def test_series_of_Subs(): from sympy.abc import x, y, z subs1 = Subs(sin(x), x, y) subs2 = Subs(sin(x) * cos(z), x, y) subs3 = Subs(sin(x * z), (x, z), (y, x)) assert subs1.series(x) == subs1 subs1_series = ( Subs(x, x, y) + Subs(-(x ** 3) / 6, x, y) + Subs(x ** 5 / 120, x, y) + O(y ** 6) ) assert subs1.series() == subs1_series assert subs1.series(y) == subs1_series assert subs1.series(z) == subs1 assert subs2.series(z) == ( Subs(z ** 4 * sin(x) / 24, x, y) + Subs(-(z ** 2) * sin(x) / 2, x, y) + Subs(sin(x), x, y) + O(z ** 6) ) assert subs3.series(x).doit() == subs3.doit().series(x) assert subs3.series(z).doit() == sin(x * y) raises(ValueError, lambda: Subs(x + 2 * y, y, z).series()) assert Subs(x + y, y, z).series(x).doit() == x + z
def test_Subs(): assert Subs(x, x, 0) == Subs(y, y, 0) assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0) assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0) assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y, z), (x, y, z), (0, 0, 1)) assert Subs(f(x, y), (x, y, z), (0, 1, 1)) == \ Subs(f(x, y), (x, y, z), (0, 1, 2)) assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y) + z, (x, y, z), (0, 1, 0)) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1))) raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1))) assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1)) assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == {y, z} assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2 * f(x), x, 0).diff(y) == 2 * y * f(0) e = Subs(y**2 * f(x), x, y) assert e.diff(y) == e.doit().diff( y) == y**2 * Derivative(f(y), y) + 2 * y * f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0) e1 = Subs(z * f(x), x, 1) e2 = Subs(z * f(y), y, 1) assert e1 + e2 == 2 * e1 assert e1.__hash__() == e2.__hash__() assert Subs(z * f(x + 1), x, 1) not in [e1, e2] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x), (x, ), (x + y)) assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \ Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \ z + Rational('1/2').n(2)*f(0) assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0) assert (x * f(x).diff(x).subs(x, 0)).subs( x, y) == y * f(x).diff(x).subs(x, 0)
def test_Subs(): assert Subs(x, x, 0) == Subs(y, y, 0) assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0) assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0) assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y, z), (x, y, z), (0, 0, 1)) assert Subs(f(x, y), (x, y, z), (0, 1, 1)) == \ Subs(f(x, y), (x, y, z), (0, 1, 2)) assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y) + z, (x, y, z), (0, 1, 0)) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1))) raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1))) assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1)) assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == {y, z} assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0) e = Subs(y**2*f(x), x, y) assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0) e1 = Subs(z*f(x), x, 1) e2 = Subs(z*f(y), y, 1) assert e1 + e2 == 2*e1 assert e1.__hash__() == e2.__hash__() assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x), (x,), (x + y)) assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \ Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \ z + Rational('1/2').n(2)*f(0) assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0) assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0)
def test_series_of_Subs(): from sympy.abc import x, y, z subs1 = Subs(sin(x), x, y) subs2 = Subs(sin(x) * cos(z), x, y) subs3 = Subs(sin(x * z), (x, z), (y, x)) assert subs1.series(x) == subs1 assert subs1.series(y) == Subs(x, x, y) + Subs(-x**3/6, x, y) + Subs(x**5/120, x, y) + O(y**6) assert subs1.series(z) == subs1 assert subs2.series(z) == Subs(z**4*sin(x)/24, x, y) + Subs(-z**2*sin(x)/2, x, y) + Subs(sin(x), x, y) + O(z**6) assert subs3.series(x).doit() == subs3.doit().series(x) assert subs3.series(z).doit() == sin(x*y)
def test_Subs(): x = Symbol('x') y = Symbol('y') z = Symbol('z') f = Function('f') g = Function('g') assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, 'Subs(f(x, y), (x, y), (0, 0, 1))') raises(ValueError, 'Subs(f(x, y), (x, x, y), (0, 0, 1))') assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert all([ isinstance(v, Dummy) for v in Subs(f(x, y), (x, y), (0, 1)).variables ]) assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1)) assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1) == Subs(f(x), x, 0) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == set([y, z]) assert Subs(f(x).diff(x), x, 0).doit() == Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit() == 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2 * f(x), x, 0).diff(y) == 2 * y * f(0) e = Subs(y**2 * f(x), x, y) assert e.diff(y) == e.doit().diff( y) == y**2 * Derivative(f(y), y) + 2 * y * f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0) e1 = Subs(z * f(x), x, 1) e2 = Subs(z * f(y), y, 1) assert e1 + e2 == 2 * e1 assert e1.__hash__() == e2.__hash__() assert Subs(z * f(x + 1), x, 1) not in [e1, e2] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
def test_Subs_subs(): assert Subs(x*y, x, x).subs(x, y) == Subs(x*y, x, y) assert Subs(x*y, x, x + 1).subs(x, y) == \ Subs(x*y, x, y + 1) assert Subs(x*y, y, x + 1).subs(x, y) == \ Subs(y**2, y, y + 1) a = Subs(x*y*z, (y, x, z), (x + 1, x + z, x)) b = Subs(x*y*z, (y, x, z), (x + 1, y + z, y)) assert a.subs(x, y) == b and \ a.doit().subs(x, y) == a.subs(x, y).doit() f = Function('f') g = Function('g') assert Subs(2*f(x, y) + g(x), f(x, y), 1).subs(y, 2) == Subs( 2*f(x, y) + g(x), (f(x, y), y), (1, 2))
def test_Subs(): x = Symbol('x') y = Symbol('y') z = Symbol('z') f = Function('f') g = Function('g') assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, 'Subs(f(x, y), (x, y), (0, 0, 1))') raises(ValueError, 'Subs(f(x, y), (x, x, y), (0, 0, 1))') assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert all(isinstance(v, Dummy) for v in Subs(f(x, y), (x, y), (0, 1)).variables) assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1)) assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1) == Subs(f(x), x, 0) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == set([y, z]) assert Subs(f(x).diff(x), x, 0).doit() == Subs(f(x).diff(x), x, 0) assert Subs(1+f(x).diff(x), x, 0).doit() == 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0) e = Subs(y**2*f(x), x, y) assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0) e1 = Subs(z*f(x), x, 1) e2 = Subs(z*f(y), y, 1) assert e1 + e2 == 2*e1 assert e1.__hash__() == e2.__hash__() assert Subs(z*f(x+1), x, 1) not in [ e1, e2 ] assert Derivative(f(x),x).subs(x,g(x)) == Derivative(f(g(x)),g(x))
def test_series_of_Subs(): from sympy.abc import x, y, z subs1 = Subs(sin(x), x, y) subs2 = Subs(sin(x) * cos(z), x, y) subs3 = Subs(sin(x * z), (x, z), (y, x)) assert subs1.series(x) == subs1 assert subs1.series(y) == Subs(x, x, y) + Subs(-x**3 / 6, x, y) + Subs( x**5 / 120, x, y) + O(y**6) assert subs1.series(z) == subs1 assert subs2.series(z) == Subs(z**4 * sin(x) / 24, x, y) + Subs( -z**2 * sin(x) / 2, x, y) + Subs(sin(x), x, y) + O(z**6) assert subs3.series(x).doit() == subs3.doit().series(x) assert subs3.series(z).doit() == sin(x * y)
def test_Subs(): assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, 'Subs(f(x, y), (x, y), (0, 0, 1))') raises(ValueError, 'Subs(f(x, y), (x, x, y), (0, 0, 1))') assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert all( isinstance(v, Dummy) for v in Subs(f(x, y), (x, y), (0, 1)).variables) assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1)) assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1) == Subs(f(x), x, 0) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == set([y, z]) assert Subs(f(x).diff(x), x, 0).doit() == Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit() == 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2 * f(x), x, 0).diff(y) == 2 * y * f(0) e = Subs(y**2 * f(x), x, y) assert e.diff(y) == e.doit().diff( y) == y**2 * Derivative(f(y), y) + 2 * y * f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0) e1 = Subs(z * f(x), x, 1) e2 = Subs(z * f(y), y, 1) assert e1 + e2 == 2 * e1 assert e1.__hash__() == e2.__hash__() assert Subs(z * f(x + 1), x, 1) not in [e1, e2] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(1) == \ Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(1) == \ z + Rational('1/2').n(1)*f(0)
def test_Subs(): assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x ** 2), x ** 2, 0).doit() == f(0) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, "Subs(f(x, y), (x, y), (0, 0, 1))") raises(ValueError, "Subs(f(x, y), (x, x, y), (0, 0, 1))") assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert all(isinstance(v, Dummy) for v in Subs(f(x, y), (x, y), (0, 1)).variables) assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1)) assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1) == Subs(f(x), x, 0) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == set([y, z]) assert Subs(f(x).diff(x), x, 0).doit() == Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit() == 1 + Subs(f(x).diff(x), x, 0) assert Subs(y * f(x, y).diff(x), (x, y), (0, 2)).doit() == 2 * Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y ** 2 * f(x), x, 0).diff(y) == 2 * y * f(0) e = Subs(y ** 2 * f(x), x, y) assert e.diff(y) == e.doit().diff(y) == y ** 2 * Derivative(f(y), y) + 2 * y * f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0) e1 = Subs(z * f(x), x, 1) e2 = Subs(z * f(y), y, 1) assert e1 + e2 == 2 * e1 assert e1.__hash__() == e2.__hash__() assert Subs(z * f(x + 1), x, 1) not in [e1, e2] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert ( Subs(f(x) * cos(y) + z, (x, y), (0, pi / 3)).n(1) == Subs(f(x) * cos(y) + z, (x, y), (0, pi / 3)).evalf(1) == z + Rational("1/2").n(1) * f(0) )
def test_series_of_Subs(): from sympy.abc import x, y, z subs1 = Subs(sin(x), x, y) subs2 = Subs(sin(x) * cos(z), x, y) subs3 = Subs(sin(x * z), (x, z), (y, x)) assert subs1.series(x) == subs1 subs1_series = (Subs(x, x, y) + Subs(-x**3/6, x, y) + Subs(x**5/120, x, y) + O(y**6)) assert subs1.series() == subs1_series assert subs1.series(y) == subs1_series assert subs1.series(z) == subs1 assert subs2.series(z) == (Subs(z**4*sin(x)/24, x, y) + Subs(-z**2*sin(x)/2, x, y) + Subs(sin(x), x, y) + O(z**6)) assert subs3.series(x).doit() == subs3.doit().series(x) assert subs3.series(z).doit() == sin(x*y) raises(ValueError, lambda: Subs(x + 2*y, y, z).series()) assert Subs(x + y, y, z).series(x).doit() == x + z
def test_Subs(): assert Subs(1, (), ()) is S.One # check null subs influence on hashing assert Subs(x, y, z) != Subs(x, y, 1) # neutral subs works assert Subs(x, x, 1).subs(x, y).has(y) # self mapping var/point assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x) assert Subs(x, x, 0).has(x) # it's a structural answer assert not Subs(x, x, 0).free_symbols assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1)) assert Subs(x, (x, ), (0, )) == Subs(x, x, 0) assert Subs(x, x, 0) == Subs(y, y, 0) assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0) assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0) assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y, z), (x, y, z), (0, 0, 1)) assert Subs(x, y, 2).subs(x, y).doit() == 2 assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y) + z, (x, y, z), (0, 1, 0)) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1))) raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1))) assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1)) assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == {y, z} assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2 * f(x), x, 0).diff(y) == 2 * y * f(0) e = Subs(y**2 * f(x), x, y) assert e.diff(y) == e.doit().diff( y) == y**2 * Derivative(f(y), y) + 2 * y * f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0) e1 = Subs(z * f(x), x, 1) e2 = Subs(z * f(y), y, 1) assert e1 + e2 == 2 * e1 assert e1.__hash__() == e2.__hash__() assert Subs(z * f(x + 1), x, 1) not in [e1, e2] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x), x, x + y) assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \ Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \ z + Rational('1/2').n(2)*f(0) assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0) assert (x * f(x).diff(x).subs(x, 0)).subs( x, y) == y * f(x).diff(x).subs(x, 0) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)).doit() == 2 * exp(x) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)).doit(deep=False) == 2 * Derivative(exp(x), x) assert Derivative( f(x, g(x)), x).doit() == Derivative(f(x, g(x)), g(x)) * Derivative(g(x), x) + Subs( Derivative(f(y, g(x)), y), y, x)
def test_Subs(): assert Subs(1, (), ()) is S.One # check null subs influence on hashing assert Subs(x, y, z) != Subs(x, y, 1) # neutral subs works assert Subs(x, x, 1).subs(x, y).has(y) # self mapping var/point assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x) assert Subs(x, x, 0).has(x) # it's a structural answer assert not Subs(x, x, 0).free_symbols assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1)) assert Subs(x, (x,), (0,)) == Subs(x, x, 0) assert Subs(x, x, 0) == Subs(y, y, 0) assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0) assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0) assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y, z), (x, y, z), (0, 0, 1)) assert Subs(x, y, 2).subs(x, y).doit() == 2 assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y) + z, (x, y, z), (0, 1, 0)) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1))) raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1))) assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1)) assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == {y, z} assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0) e = Subs(y**2*f(x), x, y) assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0) e1 = Subs(z*f(x), x, 1) e2 = Subs(z*f(y), y, 1) assert e1 + e2 == 2*e1 assert e1.__hash__() == e2.__hash__() assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x), x, x + y) assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \ Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \ z + Rational('1/2').n(2)*f(0) assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0) assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit() == 2*exp(x) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit(deep=False) == 2*Derivative(exp(x), x) assert Derivative(f(x, g(x)), x).doit() == Derivative(g(x), x )*Subs(Derivative(f(x, y), y), y, g(x) ) + Subs(Derivative(f(y, g(x)), y), y, x)