Exemplo n.º 1
0
 def runTest(self):
     fafb = Fafb()
     p = (217400, 164242, 438817)  # z,y,x convention
     crop_size = (16, 160, 160)
     p_crop = fafb.get_crops([p], crop_size)
     normalized_p_crop = fafb.normalize(p_crop)
     self.assertTrue(
         np.all(np.shape(normalized_p_crop) == np.shape(p_crop)))
     self.assertTrue(np.min(normalized_p_crop) >= -1)
     self.assertTrue(np.max(normalized_p_crop) <= 1)
Exemplo n.º 2
0
 def runTest(self):
     fafb = Fafb()
     p = (217400, 164242, 438817)  # z,y,x convention
     crop_size = (16, 160, 160)
     p_crop = fafb.get_crops([p], crop_size)
     self.assertTrue(np.max(p_crop) <= 255)
     self.assertTrue(np.min(p_crop) >= 0)
     self.assertTrue(np.all(crop_size == np.shape(p_crop)[1:]))
     self.assertTrue(1 == np.shape(p_crop)[0])
     self.assertTrue(4 == len(np.shape(p_crop)))
Exemplo n.º 3
0
 def runTest(self):
     fafb = Fafb()
     self.assertTrue(fafb.name == "FAFB")
     self.assertTrue(fafb.container ==
                     "/nrs/saalfeld/FAFB00/v14_align_tps_20170818_dmg.n5")
     self.assertTrue(fafb.dataset == "volumes/raw/s0")
     self.assertTrue(np.all(fafb.voxel_size == np.array([40, 4, 4])))
Exemplo n.º 4
0
 def __init__(self):
     dataset = Fafb()
     service = Flywire(
         dataset=dataset,
         api_url="https://spine.janelia.org/app/transform-service",
         api_dataset="flywire_v1",
     )
     super().__init__(dataset=dataset, service=service)
     self.catmaid = FafbCatmaid()
Exemplo n.º 5
0
                      execute=False,
                      expand=True)
        else:
            cmd = base_cmd

        cmd = [c for c in cmd.split(" ") if c != '']
        cmd_string = ""
        for c in cmd:
            cmd_string += str(c) + " "
        print(cmd_string)
        Popen(cmd_string, shell=True)


if __name__ == "__main__":
    log_config("brain.log")
    submit_jobs(
        db_credentials=
        "/groups/funke/home/ecksteinn/Projects/synex/synisterbrain/db_credentials.ini",
        db_name="synful_synapses",
        collection_name="partners",
        predict_id=3,
        dataset=Fafb(),
        model=FafbModel(),
        n_gpus=2,
        n_cpus=5,
        batch_size=16,
        prefetch_factor=20,
        queue="gpu_any",
        singularity_container=None,
        mount_dirs=["/nrs", "/scratch", "/groups", "/misc"])
Exemplo n.º 6
0
 def __init__(self):
     dataset = Fafb()
     service = Catmaid(
         dataset=dataset,
         api_url="https://neuropil.janelia.org/tracing/fafb/v14/")
     super().__init__(dataset=dataset, service=service)
Exemplo n.º 7
0
        array_data = None
        if self.data.roi.contains(roi):
            array = self.data[roi]
            array.materialize()
            array_data = array.data.astype(np.float32)
            array_data = self.dataset.normalize(array_data)

        if self.transform is not None and array_data is not None:
            array_data = self.transform(array_data)

        return {"id": synapse_id, "data": array_data} 

if __name__ == "__main__":
    mongo_em = MongoIterator("/groups/funke/home/ecksteinn/Projects/synex/synister/db_credentials.ini",
                             "synful_synapses",
                             "partners",
                             3,
                             Fafb(),
                             400,
                             400,
                             80,
                             1,0,1,0)

    print(Fafb().voxel_size)

    i = 0
    for doc in mongo_em:
        print(doc)
        i += 1
        if i > 2: break
Exemplo n.º 8
0
                                 self.db_name,
                                 self.collection_name,
                                 self.predict_id,
                                 self.dataset,
                                 self.dx,
                                 self.dy,
                                 self.dz,
                                 self.n_gpus,
                                 self.gpu_id,
                                 n_cpus=n_cpus,
                                 cpu_id=cpu_id,
                                 transform=self.transform_to_tensor)

    def transform_to_tensor(self, data_array):
        tensor_array = torch.tensor(data_array)
        # Add channel and batch dim:
        tensor_array = tensor_array.unsqueeze(0).unsqueeze(0)
        return tensor_array


if __name__ == "__main__":
    mongo_em = MongoEM(
        "/groups/funke/home/ecksteinn/Projects/synex/synister/db_credentials.ini",
        "synful_synapses", "partners", 3, Fafb(), 400, 400, 80, 2, 1)

    i = 0
    for doc in mongo_em:
        print(doc)
        i += 1
        if i > 2: break