def ib_resolve_unique_contract(self,
                                   ibcontract_pattern,
                                   log: logger = None):
        """
        Returns the 'resolved' IB contract based on a pattern. We expect a unique contract.

        This is used for FX only, since for futures things are potentially funkier

        :param ibcontract_pattern: ibContract
        :param log: log object
        :return: ibContract or missing_contract
        """
        if log is None:
            log = self.log

        contract_chain = self.ib_get_contract_chain(ibcontract_pattern)

        if len(contract_chain) > 1:
            log.warn(
                "Got multiple contracts for %s when only expected a single contract: Check contract date"
                % str(ibcontract_pattern))
            return missing_contract

        if len(contract_chain) == 0:
            log.warn("Failed to resolve contract %s" % str(ibcontract_pattern))
            return missing_contract

        resolved_contract = contract_chain[0]

        return resolved_contract
Exemplo n.º 2
0
    def _get_generic_data_for_contract(
            self,
            ibcontract: ibContract,
            log: logger = None,
            bar_freq: Frequency = DAILY_PRICE_FREQ,
            whatToShow: str = "TRADES") -> pd.DataFrame:
        """
        Get historical daily data

        :param contract_object_with_ib_data: contract where instrument has ib metadata
        :param freq: str; one of D, H, 5M, M, 10S, S
        :return: futuresContractPriceData
        """
        if log is None:
            log = self.log

        try:
            barSizeSetting, durationStr = _get_barsize_and_duration_from_frequency(
                bar_freq)
        except Exception as exception:
            log.warn(exception)
            return missing_data

        price_data_raw = self._ib_get_historical_data_of_duration_and_barSize(
            ibcontract,
            durationStr=durationStr,
            barSizeSetting=barSizeSetting,
            whatToShow=whatToShow,
            log=log,
        )

        price_data_as_df = self._raw_ib_data_to_df(
            price_data_raw=price_data_raw, log=log)

        return price_data_as_df
Exemplo n.º 3
0
def _avoid_pacing_violation(last_call_datetime: datetime.datetime,
                            log: logger = logtoscreen("")):
    printed_warning_already = False
    while _pause_for_pacing(last_call_datetime):
        if not printed_warning_already:
            log.msg(
                "Pausing %f seconds to avoid pacing violation" %
                (datetime.datetime.now() - last_call_datetime).total_seconds())
            printed_warning_already = True
        pass
Exemplo n.º 4
0
def calculate_buffers(instrument_code: str,
                      position: pd.Series,
                      config: Config,
                      vol_scalar: pd.Series,
                      instr_weights: pd.DataFrame = arg_not_supplied,
                      idm: pd.Series = arg_not_supplied,
                      log: logger = logtoscreen("")) -> pd.Series:

    log.msg(
        "Calculating buffers for %s" % instrument_code,
        instrument_code=instrument_code,
    )

    buffer_method = config.buffer_method

    if buffer_method == "forecast":
        log.msg(
            "Calculating forecast method buffers for %s" % instrument_code,
            instrument_code=instrument_code,
        )
        if instr_weights is arg_not_supplied:
            instr_weight_this_code = arg_not_supplied
        else:
            instr_weight_this_code = instr_weights[instrument_code]

        buffer = get_forecast_method_buffer(instr_weight_this_code=instr_weight_this_code,
                                            vol_scalar=vol_scalar,
                                            idm=idm,
                                            position=position,
                                            config=config)

    elif buffer_method == "position":
        log.msg(
            "Calculating position method buffer for %s" % instrument_code,
            instrument_code=instrument_code,
        )

        buffer = get_position_method_buffer(config=config,
                                                 position=position)
    elif buffer_method == "none":
        log.msg(
            "None method, no buffering for %s" % instrument_code,
            instrument_code=instrument_code,
        )

        buffer = get_buffer_if_not_buffering(
                                                  position=position)
    else:
        log.critical(
            "Buffer method %s not recognised - not buffering" % buffer_method
        )
        buffer = get_buffer_if_not_buffering(
                                                  position=position)

    return buffer
Exemplo n.º 5
0
def _avoid_pacing_violation(last_call_datetime: datetime.datetime,
                            log: logger = logtoscreen("")):
    printed_warning_already = False
    while _pause_for_pacing(last_call_datetime):
        if not printed_warning_already:
            log.msg("Pausing %f seconds to avoid pacing violation" %
                    (last_call_datetime +
                     datetime.timedelta(seconds=PACING_INTERVAL_SECONDS) -
                     datetime.datetime.now()).total_seconds())
            printed_warning_already = True
        pass
def _is_imbalance_ratio_exceeded(current_tick_analysis: analysisTick,
                                 log: logger) -> bool:
    latest_imbalance_ratio = current_tick_analysis.imbalance_ratio
    latest_imbalance_ratio_exceeded = latest_imbalance_ratio > IMBALANCE_THRESHOLD

    if latest_imbalance_ratio_exceeded:
        log.msg("Imbalance ratio for ticker %s %f exceeds threshold %f" %
                (str(current_tick_analysis), latest_imbalance_ratio,
                 IMBALANCE_THRESHOLD))

    return latest_imbalance_ratio_exceeded
Exemplo n.º 7
0
def _is_insufficient_size_on_our_preferred_side(
        ticker_object: tickerObject, current_tick_analysis: analysisTick,
        log: logger) -> bool:
    abs_size_we_wish_to_trade = abs(ticker_object.qty)
    size_we_require_to_trade_limit = IMBALANCE_ADJ_FACTOR * abs_size_we_wish_to_trade
    available_size_on_our_preferred_side = abs(current_tick_analysis.side_qty)

    insufficient_size_on_our_preferred_side = (
        available_size_on_our_preferred_side < size_we_require_to_trade_limit)

    if insufficient_size_on_our_preferred_side:
        log.msg(
            "On ticker %s we require size of %f (our trade %f * adjustment %f) for a limit order but only %f available"
            % (str(current_tick_analysis), size_we_require_to_trade_limit,
               abs_size_we_wish_to_trade, IMBALANCE_ADJ_FACTOR,
               available_size_on_our_preferred_side))

    return insufficient_size_on_our_preferred_side
Exemplo n.º 8
0
    def _raw_ib_data_to_df(
        self, price_data_raw: pd.DataFrame, log: logger
    ) -> pd.DataFrame:

        if price_data_raw is None:
            log.warn("No price data from IB")
            return missing_data

        price_data_as_df = price_data_raw[["open", "high", "low", "close", "volume"]]

        price_data_as_df.columns = ["OPEN", "HIGH", "LOW", "FINAL", "VOLUME"]

        date_index = [
            self._ib_timestamp_to_datetime(price_row)
            for price_row in price_data_raw["date"]
        ]
        price_data_as_df.index = date_index

        return price_data_as_df
Exemplo n.º 9
0
 def log(self, log: logger):
     return log.setup(instrument_code=self.instrument_code,
                      contract_date=self.date_str)