Exemplo n.º 1
0
    def test_comparison(self):
        m_0 = Material("PMMA", self.refractive_indices, self.energies)
        m_1 = Material("glass", self.refractive_indices, self.energies)
        m_2 = Material("PMMA", self.refractive_indices, self.energies)

        self.assertEqual(m_0, m_2)
        self.assertNotEqual(m_0, m_1)
        self.assertNotEqual(m_0, None)
        self.assertNotEqual(m_0, 1)
Exemplo n.º 2
0
    def test_transfer_many(self):
        n = 32
        shape = (n, n)
        ps = 1 * q.um
        energies = np.arange(5, 30) * q.keV
        energy = 10 * q.keV
        lam = physics.energy_to_wavelength(energy)
        # Delta causes phase shift between two adjacent pixels by Pi / 16
        delta = (lam / (32 * ps)).simplified.magnitude
        ri = np.ones_like(energies.magnitude, dtype=np.complex) * delta + 0j
        material = Material('dummy', ri, energies)
        wedge = np.tile(np.arange(n), [n, 1]) * ps
        wedge = StaticBody(wedge, ps, material=material)

        # Test more objects
        u_many = physics.transfer_many([wedge, wedge], shape, ps, energy).get()
        # 2 objects
        u = wedge.transfer(shape, ps, energy).get()**2
        np.testing.assert_almost_equal(u, u_many)

        # Test exponent
        u = physics.transfer_many([wedge], shape, ps, energy,
                                  exponent=False).get()
        u_exp = physics.transfer_many([wedge],
                                      shape,
                                      ps,
                                      energy,
                                      exponent=True).get()
        np.testing.assert_almost_equal(u, np.exp(u_exp))
Exemplo n.º 3
0
def main():
    args = parse_args()
    syris.init()
    n = 32
    ps = 1 * q.um
    energies = np.arange(5, 30) * q.keV
    energy = 10 * q.keV
    lam = energy_to_wavelength(energy)
    # Delta causes phase shift between two adjacent pixels by 2 Pi
    delta = (lam / ps).simplified.magnitude
    ri = np.ones_like(energies.magnitude, dtype=np.complex) * delta + 0j
    material = Material("dummy", ri, energies)
    fmt = "Computing with n: {:>4}, pixel size: {}"

    wedge = np.tile(np.arange(n), [n, 1]) * ps
    # Non-supersampled object shape causes phase shifts 0, 2Pi, 4Pi, ..., thus the phase is constant
    # as an extreme result of aliasing
    print(fmt.format(n, ps))
    u = compute_transmission_function(n, ps, 1, energy, material)
    # Supersampling helps resolve the transmission function
    print(fmt.format(n * args.supersampling, ps / args.supersampling))
    u_s = compute_transmission_function(n, ps, args.supersampling, energy,
                                        material)

    show(wedge.magnitude, title="Projected Object [um]")
    show(u.real, title="Re[T(x, y)]")
    show(u_s.real, title="Re[T(x, y)] Supersampled")
    plt.show()
Exemplo n.º 4
0
 def setUp(self):
     syris.init(device_index=0)
     energies = range(10, 20) * q.keV
     self.energy = energies[len(energies) / 2]
     self.material = Material('foo',
                              np.arange(len(energies), dtype=np.complex),
                              energies)
Exemplo n.º 5
0
 def test_make_fromfile(self):
     m_0 = Material("PMMA", self.refractive_indices, self.energies)
     m_0.save()
     try:
         make_fromfile('PMMA.mat')
     finally:
         os.remove('PMMA.mat')
Exemplo n.º 6
0
 def setUp(self):
     syris.init(device_index=0)
     self.energies = np.arange(10, 20) * q.keV
     self.energy = 15 * q.keV
     delta = np.linspace(1e-5, 1e-6, len(self.energies))
     beta = np.linspace(1e-8, 1e-9, len(self.energies))
     self.material = Material('foo', delta + beta * 1j, self.energies)
     self.thickness = 1 * q.mm
     self.fltr = MaterialFilter(self.thickness, self.material)
Exemplo n.º 7
0
 def setUp(self):
     default_syris_init()
     self.energies = np.arange(10, 20) * q.keV
     self.energy = 15 * q.keV
     delta = np.linspace(1e-5, 1e-6, len(self.energies))
     beta = np.linspace(1e-8, 1e-9, len(self.energies))
     self.material = Material("foo", delta + beta * 1j, self.energies)
     self.thickness = 1 * q.mm
     self.fltr = MaterialFilter(self.thickness, self.material)
Exemplo n.º 8
0
    def test_transmission_sampling(self):
        def compute_transmission_function(n, ps, energy, material):
            wedge = np.tile(np.arange(n), [n, 1]) * ps
            wedge = StaticBody(wedge, ps, material=material)

            return wedge.transfer((n, n), ps, energy, exponent=True)

        def compute_distance(n, ps, lam, ps_per_lam):
            ca = (lam / (ps_per_lam * ps)).simplified.magnitude
            alpha = np.arccos(ca)
            theta = np.pi / 2 - alpha
            return (n * ps / (2 * np.tan(theta))).simplified

        n = 32
        ps = 1 * q.um
        energies = np.arange(5, 30) * q.keV
        energy = 10 * q.keV
        lam = physics.energy_to_wavelength(energy)
        # Delta causes phase shift between two adjacent pixels by 2 Pi
        delta = (lam / ps).simplified.magnitude
        ri = np.ones_like(energies.magnitude, dtype=np.complex) * delta + 0j
        material = Material('dummy', ri, energies)

        # Single object
        u = compute_transmission_function(n, ps, energy, material)
        self.assertFalse(physics.is_wavefield_sampling_ok(u))

        # 4x supersampling => phase shift Pi/2
        u = compute_transmission_function(4 * n, ps / 4, energy, material)
        self.assertTrue(physics.is_wavefield_sampling_ok(u))

        # 4x supersampling with 2 objects => phase shift Pi
        n *= 4
        ps /= 4
        wedge = np.tile(np.arange(n), [n, 1]) * ps
        wedge = StaticBody(wedge, ps, material=material)
        u = physics.transfer_many([wedge, wedge], (n, n),
                                  ps,
                                  energy,
                                  exponent=True)
        self.assertFalse(physics.is_wavefield_sampling_ok(u))

        # X-ray source with a parabolic phase profile
        n = 128
        ps = 1 * q.um
        trajectory = Trajectory([(n / 2, n / 2, 0)] * ps)
        # 1 pixel per wavelength => insufficient sampling
        d = compute_distance(n, ps, lam, 1)

        source = BendingMagnet(2.5 * q.GeV,
                               150 * q.mA,
                               1.5 * q.T,
                               d,
                               1,
                               np.array([0.2, 0.8]) * q.mm,
                               ps,
                               trajectory,
                               phase_profile='parabola')
        u = source.transfer((n, n), ps, energy, exponent=True)
        self.assertFalse(physics.is_wavefield_sampling_ok(u))

        # 4 pixel per wavelength => good sampling
        d = compute_distance(n, ps, lam, 4)
        source = BendingMagnet(2.5 * q.GeV,
                               150 * q.mA,
                               1.5 * q.T,
                               d,
                               1,
                               np.array([0.2, 0.8]) * q.mm,
                               ps,
                               trajectory,
                               phase_profile='parabola')
        u = source.transfer((n, n), ps, energy, exponent=True)
        self.assertTrue(physics.is_wavefield_sampling_ok(u))
Exemplo n.º 9
0
 def setUp(self):
     default_syris_init()
     energies = list(range(10, 20)) * q.keV
     self.energy = energies[len(energies) // 2]
     self.material = Material("foo", np.arange(len(energies), dtype=np.complex), energies)
Exemplo n.º 10
0
 def test_interpolation_out_of_bounds(self):
     mat = Material('foo', self.refractive_indices, self.energies)
     self.assertRaises(ValueError, mat.get_refractive_index, 1 * q.eV)
     self.assertRaises(ValueError, mat.get_refractive_index, 1 * q.MeV)
Exemplo n.º 11
0
 def test_interpolation(self):
     mat = Material('foo', self.refractive_indices, self.energies)
     index = mat.get_refractive_index(2400 * q.eV)
     self.assertAlmostEqual(2.4, index.real, places=5)
     self.assertAlmostEqual(2.4, index.imag, places=5)
Exemplo n.º 12
0
    def test_hashing(self):
        m_0 = Material("PMMA", self.refractive_indices, self.energies)
        m_1 = Material("glass", self.refractive_indices, self.energies)
        m_2 = Material("PMMA", self.refractive_indices, self.energies)

        self.assertEqual(len(set([m_1, m_0, m_1, m_2])), 2)