported on (-oo, oo) that we can do?

    # misc tests
    k = Symbol("k", positive=True)
    assert combsimp(expand_mul(integrate(log(x) * x ** (k - 1) * exp(-x) / gamma(k), (x, 0, oo)))) == polygamma(0, k)
Exemplo n.º 29
0
    def simp_pows(expr): return expand_mul(simplify(powsimp(expr, force=True)), deep=True).replace(exp_polar, exp) # XXX ?

    # Now test the inverses of all direct transforms tested above

    # Section 8.4.2
    assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1)
Exemplo n.º 30
0
 def _eval_Abs(self):
     from sympy import expand_mul
     return sqrt( expand_mul(self * self.conjugate()) )
Exemplo n.º 31
0
 def simp_hyp(expr):
     return factor_terms(expand_mul(expr)).rewrite(sin)
Exemplo n.º 32
0
def solve_linear(lhs, rhs=0, x=[], exclude=[]):
    """ Return a tuple containing derived from f = lhs - rhs that is either:

        (numerator, denominator) of f; if this comes back as (0, 1) it means
            that f was actually zero even though it may have had symbols:
            e.g. y*cos(x)**2 + y*sin(x)**2 - y = y*(0) = 0 If the numerator
            is not zero then the function is guaranteed not to be zero.

        or

        (symbol, solution) where symbol appears linearly in the numerator of f,
            is in x (if given) and is not in exclude (if given).

        No simplification is done to f other than and mul=True expansion, so
        the solution will correspond strictly to a unique solution.

    Examples:

        >>> from sympy.solvers.solvers import solve_linear
        >>> from sympy.abc import x, y, z

    These are linear in x and 1/x:

        >>> solve_linear(x + y**2)
        (x, -y**2)
        >>> solve_linear(1/x - y**2)
        (x, y**(-2))

    When not linear in x or y then the numerator and denominator are returned.

        >>> solve_linear(x**2/y**2 - 3)
        (x**2 - 3*y**2, y**2)

    If x is allowed to cancel, then this appears linear, but this sort of
    cancellation is not done so the solultion will always satisfy the original
    expression without causing a division by zero error.

        >>> solve_linear(x**2*(1/x - z**2/x))
        (x**2*(x - x*z**2), x**2)

    You can give a list of what you prefer for x candidates:

        >>> solve_linear(x + y + z, x=[y])
        (y, -x - z)

    You can also indicate what variables you don't want to consider:

        >>> solve_linear(x + y + z, exclude=[x, z])
        (y, -x - z)

    If only x was excluded then a solution for y or z might be obtained.

    """
    from sympy import expand_mul, Equality

    if isinstance(lhs, Equality):
        rhs += lhs.rhs
        lhs = lhs.lhs
    n, d = (lhs - rhs).as_numer_denom()
    ex = expand_mul(n)
    if not ex:
        return ex, d

    exclude = set(exclude)
    syms = ex.free_symbols
    if not x:
        x = syms
    else:
        x = syms.intersection(x)
    x = x.difference(exclude)

    for xi in x:
        dn = n.diff(xi)
        # if not dn then this is a pseudo-function of xi
        if dn and not dn.has(xi):
            return xi, -(n.subs(xi, 0)) / dn

    return n, d
Exemplo n.º 33
0
def _minpoly_groebner(ex, x, cls):
    """
    Computes the minimal polynomial of an algebraic number
    using Groebner bases

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, Rational
    >>> from sympy.abc import x
    >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False)
    x**2 - 2*x - 1

    """
    from sympy.polys.polytools import degree
    from sympy.core.function import expand_multinomial

    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    def update_mapping(ex, exp, base=None):
        a = next(generator)
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Mul:
            return Mul(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (ex.base**ex.exp.p).expand(), Rational(
                        1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1 / exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1 / ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        return ex.minpoly.as_expr(x)
    elif ex.is_Rational:
        result = ex.q * x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1 / ex.exp).is_Integer:
            n = 1 / ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + list(mapping.values())
            G = groebner(F, list(symbols.values()) + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)

    return result
Exemplo n.º 34
0
    def doit(self, **hints):
        """
        Try to evaluate the transform in closed form.

        This general function handles linearity, but apart from that leaves
        pretty much everything to _compute_transform.

        Standard hints are the following:

        - ``simplify``: whether or not to simplify the result
        - ``noconds``: if True, don't return convergence conditions
        - ``needeval``: if True, raise IntegralTransformError instead of
                        returning IntegralTransform objects

        The default values of these hints depend on the concrete transform,
        usually the default is
        ``(simplify, noconds, needeval) = (True, False, False)``.
        """
        from sympy import Add, expand_mul, Mul
        from sympy.core.function import AppliedUndef
        needeval = hints.pop('needeval', False)
        try_directly = not any(func.has(self.function_variable) \
                               for func in self.function.atoms(AppliedUndef))
        if try_directly:
            try:
                return self._compute_transform(self.function,
                                               self.function_variable,
                                               self.transform_variable,
                                               **hints)
            except IntegralTransformError:
                pass

        fn = self.function
        if not fn.is_Add:
            fn = expand_mul(fn)

        if fn.is_Add:
            hints['needeval'] = needeval
            res = [
                self.__class__(*([x] + list(self.args[1:]))).doit(**hints)
                for x in fn.args
            ]
            extra = []
            ress = []
            for x in res:
                if not isinstance(x, tuple):
                    x = [x]
                ress.append(x[0])
                if len(x) > 1:
                    extra += [x[1:]]
            res = Add(*ress)
            if not extra:
                return res
            try:
                extra = self._collapse_extra(extra)
                return tuple([res]) + tuple(extra)
            except IntegralTransformError:
                pass

        if needeval:
            raise IntegralTransformError(self.__class__._name, self.function,
                                         'needeval')

        # TODO handle derivatives etc

        # pull out constant coefficients
        coeff, rest = fn.as_coeff_mul(self.function_variable)
        return coeff * self.__class__(*([Mul(*rest)] + list(self.args[1:])))
Exemplo n.º 35
0
 def simp_hyp(expr):
     return factor_terms(expand_mul(expr)).rewrite(sin)
Exemplo n.º 36
0
 def simp_pows(expr):
     return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp)
Exemplo n.º 37
0
def test_probability():
    # various integrals from probability theory
    from sympy.abc import x, y
    from sympy import symbols, Symbol, Abs, expand_mul, combsimp, powsimp, sin
    mu1, mu2 = symbols('mu1 mu2', real=True, nonzero=True, finite=True)
    sigma1, sigma2 = symbols('sigma1 sigma2',
                             real=True,
                             nonzero=True,
                             finite=True,
                             positive=True)
    rate = Symbol('lambda', real=True, positive=True, finite=True)

    def normal(x, mu, sigma):
        return 1 / sqrt(2 * pi * sigma**2) * exp(-(x - mu)**2 / 2 / sigma**2)

    def exponential(x, rate):
        return rate * exp(-rate * x)

    assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \
        mu1
    assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**2 + sigma1**2
    assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**3 + 3*mu1*sigma1**2
    assert integrate(normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == 1
    assert integrate(x * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu1
    assert integrate(y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu2
    assert integrate(x * y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu1 * mu2
    assert integrate(
        (x + y + 1) * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
        (x, -oo, oo), (y, -oo, oo),
        meijerg=True) == 1 + mu1 + mu2
    assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        -1 + mu1 + mu2

    i = integrate(x**2 * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                  (x, -oo, oo), (y, -oo, oo),
                  meijerg=True)
    assert not i.has(Abs)
    assert simplify(i) == mu1**2 + sigma1**2
    assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        sigma2**2 + mu2**2

    assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
    assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        1/rate
    assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        2/rate**2

    def E(expr):
        res1 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1),
                         (x, 0, oo), (y, -oo, oo),
                         meijerg=True)
        res2 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1),
                         (y, -oo, oo), (x, 0, oo),
                         meijerg=True)
        assert expand_mul(res1) == expand_mul(res2)
        return res1

    assert E(1) == 1
    assert E(x * y) == mu1 / rate
    assert E(x * y**2) == mu1**2 / rate + sigma1**2 / rate
    ans = sigma1**2 + 1 / rate**2
    assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans
    assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans
    assert simplify(E((x + y)**2) - E(x + y)**2) == ans

    # Beta' distribution
    alpha, beta = symbols('alpha beta', positive=True)
    betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
        /gamma(alpha)/gamma(beta)
    assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
    i = integrate(x * betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert (combsimp(i[0]), i[1]) == (alpha / (beta - 1), 1 < beta)
    j = integrate(x**2 * betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert j[1] == (1 < beta - 1)
    assert combsimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \
        /(beta - 2)/(beta - 1)**2

    # Beta distribution
    # NOTE: this is evaluated using antiderivatives. It also tests that
    #       meijerint_indefinite returns the simplest possible answer.
    a, b = symbols('a b', positive=True)
    betadist = x**(a - 1) * (-x + 1)**(b - 1) * gamma(a + b) / (gamma(a) *
                                                                gamma(b))
    assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1
    assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \
        a/(a + b)
    assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \
        a*(a + 1)/(a + b)/(a + b + 1)
    assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \
        gamma(a + b)*gamma(a + y)/gamma(a)/gamma(a + b + y)

    # Chi distribution
    k = Symbol('k', integer=True, positive=True)
    chi = 2**(1 - k / 2) * x**(k - 1) * exp(-x**2 / 2) / gamma(k / 2)
    assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \
        sqrt(2)*gamma((k + 1)/2)/gamma(k/2)
    assert simplify(integrate(x**2 * chi, (x, 0, oo), meijerg=True)) == k

    # Chi^2 distribution
    chisquared = 2**(-k / 2) / gamma(k / 2) * x**(k / 2 - 1) * exp(-x / 2)
    assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x * chisquared, (x, 0, oo), meijerg=True)) == k
    assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \
        k*(k + 2)
    assert combsimp(
        integrate(((x - k) / sqrt(2 * k))**3 * chisquared, (x, 0, oo),
                  meijerg=True)) == 2 * sqrt(2) / sqrt(k)

    # Dagum distribution
    a, b, p = symbols('a b p', positive=True)
    # XXX (x/b)**a does not work
    dagum = a * p / x * (x / b)**(a * p) / (1 + x**a / b**a)**(p + 1)
    assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
    # XXX conditions are a mess
    arg = x * dagum
    assert simplify(integrate(
        arg, (x, 0, oo), meijerg=True,
        conds='none')) == a * b * gamma(1 - 1 / a) * gamma(p + 1 + 1 / a) / (
            (a * p + 1) * gamma(p))
    assert simplify(integrate(
        x * arg, (x, 0, oo), meijerg=True,
        conds='none')) == a * b**2 * gamma(1 -
                                           2 / a) * gamma(p + 1 + 2 / a) / (
                                               (a * p + 2) * gamma(p))

    # F-distribution
    d1, d2 = symbols('d1 d2', positive=True)
    f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
        /gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
    assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
    # TODO conditions are a mess
    assert simplify(integrate(x * f, (x, 0, oo), meijerg=True,
                              conds='none')) == d2 / (d2 - 2)
    assert simplify(
        integrate(x**2 * f, (x, 0, oo), meijerg=True,
                  conds='none')) == d2**2 * (d1 + 2) / d1 / (d2 - 4) / (d2 - 2)

    # TODO gamma, rayleigh

    # inverse gaussian
    lamda, mu = symbols('lamda mu', positive=True)
    dist = sqrt(lamda / 2 / pi) * x**(-S(3) / 2) * exp(
        -lamda * (x - mu)**2 / x / 2 / mu**2)
    mysimp = lambda expr: simplify(expr.rewrite(exp))
    assert mysimp(integrate(dist, (x, 0, oo))) == 1
    assert mysimp(integrate(x * dist, (x, 0, oo))) == mu
    assert mysimp(integrate((x - mu)**2 * dist, (x, 0, oo))) == mu**3 / lamda
    assert mysimp(integrate((x - mu)**3 * dist,
                            (x, 0, oo))) == 3 * mu**5 / lamda**2

    # Levi
    c = Symbol('c', positive=True)
    assert integrate(
        sqrt(c / 2 / pi) * exp(-c / 2 / (x - mu)) / (x - mu)**S('3/2'),
        (x, mu, oo)) == 1
    # higher moments oo

    # log-logistic
    distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1)/ \
        (1 + x**beta/alpha**beta)**2
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    # NOTE the conditions are a mess, but correctly state beta > 1
    assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \
        pi*alpha/beta/sin(pi/beta)
    # (similar comment for conditions applies)
    assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \
        pi*alpha**y*y/beta/sin(pi*y/beta)

    # weibull
    k = Symbol('k', positive=True)
    n = Symbol('n', positive=True)
    distn = k / lamda * (x / lamda)**(k - 1) * exp(-(x / lamda)**k)
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    assert simplify(integrate(x**n*distn, (x, 0, oo))) == \
        lamda**n*gamma(1 + n/k)

    # rice distribution
    from sympy import besseli
    nu, sigma = symbols('nu sigma', positive=True)
    rice = x / sigma**2 * exp(-(x**2 + nu**2) / 2 / sigma**2) * besseli(
        0, x * nu / sigma**2)
    assert integrate(rice, (x, 0, oo), meijerg=True) == 1
    # can someone verify higher moments?

    # Laplace distribution
    mu = Symbol('mu', real=True)
    b = Symbol('b', positive=True)
    laplace = exp(-abs(x - mu) / b) / 2 / b
    assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
    assert integrate(x * laplace, (x, -oo, oo), meijerg=True) == mu
    assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \
        2*b**2 + mu**2

    # TODO are there other distributions supported on (-oo, oo) that we can do?

    # misc tests
    k = Symbol('k', positive=True)
    assert combsimp(
        expand_mul(
            integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k),
                      (x, 0, oo)))) == polygamma(0, k)
Exemplo n.º 38
0
 def simp_pows(expr):
     return expand_mul(simplify(powsimp(expr, force=True)),
                       deep=True).replace(exp_polar, exp)  # XXX ?
Exemplo n.º 39
0
 def eval(cls, arg):
     from sympy.simplify.simplify import signsimp
     from sympy import Atom
     if hasattr(arg, '_eval_Abs'):
         obj = arg._eval_Abs()
         if obj is not None:
             return obj
     if not isinstance(arg, Expr):
         raise TypeError("Bad argument type for Abs(): %s" % type(arg))
     # handle what we can
     arg = signsimp(arg, evaluate=False)
     if arg.is_Mul:
         known = []
         unk = []
         for t in Mul.make_args(arg):
             tnew = cls(t)
             if tnew.func is cls:
                 unk.append(tnew.args[0])
             else:
                 known.append(tnew)
         known = Mul(*known)
         unk = cls(Mul(*unk), evaluate=False) if unk else S.One
         return known * unk
     if arg is S.NaN:
         return S.NaN
     if arg.is_Pow:
         base, exponent = arg.as_base_exp()
         if base.is_real:
             if exponent.is_integer:
                 if exponent.is_even:
                     return arg
                 if base is S.NegativeOne:
                     return S.One
                 if base.func is cls and exponent is S.NegativeOne:
                     return arg
                 return Abs(base)**exponent
             if base.is_positive == True:
                 return base**re(exponent)
             return (-base)**re(exponent) * exp(-S.Pi * im(exponent))
     if isinstance(arg, exp):
         return exp(re(arg.args[0]))
     if arg.is_number or isinstance(arg, (cls, Atom)):
         if arg.is_zero:
             return S.Zero
         if arg.is_nonnegative:
             return arg
         if arg.is_nonpositive:
             return -arg
     if arg.is_imaginary:
         arg2 = -S.ImaginaryUnit * arg
         if arg2.is_nonnegative:
             return arg2
     if arg.is_Add:
         if arg.has(S.Infinity, S.NegativeInfinity):
             if any(a.is_infinite for a in arg.as_real_imag()):
                 return S.Infinity
         if arg.is_real is None and arg.is_imaginary is None:
             if all(a.is_real or a.is_imaginary or (S.ImaginaryUnit *
                                                    a).is_real
                    for a in arg.args):
                 from sympy import expand_mul
                 return sqrt(expand_mul(arg * arg.conjugate()))
     if arg.is_real is False and arg.is_imaginary is False:
         from sympy import expand_mul
         return sqrt(expand_mul(arg * arg.conjugate()))
Exemplo n.º 40
0
 def simp_pows(expr):
     return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp)
Exemplo n.º 41
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic element.

    Parameters
    ==========

    ex : algebraic element expression
    x : independent variable of the minimal polynomial

    Options
    =======

    compose : if ``True`` ``_minpoly_compose`` is used, if ``False`` the ``groebner`` algorithm
    polys : if ``True`` returns a ``Poly`` object
    domain : ground domain

    Notes
    =====

    By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
    are computed, then the arithmetic operations on them are performed using the resultant
    and factorization.
    If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
    The default algorithm stalls less frequently.

    If no ground domain is given, it will be generated automatically from the expression.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, solve, QQ
    >>> from sympy.abc import x, y

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
    x - sqrt(2)
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1
    >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
    x**3 + x + 3
    >>> minimal_polynomial(sqrt(y), x)
    x**2 - y

    """
    from sympy.polys.polytools import degree
    from sympy.polys.domains import FractionField
    from sympy.core.basic import preorder_traversal

    compose = args.get('compose', True)
    polys = args.get('polys', False)
    dom = args.get('domain', None)

    ex = sympify(ex)
    for expr in preorder_traversal(ex):
        if expr.is_AlgebraicNumber:
            compose = False
            break

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not dom:
        dom = FractionField(QQ, list(
            ex.free_symbols)) if ex.free_symbols else QQ
    if hasattr(dom, 'symbols') and x in dom.symbols:
        raise GeneratorsError(
            "the variable %s is an element of the ground domain %s" % (x, dom))

    if compose:
        result = _minpoly_compose(ex, x, dom)
        result = result.primitive()[1]
        c = result.coeff(x**degree(result, x))
        if c.is_negative:
            result = expand_mul(-result)
        return cls(result, x, field=True) if polys else result.collect(x)

    if not dom.is_QQ:
        raise NotImplementedError("groebner method only works for QQ")

    result = _minpoly_groebner(ex, x, cls)
    return cls(result, x, field=True) if polys else result.collect(x)
Exemplo n.º 42
0
    >>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2)
    (gamma(2*s), gamma(-2*s + 1), pi)
    >>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1)
    (gamma(2*s - 1), gamma(-2*s + 2), -pi)
    """
    # (This is a separate function because it is moderately complicated,
    #  and I want to doctest it.)
    # We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x).
    # But there is one comlication: the gamma functions determine the
    # inegration contour in the definition of the G-function. Usually
    # it would not matter if this is slightly shifted, unless this way
    # we create an undefined function!
    # So we try to write this in such a way that the gammas are
    # eminently on the right side of the strip.
    from sympy import expand_mul, pi, ceiling, gamma, re
    m = expand_mul(m / pi)
    n = expand_mul(n / pi)
    r = ceiling(-m * a -
                n.as_real_imag()[0])  # Don't use re(n), does not expand
    return gamma(m * s + n + r), gamma(1 - n - r - m * s), (-1)**r * pi


class MellinTransformStripError(ValueError):
    """
    Exception raised by _rewrite_gamma. Mainly for internal use.
    """
    pass


def _rewrite_gamma(f, s, a, b):
    """
Exemplo n.º 43
0
def minimal_polynomial(ex, x=None, **args):
    """
    Computes the minimal polynomial of an algebraic number.

    Parameters
    ==========

    ex : algebraic number expression

    x : indipendent variable of the minimal polynomial

    Options
    =======

    compose : if ``True`` _minpoly1`` is used, else the ``groebner`` algorithm

    polys : if ``True`` returns a ``Poly`` object

    Notes
    =====

    By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
    are computed, then the arithmetic operations on them are performed using the resultant
    and factorization.
    If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
    The default algorithm stalls less frequently.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, solve
    >>> from sympy.abc import x

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1
    >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
    x**3 + x + 3

    """
    from sympy.polys.polytools import degree
    from sympy.core.function import expand_multinomial
    from sympy.core.basic import preorder_traversal

    compose = args.get('compose', True)
    polys = args.get('polys', False)
    ex = sympify(ex)
    for expr in preorder_traversal(ex):
        if expr.is_AlgebraicNumber:
            compose = False
            break

    if ex.is_AlgebraicNumber:
        compose = False

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if compose:
        result = _minpoly1(ex, x)
        result = result.primitive()[1]
        c = result.coeff(x**degree(result, x))
        if c < 0:
            result = expand_mul(-result)
            c = -c
        return cls(result, x, field=True) if polys else result

    generator = numbered_symbols('a', cls=Dummy)
    mapping, symbols, replace = {}, {}, []

    def update_mapping(ex, exp, base=None):
        a = generator.next()
        symbols[ex] = a

        if base is not None:
            mapping[ex] = a**exp + base
        else:
            mapping[ex] = exp.as_expr(a)

        return a

    def bottom_up_scan(ex):
        if ex.is_Atom:
            if ex is S.ImaginaryUnit:
                if ex not in mapping:
                    return update_mapping(ex, 2, 1)
                else:
                    return symbols[ex]
            elif ex.is_Rational:
                return ex
        elif ex.is_Add:
            return Add(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Mul:
            return Mul(*[bottom_up_scan(g) for g in ex.args])
        elif ex.is_Pow:
            if ex.exp.is_Rational:
                if ex.exp < 0 and ex.base.is_Add:
                    coeff, terms = ex.base.as_coeff_add()
                    elt, _ = primitive_element(terms, polys=True)

                    alg = ex.base - coeff

                    # XXX: turn this into eval()
                    inverse = invert(elt.gen + coeff, elt).as_expr()
                    base = inverse.subs(elt.gen, alg).expand()

                    if ex.exp == -1:
                        return bottom_up_scan(base)
                    else:
                        ex = base**(-ex.exp)
                if not ex.exp.is_Integer:
                    base, exp = (ex.base**ex.exp.p).expand(), Rational(
                        1, ex.exp.q)
                else:
                    base, exp = ex.base, ex.exp
                base = bottom_up_scan(base)
                expr = base**exp

                if expr not in mapping:
                    return update_mapping(expr, 1 / exp, -base)
                else:
                    return symbols[expr]
        elif ex.is_AlgebraicNumber:
            if ex.root not in mapping:
                return update_mapping(ex.root, ex.minpoly)
            else:
                return symbols[ex.root]

        raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)

    def simpler_inverse(ex):
        """
        Returns True if it is more likely that the minimal polynomial
        algorithm works better with the inverse
        """
        if ex.is_Pow:
            if (1 / ex.exp).is_integer and ex.exp < 0:
                if ex.base.is_Add:
                    return True
        if ex.is_Mul:
            hit = True
            a = []
            for p in ex.args:
                if p.is_Add:
                    return False
                if p.is_Pow:
                    if p.base.is_Add and p.exp > 0:
                        return False

            if hit:
                return True
        return False

    inverted = False
    ex = expand_multinomial(ex)
    if ex.is_AlgebraicNumber:
        if not polys:
            return ex.minpoly.as_expr(x)
        else:
            return ex.minpoly.replace(x)
    elif ex.is_Rational:
        result = ex.q * x - ex.p
    else:
        inverted = simpler_inverse(ex)
        if inverted:
            ex = ex**-1
        res = None
        if ex.is_Pow and (1 / ex.exp).is_Integer:
            n = 1 / ex.exp
            res = _minimal_polynomial_sq(ex.base, n, x)

        elif _is_sum_surds(ex):
            res = _minimal_polynomial_sq(ex, S.One, x)

        if res is not None:
            result = res

        if res is None:
            bus = bottom_up_scan(ex)
            F = [x - bus] + mapping.values()
            G = groebner(F, symbols.values() + [x], order='lex')

            _, factors = factor_list(G[-1])
            # by construction G[-1] has root `ex`
            result = _choose_factor(factors, x, ex)
    if inverted:
        result = _invertx(result, x)
        if result.coeff(x**degree(result, x)) < 0:
            result = expand_mul(-result)
    if polys:
        return cls(result, x, field=True)
    else:
        return result
Exemplo n.º 44
0
def solve_linear(lhs, rhs=0, x=[], exclude=[]):
    """ Return a tuple containing derived from f = lhs - rhs that is either:

        (numerator, denominator) of f; if this comes back as (0, 1) it means
            that f was actually zero even though it may have had symbols:
            e.g. y*cos(x)**2 + y*sin(x)**2 - y = y*(0) = 0 If the numerator
            is not zero then the function is guaranteed not to be zero.

        or

        (symbol, solution) where symbol appears linearly in the numerator of f,
            is in x (if given) and is not in exclude (if given).

        No simplification is done to f other than and mul=True expansion, so
        the solution will correspond strictly to a unique solution.

    Examples:

        >>> from sympy.solvers.solvers import solve_linear
        >>> from sympy.abc import x, y, z

    These are linear in x and 1/x:

        >>> solve_linear(x + y**2)
        (x, -y**2)
        >>> solve_linear(1/x - y**2)
        (x, y**(-2))

    When not linear in x or y then the numerator and denominator are returned.

        >>> solve_linear(x**2/y**2 - 3)
        (x**2 - 3*y**2, y**2)

    If x is allowed to cancel, then this appears linear, but this sort of
    cancellation is not done so the solultion will always satisfy the original
    expression without causing a division by zero error.

        >>> solve_linear(x**2*(1/x - z**2/x))
        (x**2*(x - x*z**2), x**2)

    You can give a list of what you prefer for x candidates:

        >>> solve_linear(x + y + z, x=[y])
        (y, -x - z)

    You can also indicate what variables you don't want to consider:

        >>> solve_linear(x + y + z, exclude=[x, z])
        (y, -x - z)

    If only x was excluded then a solution for y or z might be obtained.

    """
    from sympy import expand_mul, Equality
    if isinstance(lhs, Equality):
        rhs += lhs.rhs
        lhs = lhs.lhs
    n, d = (lhs - rhs).as_numer_denom()
    ex = expand_mul(n)
    if not ex:
        return ex, d

    exclude = set(exclude)
    syms = ex.free_symbols
    if not x:
        x = syms
    else:
        x = syms.intersection(x)
    x = x.difference(exclude)

    for xi in x:
        dn = n.diff(xi)
        # if not dn then this is a pseudo-function of xi
        if dn and not dn.has(xi):
            return xi, -(n.subs(xi, 0))/dn

    return n, d
Exemplo n.º 45
0
    def _eval_as_leading_term(self, x, logx=None, cdir=0):
        from sympy import expand_mul, Order, Piecewise, piecewise_fold, log

        old = self

        if old.has(Piecewise):
            old = piecewise_fold(old)

        # This expansion is the last part of expand_log. expand_log also calls
        # expand_mul with factor=True, which would be more expensive
        if any(isinstance(a, log) for a in self.args):
            logflags = dict(deep=True,
                            log=True,
                            mul=False,
                            power_exp=False,
                            power_base=False,
                            multinomial=False,
                            basic=False,
                            force=False,
                            factor=False)
            old = old.expand(**logflags)
        expr = expand_mul(old)

        if not expr.is_Add:
            return expr.as_leading_term(x, logx=logx, cdir=cdir)

        infinite = [t for t in expr.args if t.is_infinite]

        leading_terms = [
            t.as_leading_term(x, logx=logx, cdir=cdir) for t in expr.args
        ]

        min, new_expr = Order(0), 0

        try:
            for term in leading_terms:
                order = Order(term, x)
                if not min or order not in min:
                    min = order
                    new_expr = term
                elif min in order:
                    new_expr += term

        except TypeError:
            return expr

        is_zero = new_expr.is_zero
        if is_zero is None:
            new_expr = new_expr.trigsimp().cancel()
            is_zero = new_expr.is_zero
        if is_zero is True:
            # simple leading term analysis gave us cancelled terms but we have to send
            # back a term, so compute the leading term (via series)
            n0 = min.getn()
            res = Order(1)
            incr = S.One
            while res.is_Order:
                res = old._eval_nseries(
                    x, n=n0 + incr, logx=None,
                    cdir=cdir).cancel().powsimp().trigsimp()
                incr *= 2
            return res.as_leading_term(x, logx=logx, cdir=cdir)

        elif new_expr is S.NaN:
            return old.func._from_args(infinite)

        else:
            return new_expr
Exemplo n.º 46
0
def test_probability():
    # various integrals from probability theory
    from sympy.abc import x, y, z
    from sympy import symbols, Symbol, Abs, expand_mul, combsimp, powsimp
    mu1, mu2 = symbols('mu1 mu2', real=True, finite=True, bounded=True)
    sigma1, sigma2 = symbols('sigma1 sigma2', real=True, finite=True,
                                              bounded=True, positive=True)
    rate = Symbol('lambda', real=True, positive=True, bounded=True)
    def normal(x, mu, sigma):
        return 1/sqrt(2*pi*sigma**2)*exp(-(x-mu)**2/2/sigma**2)
    def exponential(x, rate):
        return rate*exp(-rate*x)

    assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == mu1
    assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
           == mu1**2 + sigma1**2
    assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
           == mu1**3 + 3*mu1*sigma1**2
    assert integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1
    assert integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu2
    assert integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1*mu2
    assert integrate((x+y+1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 + mu1 + mu2
    assert integrate((x+y-1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == -1 + mu1 + mu2

    i = integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                  (x, -oo, oo), (y, -oo, oo), meijerg=True)
    assert not i.has(Abs)
    assert simplify(i) == mu1**2 + sigma1**2
    assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
           sigma2**2 + mu2**2

    assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
    assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == 1/rate
    assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) \
           == 2/rate**2

    def E(expr):
        res1 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                         (x, 0, oo), (y, -oo, oo), meijerg=True)
        res2 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
                                 (y, -oo, oo), (x, 0, oo), meijerg=True)
        assert expand_mul(res1) == expand_mul(res2)
        return res1

    assert E(1) == 1
    assert E(x*y) == mu1/rate
    assert E(x*y**2) == mu1**2/rate + sigma1**2/rate
    assert simplify(E((x+y+1)**2) - E(x+y+1)**2) == (rate**2*sigma1**2 + 1)/rate**2
    assert simplify(E((x+y-1)**2) - E(x+y-1)**2) == (rate**2*sigma1**2 + 1)/rate**2
    assert simplify(E((x+y)**2) - E(x+y)**2) == (rate**2*sigma1**2 + 1)/rate**2

    # Beta' distribution
    alpha, beta = symbols('alpha beta', positive=True)
    betadist = x**(alpha-1)*(1+x)**(-alpha - beta)*gamma(alpha+beta) \
              /gamma(alpha)/gamma(beta)
    assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
    i = integrate(x*betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert (combsimp(i[0]), i[1]) == (alpha/(beta - 1), 1 < beta)
    j = integrate(x**2*betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert j[1] == (1 < beta - 1)
    assert combsimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \
                                        /(beta - 2)/(beta - 1)**2

    # Chi distribution
    k = Symbol('k', integer=True, positive=True)
    chi = 2**(1-k/2)*x**(k-1)*exp(-x**2/2)/gamma(k/2)
    assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \
           sqrt(2)*gamma((k + 1)/2)/gamma(k/2)
    assert simplify(integrate(x**2*chi, (x, 0, oo), meijerg=True)) == k

    # Chi^2 distribution
    chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2-1)*exp(-x/2)
    assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chisquared, (x, 0, oo), meijerg=True)) == k
    assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \
           k*(k + 2)
    assert combsimp(integrate(((x-k)/sqrt(2*k))**3*chisquared, (x, 0, oo),
                    meijerg=True)) == 2*sqrt(2)/sqrt(k)

    # Dagum distribution
    a, b, p = symbols('a b p', positive=True)
    # XXX (x/b)**a does not work
    dagum = a*p/x*(x/b)**(a*p)/(1 + x**a/b**a)**(p+1)
    assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
    # XXX conditions are a mess
    assert simplify(integrate(x*dagum, (x, 0, oo), meijerg=True, conds='none')) \
           == b*gamma(1 - 1/a)*gamma(p + 1/a)/gamma(p)
    assert simplify(integrate(x**2*dagum, (x, 0, oo), meijerg=True, conds='none')) \
           == b**2*gamma(1 - 2/a)*gamma(p + 2/a)/gamma(p)

    # F-distribution
    d1, d2 = symbols('d1 d2', positive=True)
    f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1+d2))/x \
          /gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
    assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
    # TODO conditions are a mess
    assert simplify(integrate(x*f, (x, 0, oo), meijerg=True, conds='none')) == \
           d2/(d2 - 2)
    assert simplify(integrate(x**2*f, (x, 0, oo), meijerg=True, conds='none')) == \
           d2**2*(d1 + 2)/d1/(d2 - 4)/(d2 - 2)

    # TODO gamma, inverse gaussian, Levi, log-logistic, rayleigh, weibull

    # rice distribution
    from sympy import besseli
    nu, sigma = symbols('nu sigma', positive=True)
    rice = x/sigma**2*exp(-(x**2+ nu**2)/2/sigma**2)*besseli(0, x*nu/sigma**2)
    assert integrate(rice, (x, 0, oo), meijerg=True) == 1
    # can someone verify higher moments?

    # Laplace distribution
    mu = Symbol('mu', real=True)
    b = Symbol('b', positive=True)
    laplace = exp(-abs(x-mu)/b)/2/b
    assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*laplace, (x, -oo, oo), meijerg=True) == mu
    assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == 2*b**2 + mu**2

    # TODO are there other distributions supported on (-oo, oo) that we can do?

    # misc tests
    k = Symbol('k', positive=True)
    assert combsimp(expand_mul(integrate(log(x) * x**(k-1) * exp(-x) / gamma(k),
                                     (x, 0, oo)))) == polygamma(0, k)
Exemplo n.º 47
0
def minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None):
    """
    Computes the minimal polynomial of an algebraic element.

    Parameters
    ==========

    ex : Expr
        Element or expression whose minimal polynomial is to be calculated.

    x : Symbol, optional
        Independent variable of the minimal polynomial

    compose : boolean, optional (default=True)
        Method to use for computing minimal polynomial. If ``compose=True``
        (default) then ``_minpoly_compose`` is used, if ``compose=False`` then
        groebner bases are used.

    polys : boolean, optional (default=False)
        If ``True`` returns a ``Poly`` object else an ``Expr`` object.

    domain : Domain, optional
        Ground domain

    Notes
    =====

    By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
    are computed, then the arithmetic operations on them are performed using the resultant
    and factorization.
    If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
    The default algorithm stalls less frequently.

    If no ground domain is given, it will be generated automatically from the expression.

    Examples
    ========

    >>> from sympy import minimal_polynomial, sqrt, solve, QQ
    >>> from sympy.abc import x, y

    >>> minimal_polynomial(sqrt(2), x)
    x**2 - 2
    >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
    x - sqrt(2)
    >>> minimal_polynomial(sqrt(2) + sqrt(3), x)
    x**4 - 10*x**2 + 1
    >>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
    x**3 + x + 3
    >>> minimal_polynomial(sqrt(y), x)
    x**2 - y

    """
    from sympy.polys.polytools import degree
    from sympy.polys.domains import FractionField
    from sympy.core.basic import preorder_traversal

    ex = sympify(ex)
    if ex.is_number:
        # not sure if it's always needed but try it for numbers (issue 8354)
        ex = _mexpand(ex, recursive=True)
    for expr in preorder_traversal(ex):
        if expr.is_AlgebraicNumber:
            compose = False
            break

    if x is not None:
        x, cls = sympify(x), Poly
    else:
        x, cls = Dummy('x'), PurePoly

    if not domain:
        if ex.free_symbols:
            domain = FractionField(QQ, list(ex.free_symbols))
        else:
            domain = QQ
    if hasattr(domain, 'symbols') and x in domain.symbols:
        raise GeneratorsError("the variable %s is an element of the ground "
                              "domain %s" % (x, domain))

    if compose:
        result = _minpoly_compose(ex, x, domain)
        result = result.primitive()[1]
        c = result.coeff(x**degree(result, x))
        if c.is_negative:
            result = expand_mul(-result)
        return cls(result, x, field=True) if polys else result.collect(x)

    if not domain.is_QQ:
        raise NotImplementedError("groebner method only works for QQ")

    result = _minpoly_groebner(ex, x, cls)
    return cls(result, x, field=True) if polys else result.collect(x)
Exemplo n.º 48
0
 def _eval_Abs(self):
     from sympy import expand_mul
     return sqrt( expand_mul(self * self.conjugate()) )
Exemplo n.º 49
0
def test_asech():
    x = Symbol('x')

    assert unchanged(asech, -x)

    # values at fixed points
    assert asech(1) == 0
    assert asech(-1) == pi * I
    assert asech(0) is oo
    assert asech(2) == I * pi / 3
    assert asech(-2) == 2 * I * pi / 3
    assert asech(nan) is nan

    # at infinites
    assert asech(oo) == I * pi / 2
    assert asech(-oo) == I * pi / 2
    assert asech(zoo) == I * AccumBounds(-pi / 2, pi / 2)

    assert asech(I) == log(1 + sqrt(2)) - I * pi / 2
    assert asech(-I) == log(1 + sqrt(2)) + I * pi / 2
    assert asech(sqrt(2) - sqrt(6)) == 11 * I * pi / 12
    assert asech(sqrt(2 - 2 / sqrt(5))) == I * pi / 10
    assert asech(-sqrt(2 - 2 / sqrt(5))) == 9 * I * pi / 10
    assert asech(2 / sqrt(2 + sqrt(2))) == I * pi / 8
    assert asech(-2 / sqrt(2 + sqrt(2))) == 7 * I * pi / 8
    assert asech(sqrt(5) - 1) == I * pi / 5
    assert asech(1 - sqrt(5)) == 4 * I * pi / 5
    assert asech(-sqrt(2 * (2 + sqrt(2)))) == 5 * I * pi / 8

    # properties
    # asech(x) == acosh(1/x)
    assert asech(sqrt(2)) == acosh(1 / sqrt(2))
    assert asech(2 / sqrt(3)) == acosh(sqrt(3) / 2)
    assert asech(2 / sqrt(2 + sqrt(2))) == acosh(sqrt(2 + sqrt(2)) / 2)
    assert asech(2) == acosh(S.Half)

    # asech(x) == I*acos(1/x)
    # (Note: the exact formula is asech(x) == +/- I*acos(1/x))
    assert asech(-sqrt(2)) == I * acos(-1 / sqrt(2))
    assert asech(-2 / sqrt(3)) == I * acos(-sqrt(3) / 2)
    assert asech(-S(2)) == I * acos(Rational(-1, 2))
    assert asech(-2 / sqrt(2)) == I * acos(-sqrt(2) / 2)

    # sech(asech(x)) / x == 1
    assert expand_mul(sech(asech(sqrt(6) - sqrt(2))) /
                      (sqrt(6) - sqrt(2))) == 1
    assert expand_mul(sech(asech(sqrt(6) + sqrt(2))) /
                      (sqrt(6) + sqrt(2))) == 1
    assert (sech(asech(sqrt(2 + 2 / sqrt(5)))) /
            (sqrt(2 + 2 / sqrt(5)))).simplify() == 1
    assert (sech(asech(-sqrt(2 + 2 / sqrt(5)))) /
            (-sqrt(2 + 2 / sqrt(5)))).simplify() == 1
    assert (sech(asech(sqrt(2 * (2 + sqrt(2))))) /
            (sqrt(2 * (2 + sqrt(2))))).simplify() == 1
    assert expand_mul(sech(asech(1 + sqrt(5))) / (1 + sqrt(5))) == 1
    assert expand_mul(sech(asech(-1 - sqrt(5))) / (-1 - sqrt(5))) == 1
    assert expand_mul(sech(asech(-sqrt(6) - sqrt(2))) /
                      (-sqrt(6) - sqrt(2))) == 1

    # numerical evaluation
    assert str(asech(5 * I).n(6)) == '0.19869 - 1.5708*I'
    assert str(asech(-5 * I).n(6)) == '0.19869 + 1.5708*I'