Exemplo n.º 1
0
def test_issue_6194():
    x = Symbol('x')
    assert unchanged(Contains, x, Interval(0, 1))
    assert Interval(0, 1).contains(x) == (S.Zero <= x) & (x <= 1)
    assert Contains(x, FiniteSet(0)) != S.false
    assert Contains(x, Interval(1, 1)) != S.false
    assert Contains(x, S.Integers) != S.false
def test_GammaProcess_symbolic():
    t, d, x, y, g, l = symbols('t d x y g l', positive=True)
    X = GammaProcess("X", l, g)

    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-1))
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.state_space == Interval(0, oo)
    assert X.distribution(X(t)) == GammaDistribution(g * t, 1 / l)
    assert X.joint_distribution(5, X(3)) == JointDistributionHandmade(
        Lambda(
            (X(5), X(3)),
            l**(8 * g) * exp(-l * X(3)) * exp(-l * X(5)) * X(3)**(3 * g - 1) *
            X(5)**(5 * g - 1) / (gamma(3 * g) * gamma(5 * g))))
    # property of the gamma process at any given timestamp
    assert E(X(t)) == g * t / l
    assert variance(X(t)).simplify() == g * t / l**2

    # Equivalent to E(2*X(1)) + E(X(1)**2) + E(X(1)**3), where E(X(1)) == g/l
    assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == \
            2*g/l + (g**2 + g)/l**2 + (g**3 + 3*g**2 + 2*g)/l**3

    assert P(X(t) > 3, Contains(t, Interval.Lopen(3, 4))).simplify() == \
                                1 - lowergamma(g, 3*l)/gamma(g) # equivalent to P(X(1)>3)
def test_issue_6194():
    x = Symbol('x')
    assert Contains(x, Interval(0, 1)) != (x >= 0) & (x <= 1)
    assert Interval(0, 1).contains(x) == (x >= 0) & (x <= 1)
    assert Contains(x, FiniteSet(0)) != S.false
    assert Contains(x, Interval(1, 1)) != S.false
    assert Contains(x, S.Integers) != S.false
Exemplo n.º 4
0
def test_contains_basic():
    raises(TypeError, lambda: Contains(S.Integers, 1))
    assert Contains(2, S.Integers) is S.true
    assert Contains(-2, S.Naturals) is S.false

    i = Symbol('i', integer=True)
    assert Contains(i, S.Naturals) == Contains(i, S.Naturals, evaluate=False)
Exemplo n.º 5
0
    def eval(cls, i, j):
        """
        Evaluates the discrete delta function.

        Examples
        ========

        >>> from sympy.functions.special.tensor_functions import KroneckerDelta
        >>> from sympy.abc import i, j, k

        >>> KroneckerDelta(i, j)
        KroneckerDelta(i, j)
        >>> KroneckerDelta(i, i)
        1
        >>> KroneckerDelta(i, i + 1)
        0
        >>> KroneckerDelta(i, i + 1 + k)
        KroneckerDelta(i, i + k + 1)

        # indirect doctest

        """
        diff = i - j
        if diff.is_zero:
            return S.One
        if fuzzy_not(diff.is_zero):
            return S.Zero
        if diff.is_nonzero:
            return S.Zero
        from sympy import Contains
        if Contains(i, j.domain).is_BooleanFalse or Contains(j, i.domain).is_BooleanFalse:
            return S.Zero
        
        if i.assumptions0.get("below_fermi") and j.assumptions0.get("above_fermi"):
            return S.Zero
        if j.assumptions0.get("below_fermi") and i.assumptions0.get("above_fermi"):
            return S.Zero
        
        if i.is_Add and j.is_Add:
            i_args = set(i.args)
            j_args = set(j.args)
            intersect = i_args & j_args
            if intersect:
                i_args -= intersect 
                j_args -= intersect
                i = i.func(*i_args)
                j = j.func(*j_args)                        
                return cls(i, j)
            
        if j.is_KroneckerDelta:
            if i == 1:
                return j
            if i == 0:
                return 1 - j
        # to make KroneckerDelta canonical
        # following lines will check if inputs are in order
        # if not, will return KroneckerDelta with correct order
        if i is not min(i, j, key=default_sort_key):
            return cls(j, i)
Exemplo n.º 6
0
 def pmf(self, x):
     x = sympify(x)
     if not (x.is_number or x.is_Symbol or isinstance(x, RandomSymbol)):
         raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , "
                     "'RandomSymbol' not %s" % (type(x)))
     cond = Ge(x, 1) & Le(x, self.sides) & Contains(x, S.Integers)
     return Piecewise((S.One/self.sides, cond), (S.Zero, True))
Exemplo n.º 7
0
def test_as_set():
    x = Symbol('x')
    y = Symbol('y')
    # Contains is a BooleanFunction whose value depends on an arg's
    # containment in a Set -- rewriting as a Set is not yet implemented
    raises(NotImplementedError, lambda:
           Contains(x, FiniteSet(y)).as_set())
Exemplo n.º 8
0
 def pmf(self, x):
     n, p = self.n, self.p
     x = sympify(x)
     if not (x.is_number or x.is_Symbol or isinstance(x, RandomSymbol)):
         raise ValueError("'x' expected as an argument of type 'number' or 'Symbol' or , "
                     "'RandomSymbol' not %s" % (type(x)))
     cond = Ge(x, 0) & Le(x, n) & Contains(x, S.Integers)
     return Piecewise((binomial(n, x) * p**x * (1 - p)**(n - x), cond), (S.Zero, True))
def test_GammaProcess_numeric():
    t, d, x, y = symbols('t d x y', positive=True)
    X = GammaProcess("X", 1, 2)
    assert X.state_space == Interval(0, oo)
    assert X.index_set == Interval(0, oo)
    assert X.lamda == 1
    assert X.gamma == 2

    raises(ValueError, lambda: GammaProcess("X", -1, 2))
    raises(ValueError, lambda: GammaProcess("X", 0, -2))
    raises(ValueError, lambda: GammaProcess("X", -1, -2))

    # all are independent because of non-overlapping intervals
    assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1), Contains(t,
        Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x,
        Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() == \
                                                            120*exp(-10)

    # Check working with Not and Or
    assert P(
        Not((X(t) < 5) & (X(d) > 3)),
        Contains(t, Interval.Ropen(2, 4)) & Contains(d, Interval.Lopen(
            7, 8))).simplify() == -4 * exp(-3) + 472 * exp(-8) / 3 + 1
    assert P((X(t) > 2) | (X(t) < 4), Contains(t, Interval.Ropen(1, 4))).simplify() == \
                                            -643*exp(-4)/15 + 109*exp(-2)/15 + 1

    assert E(X(t)) == 2 * t  # E(X(t)) == gamma*t/l
    assert E(X(2) + x * E(X(5))) == 10 * x + 4
Exemplo n.º 10
0
def test_binary_symbols():
    x = Symbol('x')
    y = Symbol('y')
    z = Symbol('z')
    assert Contains(x, FiniteSet(y, Eq(z, True))).binary_symbols == set([y, z])
Exemplo n.º 11
0
def test_issue_10326():
    assert Contains(oo, Interval(-oo, oo)) == False
    assert Contains(-oo, Interval(-oo, oo)) == False
def test_contains_basic():
    assert Contains(2, S.Integers) is S.true
    assert Contains(-2, S.Naturals) is S.false

    i = Symbol('i', integer=True)
    assert Contains(i, S.Naturals) == Contains(i, S.Naturals, evaluate=False)
def test_as_set():
    x = Symbol('x')
    y = Symbol('y')
    assert Contains(x, FiniteSet(y)).as_set() == Contains(x, FiniteSet(y))
Exemplo n.º 14
0
def test_WienerProcess():
    X = WienerProcess("X")
    assert X.state_space == S.Reals
    assert X.index_set == Interval(0, oo)

    t, d, x, y = symbols('t d x y', positive=True)
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.distribution(X(t)) == NormalDistribution(0, sqrt(t))
    raises(ValueError, lambda: PoissonProcess("X", -1))
    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-2))

    assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
        Lambda((X(2), X(3)),
               sqrt(6) * exp(-X(2)**2 / 4) * exp(-X(3)**2 / 6) / (12 * pi)))
    assert X.joint_distribution(4, 6) == JointDistributionHandmade(
        Lambda((X(4), X(6)),
               sqrt(6) * exp(-X(4)**2 / 8) * exp(-X(6)**2 / 12) / (24 * pi)))

    assert P(X(t) < 3).simplify() == erf(3 * sqrt(2) /
                                         (2 * sqrt(t))) / 2 + S(1) / 2
    assert P(X(t) > 2, Contains(t, Interval.Lopen(3, 7))).simplify() == S(1)/2 -\
                erf(sqrt(2)/2)/2

    # Equivalent to P(X(1)>1)**4
    assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1),
        Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2))
        & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() ==\
        (1 - erf(sqrt(2)/2))*(1 - erf(sqrt(2)))*(1 - erf(3*sqrt(2)/2))*(1 - erf(2*sqrt(2)))/16

    # Contains an overlapping interval so, return Probability
    assert P((X(t) < 2) & (X(d) > 3),
             Contains(t, Interval.Lopen(0, 2))
             & Contains(d, Interval.Ropen(2, 4))) == Probability(
                 (X(d) > 3) & (X(t) < 2),
                 Contains(d, Interval.Ropen(2, 4))
                 & Contains(t, Interval.Lopen(0, 2)))

    assert str(P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
        Contains(d, Interval.Lopen(7, 8))).simplify()) == \
                '-(1 - erf(3*sqrt(2)/2))*(2 - erfc(5/2))/4 + 1'
    # Distribution has mean 0 at each timestamp
    assert E(X(t)) == 0
    assert E(
        x * (X(t) + X(d)) * (X(t)**2 + X(d)**2),
        Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Ropen(1, 2))) == Expectation(
            x * (X(d) + X(t)) * (X(d)**2 + X(t)**2),
            Contains(d, Interval.Ropen(1, 2))
            & Contains(t, Interval.Lopen(0, 1)))
    assert E(X(t) + x * E(X(3))) == 0
Exemplo n.º 15
0
def test_PoissonProcess():
    X = PoissonProcess("X", 3)
    assert X.state_space == S.Naturals0
    assert X.index_set == Interval(0, oo)
    assert X.lamda == 3

    t, d, x, y = symbols('t d x y', positive=True)
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.distribution(X(t)) == PoissonDistribution(3 * t)
    raises(ValueError, lambda: PoissonProcess("X", -1))
    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-5))

    assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
        Lambda((X(2), X(3)), 6**X(2) * 9**X(3) * exp(-15) /
               (factorial(X(2)) * factorial(X(3)))))

    assert X.joint_distribution(4, 6) == JointDistributionHandmade(
        Lambda((X(4), X(6)), 12**X(4) * 18**X(6) * exp(-30) /
               (factorial(X(4)) * factorial(X(6)))))

    assert P(X(t) < 1) == exp(-3 * t)
    assert P(Eq(X(t), 0),
             Contains(t, Interval.Lopen(3, 5))) == exp(-6)  # exp(-2*lamda)
    res = P(Eq(X(t), 1), Contains(t, Interval.Lopen(3, 4)))
    assert res == 3 * exp(-3)

    # Equivalent to P(Eq(X(t), 1))**4 because of non-overlapping intervals
    assert P(
        Eq(X(t), 1) & Eq(X(d), 1) & Eq(X(x), 1) & Eq(X(y), 1),
        Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3))
        & Contains(y, Interval.Lopen(3, 4))) == res**4

    # Return Probability because of overlapping intervals
    assert P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 2))
    & Contains(d, Interval.Ropen(2, 4))) == \
                Probability(Eq(X(d), 3) & Eq(X(t), 2), Contains(t, Interval.Lopen(0, 2))
                & Contains(d, Interval.Ropen(2, 4)))

    raises(ValueError, lambda: P(
        Eq(X(t), 2) & Eq(X(d), 3),
        Contains(t, Interval.Lopen(0, 4)) & Contains(d, Interval.Lopen(3, oo)))
           )  # no bound on d
    assert P(Eq(X(3), 2)) == 81 * exp(-9) / 2
    assert P(Eq(X(t), 2), Contains(t, Interval.Lopen(0,
                                                     5))) == 225 * exp(-15) / 2

    # Check that probability works correctly by adding it to 1
    res1 = P(X(t) <= 3, Contains(t, Interval.Lopen(0, 5)))
    res2 = P(X(t) > 3, Contains(t, Interval.Lopen(0, 5)))
    assert res1 == 691 * exp(-15)
    assert (res1 + res2).simplify() == 1

    # Check Not and  Or
    assert P(Not(Eq(X(t), 2) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & \
            Contains(d, Interval.Lopen(7, 8))).simplify() == -18*exp(-6) + 234*exp(-9) + 1
    assert P(Eq(X(t), 2) | Ne(X(t), 4),
             Contains(t, Interval.Ropen(2, 4))) == 1 - 36 * exp(-6)
    raises(ValueError, lambda: P(X(t) > 2, X(t) + X(d)))
    assert E(
        X(t)) == 3 * t  # property of the distribution at a given timestamp
    assert E(
        X(t)**2 + X(d) * 2 + X(y)**3,
        Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2))
        & Contains(y, Interval.Ropen(3, 4))) == 75
    assert E(X(t)**2, Contains(t, Interval.Lopen(0, 1))) == 12
    assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
    & Contains(d, Interval.Ropen(1, 2))) == \
            Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(t, Interval.Lopen(0, 1))
            & Contains(d, Interval.Ropen(1, 2)))

    # Value Error because of infinite time bound
    raises(ValueError, lambda: E(X(t)**3, Contains(t, Interval.Lopen(1, oo))))

    # Equivalent to E(X(t)**2) - E(X(d)**2) == E(X(1)**2) - E(X(1)**2) == 0
    assert E((X(t) + X(d)) * (X(t) - X(d)),
             Contains(t, Interval.Lopen(0, 1))
             & Contains(d, Interval.Lopen(1, 2))) == 0
    assert E(X(2) + x * E(X(5))) == 15 * x + 6
    assert E(x * X(1) + y) == 3 * x + y
    assert P(Eq(X(1), 2) & Eq(X(t), 3),
             Contains(t, Interval.Lopen(1, 2))) == 81 * exp(-6) / 4
    Y = PoissonProcess("Y", 6)
    Z = X + Y
    assert Z.lamda == X.lamda + Y.lamda == 9
    raises(ValueError,
           lambda: X + 5)  # should be added be only PoissonProcess instance
    N, M = Z.split(4, 5)
    assert N.lamda == 4
    assert M.lamda == 5
    raises(ValueError, lambda: Z.split(3, 2))  # 2+3 != 9

    raises(
        ValueError, lambda: P(Eq(X(t), 0),
                              Contains(t, Interval.Lopen(1, 3)) & Eq(X(1), 0)))
    # check if it handles queries with two random variables in one args
    res1 = P(Eq(N(3), N(5)))
    assert res1 == P(Eq(N(t), 0), Contains(t, Interval(3, 5)))
    res2 = P(N(3) > N(1))
    assert res2 == P((N(t) > 0), Contains(t, Interval(1, 3)))
    assert P(N(3) < N(1)) == 0  # condition is not possible
    res3 = P(N(3) <= N(1))  # holds only for Eq(N(3), N(1))
    assert res3 == P(Eq(N(t), 0), Contains(t, Interval(1, 3)))

    # tests from https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php
    X = PoissonProcess('X', 10)  # 11.1
    assert P(Eq(X(S(1) / 3), 3)
             & Eq(X(1), 10)) == exp(-10) * Rational(8000000000, 11160261)
    assert P(Eq(X(1), 1), Eq(X(S(1) / 3), 3)) == 0
    assert P(Eq(X(1), 10), Eq(X(S(1) / 3), 3)) == P(Eq(X(S(2) / 3), 7))

    X = PoissonProcess('X', 2)  # 11.2
    assert P(X(S(1) / 2) < 1) == exp(-1)
    assert P(X(3) < 1, Eq(X(1), 0)) == exp(-4)
    assert P(Eq(X(4), 3), Eq(X(2), 3)) == exp(-4)

    X = PoissonProcess('X', 3)
    assert P(Eq(X(2), 5) & Eq(X(1), 2)) == Rational(81, 4) * exp(-6)

    # check few properties
    assert P(
        X(2) <= 3,
        X(1) >= 1) == 3 * P(Eq(X(1), 0)) + 2 * P(Eq(X(1), 1)) + P(Eq(X(1), 2))
    assert P(X(2) <= 3, X(1) > 1) == 2 * P(Eq(X(1), 0)) + 1 * P(Eq(X(1), 1))
    assert P(Eq(X(2), 5) & Eq(X(1), 2)) == P(Eq(X(1), 3)) * P(Eq(X(1), 2))
    assert P(Eq(X(3), 4), Eq(X(1), 3)) == P(Eq(X(2), 1))
Exemplo n.º 16
0
def test_type_error():
    # Pass in a parameter not of type "set"
    raises(TypeError, lambda: Contains(2, None))
Exemplo n.º 17
0
def test_piecewise1():

    # Test canonicalization
    assert unchanged(Piecewise, ExprCondPair(x, x < 1), ExprCondPair(0, True))
    assert Piecewise((x, x < 1), (0, True)) == Piecewise(ExprCondPair(x, x < 1),
                                                         ExprCondPair(0, True))
    assert Piecewise((x, x < 1), (0, True), (1, True)) == \
        Piecewise((x, x < 1), (0, True))
    assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \
        Piecewise((x, x < 1))
    assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \
        Piecewise((x, x < 1), (0, True))
    assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \
        Piecewise((x, x < 1), (0, True))
    assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \
        Piecewise((x, Or(x < 1, x < 2)), (0, True))
    assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x
    assert Piecewise((x, True)) == x
    # Explicitly constructed empty Piecewise not accepted
    raises(TypeError, lambda: Piecewise())
    # False condition is never retained
    assert Piecewise((2*x, x < 0), (x, False)) == \
        Piecewise((2*x, x < 0), (x, False), evaluate=False) == \
        Piecewise((2*x, x < 0))
    assert Piecewise((x, False)) == Undefined
    raises(TypeError, lambda: Piecewise(x))
    assert Piecewise((x, 1)) == x  # 1 and 0 are accepted as True/False
    raises(TypeError, lambda: Piecewise((x, 2)))
    raises(TypeError, lambda: Piecewise((x, x**2)))
    raises(TypeError, lambda: Piecewise(([1], True)))
    assert Piecewise(((1, 2), True)) == Tuple(1, 2)
    cond = (Piecewise((1, x < 0), (2, True)) < y)
    assert Piecewise((1, cond)
        ) == Piecewise((1, ITE(x < 0, y > 1, y > 2)))

    assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1))
        ) == Piecewise((1, x > 0), (2, x > -1))

    # test for supporting Contains in Piecewise
    pwise = Piecewise(
        (1, And(x <= 6, x > 1, Contains(x, S.Integers))),
        (0, True))
    assert pwise.subs(x, pi) == 0
    assert pwise.subs(x, 2) == 1
    assert pwise.subs(x, 7) == 0

    # Test subs
    p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0))
    p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0))
    assert p.subs(x, x**2) == p_x2
    assert p.subs(x, -5) == -1
    assert p.subs(x, -1) == 1
    assert p.subs(x, 1) == log(1)

    # More subs tests
    p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi))
    p3 = Piecewise((1, Eq(x, 0)), (1/x, True))
    p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2))
    assert p2.subs(x, 2) == 1
    assert p2.subs(x, 4) == -1
    assert p2.subs(x, 10) == 0
    assert p3.subs(x, 0.0) == 1
    assert p4.subs(x, 0.0) == 1


    f, g, h = symbols('f,g,h', cls=Function)
    pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1))
    pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1))
    assert pg.subs(g, f) == pf

    assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1
    assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0
    assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1
    assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1
    assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \
        Piecewise((1, Eq(exp(z), cos(z))), (0, True))

    p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True))
    assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True))

    assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True)
        ).subs(x, 1) == Piecewise((-1, y < 1), (2, True))
    assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1

    p6 = Piecewise((x, x > 0))
    n = symbols('n', negative=True)
    assert p6.subs(x, n) == Undefined

    # Test evalf
    assert p.evalf() == p
    assert p.evalf(subs={x: -2}) == -1
    assert p.evalf(subs={x: -1}) == 1
    assert p.evalf(subs={x: 1}) == log(1)
    assert p6.evalf(subs={x: -5}) == Undefined

    # Test doit
    f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1))
    assert f_int.doit() == Piecewise( (S(1)/2, x < 1) )

    # Test differentiation
    f = x
    fp = x*p
    dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0))
    fp_dx = x*dp + p
    assert diff(p, x) == dp
    assert diff(f*p, x) == fp_dx

    # Test simple arithmetic
    assert x*p == fp
    assert x*p + p == p + x*p
    assert p + f == f + p
    assert p + dp == dp + p
    assert p - dp == -(dp - p)

    # Test power
    dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0))
    assert dp**2 == dp2

    # Test _eval_interval
    f1 = x*y + 2
    f2 = x*y**2 + 3
    peval = Piecewise((f1, x < 0), (f2, x > 0))
    peval_interval = f1.subs(
        x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0)
    assert peval._eval_interval(x, 0, 0) == 0
    assert peval._eval_interval(x, -1, 1) == peval_interval
    peval2 = Piecewise((f1, x < 0), (f2, True))
    assert peval2._eval_interval(x, 0, 0) == 0
    assert peval2._eval_interval(x, 1, -1) == -peval_interval
    assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1)
    assert peval2._eval_interval(x, -1, 1) == peval_interval
    assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0)
    assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1)

    # Test integration
    assert p.integrate() == Piecewise(
        (-x, x < -1),
        (x**3/3 + S(4)/3, x < 0),
        (x*log(x) - x + S(4)/3, True))
    p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
    assert integrate(p, (x, -2, 2)) == S(5)/6
    assert integrate(p, (x, 2, -2)) == -S(5)/6
    p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True))
    assert integrate(p, (x, -oo, oo)) == 2
    p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
    assert integrate(p, (x, -2, 2)) == Undefined

    # Test commutativity
    assert isinstance(p, Piecewise) and p.is_commutative is True
Exemplo n.º 18
0
def test_binary_symbols():
    x = Symbol("x")
    y = Symbol("y")
    z = Symbol("z")
    assert Contains(x, FiniteSet(y, Eq(z, True))).binary_symbols == set([y, z])