Exemplo n.º 1
0
def test_is_number():
    from sympy.abc import x, y, z
    from sympy import cos, sin
    assert Integral(x).is_number is False
    assert Integral(1, x).is_number is False
    assert Integral(1, (x, 1)).is_number is True
    assert Integral(1, (x, 1, 2)).is_number is True
    assert Integral(1, (x, 1, y)).is_number is False
    assert Integral(1, (x, y)).is_number is False
    assert Integral(x, y).is_number is False
    assert Integral(x, (y, 1, x)).is_number is False
    assert Integral(x, (y, 1, 2)).is_number is False
    assert Integral(x, (x, 1, 2)).is_number is True
    # `foo.is_number` should always be equivalent to `not foo.free_symbols`
    # in each of these cases, there are pseudo-free symbols
    i = Integral(x, (y, 1, 1))
    assert i.is_number is False and i.n() == 0
    i = Integral(x, (y, z, z))
    assert i.is_number is False and i.n() == 0
    i = Integral(1, (y, z, z + 2))
    assert i.is_number is False and i.n() == 2

    assert Integral(x * y, (x, 1, 2), (y, 1, 3)).is_number is True
    assert Integral(x * y, (x, 1, 2), (y, 1, z)).is_number is False
    assert Integral(x, (x, 1)).is_number is True
    assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
    assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
    # it is possible to get a false negative if the integrand is
    # actually an unsimplified zero, but this is true of is_number in general.
    assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
    assert Integral(f(x), (x, 0, 1)).is_number is True
Exemplo n.º 2
0
def test_is_number():
    from sympy.abc import x, y, z
    from sympy import cos, sin
    assert Integral(x).is_number is False
    assert Integral(1, x).is_number is False
    assert Integral(1, (x, 1)).is_number is True
    assert Integral(1, (x, 1, 2)).is_number is True
    assert Integral(1, (x, 1, y)).is_number is False
    assert Integral(1, (x, y)).is_number is False
    assert Integral(x, y).is_number is False
    assert Integral(x, (y, 1, x)).is_number is False
    assert Integral(x, (y, 1, 2)).is_number is False
    assert Integral(x, (x, 1, 2)).is_number is True
    # `foo.is_number` should always be eqivalent to `not foo.free_symbols`
    # in each of these cases, there are pseudo-free symbols
    i = Integral(x, (y, 1, 1))
    assert i.is_number is False and i.n() == 0
    i = Integral(x, (y, z, z))
    assert i.is_number is False and i.n() == 0
    i = Integral(1, (y, z, z + 2))
    assert i.is_number is False and i.n() == 2

    assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
    assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
    assert Integral(x, (x, 1)).is_number is True
    assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
    assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
    # it is possible to get a false negative if the integrand is
    # actually an unsimplified zero, but this is true of is_number in general.
    assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
    assert Integral(f(x), (x, 0, 1)).is_number is True
Exemplo n.º 3
0
def test_is_number():
    from sympy.abc import x, y, z
    from sympy import cos, sin
    assert Integral(x).is_number is False
    assert Integral(1, x).is_number is False
    assert Integral(1, (x, 1)).is_number is True
    assert Integral(1, (x, 1, 2)).is_number is True
    assert Integral(1, (x, 1, y)).is_number is False
    assert Integral(1, (x, y)).is_number is False
    assert Integral(x, y).is_number is False
    assert Integral(x, (y, 1, x)).is_number is False
    assert Integral(x, (y, 1, 2)).is_number is False
    assert Integral(x, (x, 1, 2)).is_number is True
    i = Integral(x, (y, 1, 1))
    assert i.is_number is True and i.n() == 0
    i = Integral(x, (y, z, z))
    assert i.is_number is True and i.n() == 0
    i = Integral(1, (y, z, z + 2))
    assert i.is_number is True and i.n() == 2
    assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
    assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
    assert Integral(x, (x, 1)).is_number is True
    assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
    assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
    # it is possible to get a false negative if the integrand is
    # actually an unsimplified zero, but this is true of is_number in general.
    assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
    assert Integral(f(x), (x, 0, 1)).is_number is True
Exemplo n.º 4
0
def test_is_number():
    from sympy.abc import x, y, z
    from sympy import cos, sin
    assert Integral(x).is_number is False
    assert Integral(1, x).is_number is False
    assert Integral(1, (x, 1)).is_number is True
    assert Integral(1, (x, 1, 2)).is_number is True
    assert Integral(1, (x, 1, y)).is_number is False
    assert Integral(1, (x, y)).is_number is False
    assert Integral(x, y).is_number is False
    assert Integral(x, (y, 1, x)).is_number is False
    assert Integral(x, (y, 1, 2)).is_number is False
    assert Integral(x, (x, 1, 2)).is_number is True
    i = Integral(x, (y, 1, 1))
    assert i.is_number is True and i.n() == 0
    i = Integral(x, (y, z, z))
    assert i.is_number is True and i.n() == 0
    i = Integral(1, (y, z, z + 2))
    assert i.is_number is True and i.n() == 2
    assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
    assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
    assert Integral(x, (x, 1)).is_number is True
    assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
    assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
    # it is possible to get a false negative if the integrand is
    # actually an unsimplified zero, but this is true of is_number in general.
    assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
    assert Integral(f(x), (x, 0, 1)).is_number is True
Exemplo n.º 5
0
def test_literal_evalf_is_number_is_zero_is_comparable():
    from sympy.integrals.integrals import Integral
    from sympy.core.symbol import symbols
    from sympy.core.function import Function
    from sympy.functions.elementary.trigonometric import cos, sin
    x = symbols('x')
    f = Function('f')

    # issue 5033
    assert f.is_number is False
    # issue 6646
    assert f(1).is_number is False
    i = Integral(0, (x, x, x))
    # expressions that are symbolically 0 can be difficult to prove
    # so in case there is some easy way to know if something is 0
    # it should appear in the is_zero property for that object;
    # if is_zero is true evalf should always be able to compute that
    # zero
    assert i.n() == 0
    assert i.is_zero
    assert i.is_number is False
    assert i.evalf(2, strict=False) == 0

    # issue 10268
    n = sin(1)**2 + cos(1)**2 - 1
    assert n.is_comparable is False
    assert n.n(2).is_comparable is False
    assert n.n(2).n(2).is_comparable
Exemplo n.º 6
0
def test_literal_evalf_is_number_is_zero_is_comparable():
    from sympy.integrals.integrals import Integral
    from sympy.core.symbol import symbols
    from sympy.core.function import Function
    from sympy.functions.elementary.trigonometric import cos, sin
    x = symbols('x')
    f = Function('f')

    # issue 5033
    assert f.is_number is False
    # issue 6646
    assert f(1).is_number is False
    i = Integral(0, (x, x, x))
    # expressions that are symbolically 0 can be difficult to prove
    # so in case there is some easy way to know if something is 0
    # it should appear in the is_zero property for that object;
    # if is_zero is true evalf should always be able to compute that
    # zero
    assert i.n() == 0
    assert i.is_zero
    assert i.is_number is False
    assert i.evalf(2, strict=False) == 0

    # issue 10268
    n = sin(1)**2 + cos(1)**2 - 1
    assert n.is_comparable is False
    assert n.n(2).is_comparable is False
    assert n.n(2).n(2).is_comparable
Exemplo n.º 7
0
def test_as_sum_midpoint1():
    e = Integral(sqrt(x ** 3 + 1), (x, 2, 10))
    assert e.as_sum(1, method="midpoint") == 8 * sqrt(217)
    assert e.as_sum(2, method="midpoint") == 4 * sqrt(65) + 12 * sqrt(57)
    assert e.as_sum(3, method="midpoint") == 8 * sqrt(217) / 3 + 8 * sqrt(3081) / 27 + 8 * sqrt(52809) / 27
    assert e.as_sum(4, method="midpoint") == 2 * sqrt(730) + 4 * sqrt(7) + 4 * sqrt(86) + 6 * sqrt(14)
    assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5

    e = Integral(sqrt(x ** 3 + y ** 3), (x, 2, 10), (y, 0, 10))
    raises(NotImplementedError, "e.as_sum(4)")
Exemplo n.º 8
0
def test_as_sum_midpoint1():
    e = Integral(sqrt(x**3 + 1), (x, 2, 10))
    assert e.as_sum(1, method="midpoint") == 8 * sqrt(217)
    assert e.as_sum(2, method="midpoint") == 4 * sqrt(65) + 12 * sqrt(57)
    assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \
        8*sqrt(3081)/27 + 8*sqrt(52809)/27
    assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \
        4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14)
    assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5

    e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10))
    raises(NotImplementedError, lambda: e.as_sum(4))
Exemplo n.º 9
0
def test_as_sum_midpoint1():
    e = Integral(sqrt(x**3+1), (x, 2, 10))
    assert e.as_sum(1, method="midpoint") == 8*217**(S(1)/2)
    assert e.as_sum(2, method="midpoint") == 4*65**(S(1)/2) + 12*57**(S(1)/2)
    assert e.as_sum(3, method="midpoint") == 8*217**(S(1)/2)/3 + \
            8*3081**(S(1)/2)/27 + 8*52809**(S(1)/2)/27
    assert e.as_sum(4, method="midpoint") == 2*730**(S(1)/2) + \
            4*7**(S(1)/2) + 4*86**(S(1)/2) + 6*14**(S(1)/2)
    assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5

    e = Integral(sqrt(x**3+y**3), (x, 2, 10), (y, 0, 10))
    raises(NotImplementedError, "e.as_sum(4)")
Exemplo n.º 10
0
def test_as_sum_midpoint1():
    e = Integral(sqrt(x**3+1), (x, 2, 10))
    assert e.as_sum(1, method="midpoint") == 8*217**(S(1)/2)
    assert e.as_sum(2, method="midpoint") == 4*65**(S(1)/2) + 12*57**(S(1)/2)
    assert e.as_sum(3, method="midpoint") == 8*217**(S(1)/2)/3 + \
            8*3081**(S(1)/2)/27 + 8*52809**(S(1)/2)/27
    assert e.as_sum(4, method="midpoint") == 2*730**(S(1)/2) + \
            4*7**(S(1)/2) + 4*86**(S(1)/2) + 6*14**(S(1)/2)
    assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5

    e = Integral(sqrt(x**3+y**3), (x, 2, 10), (y, 0, 10))
    raises(NotImplementedError, "e.as_sum(4)")