def test_ellipse(): p1 = Point(0, 0) p2 = Point(1, 1) p4 = Point(0, 1) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) # Test creation with three points cen, rad = Point(3 * half, 2), 5 * half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) raises(GeometryError, "Circle(Point(0,0), Point(1,1), Point(2,2))") raises(ValueError, "Ellipse(None, None, None, 1)") raises(GeometryError, "Circle(Point(0,0))") # Basic Stuff assert Ellipse(None, 1, 1).center == Point(0, 0) assert e1 == c1 assert e1 != e2 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi / 2 assert e3.area == pi * (y1**2) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2 * pi * y1 assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] assert Ellipse(None, 1, None, 1).circumference == 2 * pi assert c1.minor == 1 # Private Functions assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) assert c1 in e1 assert (Line(p1, p2) in e1) == False assert e1.__cmp__(e1) == 0 assert e1.__cmp__(Point(0, 0)) > 0 # Encloses assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) == True assert e1.encloses(Line(p1, p2)) == False assert e1.encloses(Ray(p1, p2)) == False assert e1.encloses(e1) == False assert e1.encloses( Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) == True assert e1.encloses(RegularPolygon(p1, 0.5, 3)) == True assert e1.encloses(RegularPolygon(p1, 5, 3)) == False assert e1.encloses(RegularPolygon(p2, 5, 3)) == False # with generic symbols, the hradius is assumed to contain the major radius M = Symbol('M') m = Symbol('m') c = Ellipse(p1, M, m).circumference _x = c.atoms(Dummy).pop() assert c == \ 4*M*C.Integral(sqrt((1 - _x**2*(M**2 - m**2)/M**2)/(1 - _x**2)), (_x, 0, 1)) assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_lines(p4) == c1.tangent_lines(p4) assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))] assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))] assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))] assert c1.tangent_lines(p1) == [] assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) == False assert c1.is_tangent(e1) == False assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) == True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) == True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) == False assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(S(77)/25, S(132)/25)), Line(Point(0, 0), Point(S(33)/5, S(22)/5))] assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))] assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))] assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))),] # Properties major = 3 minor = 1 e4 = Ellipse(p2, minor, major) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # independent of orientation e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [ Point(sqrt(2) / 2, sqrt(2) / 2), Point(-sqrt(2) / 2, -sqrt(2) / 2) ] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) in [[(1, 0), (0, 1)], [(0, 1), (1, 0)]] assert intersection(c1, c3) == [(sqrt(2) / 2, sqrt(2) / 2)] assert e1.intersection(l1) == [Point(1, 0)] assert e2.intersection(l4) == [] assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] assert e1.intersection(Circle(Point(5, 0), 1)) == [] assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] assert e1.intersection(Ellipse( Point(5, 0), 1, 1, )) == [] assert e1.intersection(Point(2, 0)) == [] assert e1.intersection(e1) == e1 # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v / 2, v / 2) in points assert Point(v / 2, -v / 2) in points circ = Circle(Point(0, 0), 5) elip = Ellipse(Point(0, 0), 5, 20) assert intersection(circ, elip) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] assert elip.tangent_lines(Point(0, 0)) == [] elip = Ellipse(Point(0, 0), 3, 2) assert elip.tangent_lines(Point(3, 0)) == [Line(Point(3, 0), Point(3, -12))] e1 = Ellipse(Point(0, 0), 5, 10) e2 = Ellipse(Point(2, 1), 4, 8) a = S(53) / 17 c = 2 * sqrt(3991) / 17 ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)] assert e1.intersection(e2) == ans e2 = Ellipse(Point(x, y), 4, 8) ans = list(reversed(ans)) assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans # Combinations of above assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) e = Ellipse((1, 2), 3, 2) assert e.tangent_lines(Point(10, 0)) == \ [Line(Point(10, 0), Point(1, 0)), Line(Point(10, 0), Point(S(14)/5, S(18)/5))] # encloses_point e = Ellipse((0, 0), 1, 2) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False e = Ellipse((0, 0), 2, 1) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False assert c1.encloses_point(Point(1, 0)) is False assert c1.encloses_point(Point(0.3, 0.4)) is True
def test_ellipse(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x2) p4 = Point(0, 1) p5 = Point(-1, 0) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) # Test creation with three points cen, rad = Point(3 * half, 2), 5 * half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) raises(GeometryError, "Circle(Point(0,0), Point(1,1), Point(2,2))") # Basic Stuff assert e1 == c1 assert e1 != e2 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi / 2 assert e3.area == pi * (y1**2) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2 * pi * y1 a = Symbol('a') b = Symbol('b') e5 = Ellipse(p1, a, b) assert e5.circumference == 4*a*C.Integral(((1 - x**2*Abs(b**2 - a**2)/a**2)/(1 - x**2))**(S(1)/2),\ (x, 0, 1)) assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_line(p4) == c1.tangent_line(p4) assert e2.tangent_line(p1_2) == Line(p1_2, p2 + Point(half, 1)) assert e2.tangent_line(p1_3) == Line(p1_3, p2 + Point(half, 1)) assert c1.tangent_line(p1_1) == Line(p1_1, Point(0, sqrt(2))) assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) == False # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [ Point(sqrt(2) / 2, sqrt(2) / 2), Point(-sqrt(2) / 2, -sqrt(2) / 2) ] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) in [[(1, 0), (0, 1)], [(0, 1), (1, 0)]] assert intersection(c1, c3) == [(sqrt(2) / 2, sqrt(2) / 2)] # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v / 2, v / 2) in points assert Point(v / 2, -v / 2) in points e1 = Circle(Point(0, 0), 5) e2 = Ellipse(Point(0, 0), 5, 20) assert intersection(e1, e2) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] # FAILING ELLIPSE INTERSECTION GOES HERE # Combinations of above assert e3.is_tangent(e3.tangent_line(p1 + Point(y1, 0))) major = 3 minor = 1 e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(abs(major**2 - minor**2)) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc)