def test_adx(self): target = 'ADX' result = adx(high=self._df['High'], low=self._df['Low'], close=self._df['Close'], n=14, fillna=False) pd.testing.assert_series_equal(self._df[target].tail(), result.tail(), check_names=False)
def _calculate_adx(data, period): data = data.swaplevel(0, 1, 1) adx = (data.groupby( level=0, axis=1).apply(lambda stock_data: trend.adx( stock_data.xs("High", level=1, axis=1).squeeze(), stock_data.xs("Low", level=1, axis=1).squeeze(), stock_data.xs("Adj Close", level=1, axis=1).squeeze(), n=period, )).iloc[-1]) adx.name = "ADX" return adx
def ADX(df, intervals): """ Average Directional Index """ from ta.trend import adx from tqdm.auto import tqdm for interval in tqdm(intervals): df['adx_' + str(interval)] = adx(df['high'], df['low'], df['close'], n=interval)
def adx_cb_pressed(stock_analysis_tool: QMainWindow, cb: QCheckBox) -> None: """ :param cb: :return: """ if cb.isChecked(): # Add ADX to Display Graph stock_analysis_tool.df['adx'] = adx( high=stock_analysis_tool.df['high'], low=stock_analysis_tool.df['low'], close=stock_analysis_tool.df['close'], n=stock_analysis_tool.adx_n) stock_analysis_tool.add_column_to_graph(column_name='adx') else: # Remove ADX from Display Graph stock_analysis_tool.remove_column_from_graph(column_name='adx') stock_analysis_tool.df = stock_analysis_tool.df.drop("adx", axis=1)
def engineer_data_over_single_interval(df: pd.DataFrame, indicators: list, ticker: str = "", rsi_n: int = 14, cmo_n: int = 7, macd_fast: int = 12, macd_slow: int = 26, macd_sign: int = 9, roc_n: int = 12, cci_n: int = 20, dpo_n: int = 20, cmf_n: int = 20, adx_n: int = 14, mass_index_low: int = 9, mass_index_high: int = 25, trix_n: int = 15, stochastic_oscillator_n: int = 14, stochastic_oscillator_sma_n: int = 3, ultimate_oscillator_short_n: int = 7, ultimate_oscillator_medium_n: int = 14, ultimate_oscillator_long_n: int = 28, ao_short_n: int = 5, ao_long_n: int = 34, kama_n: int = 10, tsi_high_n: int = 25, tsi_low_n: int = 13, eom_n: int = 14, force_index_n: int = 13, ichimoku_low_n: int = 9, ichimoku_medium_n: int = 26): from ta.momentum import rsi, wr, roc, ao, stoch, uo, kama, tsi from ta.trend import macd, macd_signal, cci, dpo, adx, mass_index, trix, ichimoku_a from ta.volume import chaikin_money_flow, acc_dist_index, ease_of_movement, force_index # Momentum Indicators if Indicators.RELATIVE_STOCK_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.RELATIVE_STOCK_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.RELATIVE_STOCK_INDEX.value] = rsi(close=df['close'], n=rsi_n) if Indicators.WILLIAMS_PERCENT_RANGE in indicators: Logger.console_log(message="Calculating " + Indicators.WILLIAMS_PERCENT_RANGE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.WILLIAMS_PERCENT_RANGE.value] = wr( df['high'], df['low'], df['close']) if Indicators.CHANDE_MOMENTUM_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.CHANDE_MOMENTUM_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.CHANDE_MOMENTUM_OSCILLATOR. value] = chande_momentum_oscillator(close_data=df['close'], period=cmo_n) if Indicators.RATE_OF_CHANGE in indicators: Logger.console_log(message="Calculating " + Indicators.RATE_OF_CHANGE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.RATE_OF_CHANGE.value] = roc(close=df['close'], n=roc_n) if Indicators.STOCHASTIC_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.STOCHASTIC_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.STOCHASTIC_OSCILLATOR.value] = stoch( high=df['high'], low=df['low'], close=df['close'], n=stochastic_oscillator_n, d_n=stochastic_oscillator_sma_n) if Indicators.ULTIMATE_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.ULTIMATE_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.ULTIMATE_OSCILLATOR.value] = uo( high=df['high'], low=df['low'], close=df['close'], s=ultimate_oscillator_short_n, m=ultimate_oscillator_medium_n, len=ultimate_oscillator_long_n) if Indicators.AWESOME_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.AWESOME_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.AWESOME_OSCILLATOR.value] = ao(high=df['high'], low=df['low'], s=ao_short_n, len=ao_long_n) if Indicators.KAUFMAN_ADAPTIVE_MOVING_AVERAGE in indicators: Logger.console_log(message="Calculating " + Indicators.KAUFMAN_ADAPTIVE_MOVING_AVERAGE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.KAUFMAN_ADAPTIVE_MOVING_AVERAGE.value] = kama( close=df['close'], n=kama_n) if Indicators.TRUE_STRENGTH_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.TRUE_STRENGTH_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.TRUE_STRENGTH_INDEX.value] = tsi(close=df['close'], r=tsi_high_n, s=tsi_low_n) # Trend Indicator if Indicators.MOVING_AVERAGE_CONVERGENCE_DIVERGENCE in indicators: Logger.console_log( message="Calculating " + Indicators.MOVING_AVERAGE_CONVERGENCE_DIVERGENCE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.MOVING_AVERAGE_CONVERGENCE_DIVERGENCE.value] = macd(close=df['close'], n_slow=macd_slow, n_fast=macd_fast) - \ macd_signal(close=df['close'], n_slow=macd_slow, n_fast=macd_fast, n_sign=macd_sign) if Indicators.COMMODITY_CHANNEL_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.COMMODITY_CHANNEL_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.COMMODITY_CHANNEL_INDEX.value] = cci(high=df['high'], low=df['low'], close=df['close'], n=cci_n) if Indicators.DETRENDED_PRICE_OSCILLATOR in indicators: Logger.console_log(message="Calculating " + Indicators.DETRENDED_PRICE_OSCILLATOR.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.DETRENDED_PRICE_OSCILLATOR.value] = dpo( close=df['close'], n=dpo_n) if Indicators.AVERAGE_DIRECTIONAL_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.AVERAGE_DIRECTIONAL_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.AVERAGE_DIRECTIONAL_INDEX.value] = adx(high=df['high'], low=df['low'], close=df['close'], n=adx_n) if Indicators.MASS_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.MASS_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.MASS_INDEX.value] = mass_index(high=df['high'], low=df['low'], n=mass_index_low, n2=mass_index_high) if Indicators.TRIPLE_EXPONENTIALLY_SMOOTHED_MOVING_AVERAGE in indicators: Logger.console_log( message="Calculating " + Indicators.TRIPLE_EXPONENTIALLY_SMOOTHED_MOVING_AVERAGE.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.TRIPLE_EXPONENTIALLY_SMOOTHED_MOVING_AVERAGE. value] = trix(close=df['close'], n=trix_n) if Indicators.ICHIMOKU_A in indicators: Logger.console_log(message="Calculating " + Indicators.ICHIMOKU_A.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.ICHIMOKU_A.value] = ichimoku_a(high=df['high'], low=df['low'], n1=ichimoku_low_n, n2=ichimoku_medium_n) # Volume Indicator if Indicators.CHAIKIN_MONEY_FLOW in indicators: Logger.console_log(message="Calculating " + Indicators.CHAIKIN_MONEY_FLOW.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.CHAIKIN_MONEY_FLOW.value] = chaikin_money_flow( high=df['high'], low=df['low'], close=df['close'], volume=df['volume'], n=cmf_n) if Indicators.ACCUMULATION_DISTRIBUTION_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.ACCUMULATION_DISTRIBUTION_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.ACCUMULATION_DISTRIBUTION_INDEX.value] = acc_dist_index( high=df['high'], low=df['low'], close=df['close'], volume=df['volume']) if Indicators.EASE_OF_MOVEMENT in indicators: Logger.console_log(message="Calculating " + Indicators.EASE_OF_MOVEMENT.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.EASE_OF_MOVEMENT.value] = ease_of_movement( high=df['high'], low=df['low'], volume=df['volume'], n=eom_n) if Indicators.FORCE_INDEX in indicators: Logger.console_log(message="Calculating " + Indicators.FORCE_INDEX.value + " for stock " + ticker, status=Logger.LogStatus.EMPHASIS) df[Indicators.FORCE_INDEX.value] = force_index(close=df['close'], volume=df['volume'], n=force_index_n)
def __dataframe(self): """Create an comprehensive list of from data. Args: None Returns: result: dataframe for learning """ # Calculate the percentage and real differences between columns difference = math.Difference(self._ohlcv) num_difference = difference.actual() pct_difference = difference.relative() # Create result to return. result = pd.DataFrame() # Add current value columns result['open'] = self._ohlcv['open'] result['high'] = self._ohlcv['high'] result['low'] = self._ohlcv['low'] result['close'] = self._ohlcv['close'] result['volume'] = self._ohlcv['volume'] # Add columns of differences result['num_diff_open'] = num_difference['open'] result['num_diff_high'] = num_difference['high'] result['num_diff_low'] = num_difference['low'] result['num_diff_close'] = num_difference['close'] result['pct_diff_open'] = pct_difference['open'] result['pct_diff_high'] = pct_difference['high'] result['pct_diff_low'] = pct_difference['low'] result['pct_diff_close'] = pct_difference['close'] result['pct_diff_volume'] = pct_difference['volume'] # Add date related columns # result['day'] = self._dates.day result['weekday'] = self._dates.weekday # result['week'] = self._dates.week result['month'] = self._dates.month result['quarter'] = self._dates.quarter # result['dayofyear'] = self._dates.dayofyear # Moving averages result['ma_open'] = result['open'].rolling( self._globals['ma_window']).mean() result['ma_high'] = result['high'].rolling( self._globals['ma_window']).mean() result['ma_low'] = result['low'].rolling( self._globals['ma_window']).mean() result['ma_close'] = result['close'].rolling( self._globals['ma_window']).mean() result['ma_volume'] = result['volume'].rolling( self._globals['vma_window']).mean() result['ma_volume_long'] = result['volume'].rolling( self._globals['vma_window_long']).mean() result[ 'ma_volume_delta'] = result['ma_volume_long'] - result['ma_volume'] # Standard deviation related result['ma_std_close'] = result['close'].rolling( self._globals['ma_window']).std() result['std_pct_diff_close'] = result['pct_diff_close'].rolling( self._globals['ma_window']).std() result['bollinger_lband'] = volatility.bollinger_lband(result['close']) result['bollinger_hband'] = volatility.bollinger_lband(result['close']) result[ 'bollinger_lband_indicator'] = volatility.bollinger_lband_indicator( result['close']) result[ 'bollinger_hband_indicator'] = volatility.bollinger_hband_indicator( result['close']) # Rolling ranges result['amplitude'] = result['high'] - result['low'] _min = result['low'].rolling(self._globals['week']).min() _max = result['high'].rolling(self._globals['week']).max() result['amplitude_medium'] = abs(_min - _max) _min = result['low'].rolling(2 * self._globals['week']).min() _max = result['high'].rolling(2 * self._globals['week']).max() result['amplitude_long'] = abs(_min - _max) _min = result['volume'].rolling(self._globals['week']).min() _max = result['volume'].rolling(self._globals['week']).max() result['vol_amplitude'] = abs(_min - _max) _min = result['volume'].rolling(2 * self._globals['week']).min() _max = result['volume'].rolling(2 * self._globals['week']).max() result['vol_amplitude_long'] = abs(_min - _max) # Volume metrics result['force_index'] = volume.force_index(result['close'], result['volume']) result['negative_volume_index'] = volume.negative_volume_index( result['close'], result['volume']) result['ease_of_movement'] = volume.ease_of_movement( result['high'], result['low'], result['close'], result['volume']) result['acc_dist_index'] = volume.acc_dist_index( result['high'], result['low'], result['close'], result['volume']) result['on_balance_volume'] = volume.on_balance_volume( result['close'], result['volume']) result['on_balance_volume_mean'] = volume.on_balance_volume( result['close'], result['volume']) result['volume_price_trend'] = volume.volume_price_trend( result['close'], result['volume']) # Calculate the Stochastic values result['k'] = momentum.stoch(result['high'], result['low'], result['close'], n=self._globals['kwindow']) result['d'] = momentum.stoch_signal(result['high'], result['low'], result['close'], n=self._globals['kwindow'], d_n=self._globals['dwindow']) # Calculate the Miscellaneous values result['rsi'] = momentum.rsi(result['close'], n=self._globals['rsiwindow'], fillna=False) miscellaneous = math.Misc(self._ohlcv) result['proc'] = miscellaneous.proc(self._globals['proc_window']) # Calculate ADX result['adx'] = trend.adx(result['high'], result['low'], result['close'], n=self._globals['adx_window']) # Calculate MACD difference result['macd_diff'] = trend.macd_diff( result['close'], n_fast=self._globals['macd_sign'], n_slow=self._globals['macd_slow'], n_sign=self._globals['macd_sign']) # Create series for increasing / decreasing closes (Convert NaNs to 0) _result = np.nan_to_num(result['pct_diff_close'].values) _increasing = (_result >= 0).astype(int) * self._buy _decreasing = (_result < 0).astype(int) * self._sell result['increasing'] = _increasing + _decreasing # Stochastic subtraciton result['k_d'] = pd.Series(result['k'].values - result['d'].values) # Other indicators result['k_i'] = self._stochastic_indicator(result['k'], result['high'], result['low'], result['ma_close']) result['d_i'] = self._stochastic_indicator(result['d'], result['high'], result['low'], result['ma_close']) result['stoch_i'] = self._stochastic_indicator_2( result['k'], result['d'], result['high'], result['low'], result['ma_close']) result['rsi_i'] = self._rsi_indicator(result['rsi'], result['high'], result['low'], result['ma_close']) result['adx_i'] = self._adx_indicator(result['adx']) result['macd_diff_i'] = self._macd_diff_indicator(result['macd_diff']) result['volume_i'] = self._volume_indicator(result['ma_volume'], result['ma_volume_long']) # Create time shifted columns for step in range(1, self._ignore_row_count + 1): # result['t-{}'.format(step)] = result['close'].shift(step) result['tpd-{}'.format(step)] = result['close'].pct_change( periods=step) # result['tad-{}'.format(step)] = result[ # 'close'].diff(periods=step) # Mask increasing with result['increasing_masked'] = _mask(result['increasing'].to_frame(), result['stoch_i'], as_integer=True).values # Get class values for each vector classes = pd.DataFrame(columns=self._shift_steps) for step in self._shift_steps: # Shift each column by the value of its label classes[step] = result[self._label2predict].shift(-step) # Remove all undesirable columns from the dataframe undesired_columns = ['open', 'close', 'high', 'low', 'volume'] for column in undesired_columns: result = result.drop(column, axis=1) # Delete the firsts row of the dataframe as it has NaN values from the # .diff() and .pct_change() operations result = result.iloc[self._ignore_row_count:] classes = classes.iloc[self._ignore_row_count:] # Convert result to float32 to conserve memory result = result.astype(np.float32) # Return return result, classes
def test_adx(self): target = 'ADX' result = adx(**self._params) pd.testing.assert_series_equal(self._df[target].tail(), result.tail(), check_names=False)
def __dataframe(self): """Create an comprehensive list of from data. Args: None Returns: result: dataframe for learning """ # Calculate the percentage and real differences between columns difference = math.Difference(self._ohlcv) num_difference = difference.actual() pct_difference = difference.relative() # Create result to return. result = pd.DataFrame() # Add current value columns # NOTE Close must be first for correct correlation column dropping result['close'] = self._ohlcv['close'] result['open'] = self._ohlcv['open'] result['high'] = self._ohlcv['high'] result['low'] = self._ohlcv['low'] result['volume'] = self._ohlcv['volume'] # Add columns of differences # NOTE Close must be first for correct correlation column dropping result['num_diff_close'] = num_difference['close'] result['pct_diff_close'] = pct_difference['close'] result['num_diff_open'] = num_difference['open'] result['pct_diff_open'] = pct_difference['open'] result['num_diff_high'] = num_difference['high'] result['pct_diff_high'] = pct_difference['high'] result['num_diff_low'] = num_difference['low'] result['pct_diff_low'] = pct_difference['low'] result['pct_diff_volume'] = pct_difference['volume'] # Add date related columns # result['day'] = self._dates.day result['weekday'] = self._dates.weekday # result['week'] = self._dates.week result['month'] = self._dates.month result['quarter'] = self._dates.quarter # result['dayofyear'] = self._dates.dayofyear # Moving averages result['ma_open'] = result['open'].rolling( self._globals['ma_window']).mean() result['ma_high'] = result['high'].rolling( self._globals['ma_window']).mean() result['ma_low'] = result['low'].rolling( self._globals['ma_window']).mean() result['ma_close'] = result['close'].rolling( self._globals['ma_window']).mean() result['ma_volume'] = result['volume'].rolling( self._globals['vma_window']).mean() result['ma_volume_long'] = result['volume'].rolling( self._globals['vma_window_long']).mean() result['ma_volume_delta'] = result[ 'ma_volume_long'] - result['ma_volume'] # Standard deviation related result['ma_std_close'] = result['close'].rolling( self._globals['ma_window']).std() result['std_pct_diff_close'] = result['pct_diff_close'].rolling( self._globals['ma_window']).std() result['bollinger_lband'] = volatility.bollinger_lband(result['close']) result['bollinger_hband'] = volatility.bollinger_lband(result['close']) result['bollinger_lband_indicator'] = volatility.bollinger_lband_indicator(result['close']) result['bollinger_hband_indicator'] = volatility.bollinger_hband_indicator(result['close']) # Rolling ranges result['amplitude'] = result['high'] - result['low'] _min = result['low'].rolling( self._globals['week']).min() _max = result['high'].rolling( self._globals['week']).max() result['amplitude_medium'] = abs(_min - _max) _min = result['low'].rolling( 2 * self._globals['week']).min() _max = result['high'].rolling( 2 * self._globals['week']).max() result['amplitude_long'] = abs(_min - _max) _min = result['volume'].rolling( self._globals['week']).min() _max = result['volume'].rolling( self._globals['week']).max() result['vol_amplitude'] = abs(_min - _max) _min = result['volume'].rolling( 2 * self._globals['week']).min() _max = result['volume'].rolling( 2 * self._globals['week']).max() result['vol_amplitude_long'] = abs(_min - _max) # Volume metrics result['force_index'] = volume.force_index( result['close'], result['volume']) result['negative_volume_index'] = volume.negative_volume_index( result['close'], result['volume']) result['ease_of_movement'] = volume.ease_of_movement( result['high'], result['low'], result['close'], result['volume']) result['acc_dist_index'] = volume.acc_dist_index( result['high'], result['low'], result['close'], result['volume']) result['on_balance_volume'] = volume.on_balance_volume( result['close'], result['volume']) result['on_balance_volume_mean'] = volume.on_balance_volume( result['close'], result['volume']) result['volume_price_trend'] = volume.volume_price_trend( result['close'], result['volume']) # Calculate the Stochastic values result['k'] = momentum.stoch( result['high'], result['low'], result['close'], n=self._globals['kwindow']) result['d'] = momentum.stoch_signal( result['high'], result['low'], result['close'], n=self._globals['kwindow'], d_n=self._globals['dwindow']) # Calculate the Miscellaneous values result['rsi'] = momentum.rsi( result['close'], n=self._globals['rsiwindow'], fillna=False) miscellaneous = math.Misc(self._ohlcv) result['proc'] = miscellaneous.proc(self._globals['proc_window']) # Calculate ADX result['adx'] = trend.adx( result['high'], result['low'], result['close'], n=self._globals['adx_window']) # Calculate MACD difference result['macd_diff'] = trend.macd_diff( result['close'], n_fast=self._globals['macd_sign'], n_slow=self._globals['macd_slow'], n_sign=self._globals['macd_sign']) # Create series for increasing / decreasing closes (Convert NaNs to 0) _result = np.nan_to_num(result['pct_diff_close'].values) _increasing = (_result >= 0).astype(int) * self._buy _decreasing = (_result < 0).astype(int) * self._sell result['increasing'] = _increasing + _decreasing # Stochastic subtraciton result['k_d'] = pd.Series(result['k'].values - result['d'].values) # Other indicators result['k_i'] = self._stochastic_indicator( result['k'], result['high'], result['low'], result['ma_close']) result['d_i'] = self._stochastic_indicator( result['d'], result['high'], result['low'], result['ma_close']) result['stoch_i'] = self._stochastic_indicator_2( result['k'], result['d'], result['high'], result['low'], result['ma_close']) result['rsi_i'] = self._rsi_indicator( result['rsi'], result['high'], result['low'], result['ma_close']) result['adx_i'] = self._adx_indicator(result['adx']) result['macd_diff_i'] = self._macd_diff_indicator(result['macd_diff']) result['volume_i'] = self._volume_indicator( result['ma_volume'], result['ma_volume_long']) # Create time shifted columns for step in range(1, self._ignore_row_count + 1): result['t-{}'.format(step)] = result['close'].shift(step) result['tpd-{}'.format(step)] = result[ 'close'].pct_change(periods=step) result['tad-{}'.format(step)] = result[ 'close'].diff(periods=step) # Mask increasing with result['increasing_masked'] = _mask( result['increasing'].to_frame(), result['stoch_i'], as_integer=True).values # Get class values for each vector classes = pd.DataFrame(columns=self._shift_steps) for step in self._shift_steps: # Shift each column by the value of its label if self._binary is True: # Classes need to be 0 or 1 (One hot encoding) classes[step] = ( result[self._label2predict].shift(-step) > 0).astype(int) else: classes[step] = result[self._label2predict].shift(-step) # classes[step] = result[self._label2predict].shift(-step) # Delete the firsts row of the dataframe as it has NaN values from the # .diff() and .pct_change() operations ignore = max(max(self._shift_steps), self._ignore_row_count) result = result.iloc[ignore:] classes = classes.iloc[ignore:] # Convert result to float32 to conserve memory result = result.astype(np.float32) # Return return result, classes
def calculate_Trend_Indicators(): JSON_sent = request.get_json() if len(JSON_sent[0]) > 0: df = pd.DataFrame(JSON_sent[0]) _, sma, ema, macdDict, macdSignal, adxDict, adxPos, adxNeg, VIpos, VIneg, trixDict, mi, dpoDict = JSON_sent if sma['displaySMA']: indicator_sma = sma_indicator(close=df['close'], n=sma['nForSMA']) df['sma'] = indicator_sma if ema['displayEMA']: indicator_ema = ema_indicator(close=df['close'], n=ema['nForEMA']) df['ema'] = indicator_ema if macdDict['displayMACD']: indicator_macd = macd(close=df['close'], n_slow=macdDict['nSlowForMACD'], n_fast=macdDict['nFastForMACD']) df['macd'] = indicator_macd if macdSignal['displayMACDsignal']: indicator_macdSignal = macd_signal( close=df['close'], n_slow=macdSignal['nSlowForMACDsignal'], n_fast=macdSignal['nFastForMACDsignal'], n_sign=macdSignal['nSignForMACDsignal']) df['macds'] = indicator_macdSignal if adxDict['displayADX']: indicator_ADX = adx(high=df['high'], low=df['low'], close=df['close'], n=adxDict['nForADX']) df['adx'] = indicator_ADX if adxPos['displayADXP']: indicator_ADXpositive = adx_pos(high=df['high'], low=df['low'], close=df['close'], n=adxPos['nForADXP']) df['adxp'] = indicator_ADXpositive if adxNeg['displayADXN']: indicator_ADXnegative = adx_neg(high=df['high'], low=df['low'], close=df['close'], n=adxNeg['nForADXN']) df['adxn'] = indicator_ADXnegative if VIpos['displayVIPOS']: indicator_VIpositive = vortex_indicator_pos(high=df['high'], low=df['low'], close=df['close'], n=VIpos['nForVIPOS']) df['vipos'] = indicator_VIpositive if VIneg['displayVINEG']: indicator_VInegative = vortex_indicator_neg(high=df['high'], low=df['low'], close=df['close'], n=VIneg['nForVINEG']) df['vineg'] = indicator_VInegative if trixDict['displayTRIX']: indicator_TRIX = trix(close=df['close'], n=trixDict['nForTRIX']) df['trix'] = indicator_TRIX if mi['displayMI']: indicator_MassIndex = mass_index(high=df['high'], low=df['low'], n=mi['nForMI'], n2=mi['n2ForMI']) df['mi'] = indicator_MassIndex if dpoDict['displayDPO']: indicator_dpo = dpo(close=df['close'], n=dpoDict['nForDPO']) df['dpo'] = indicator_dpo df.fillna(0, inplace=True) return (json.dumps(df.to_dict('records'))) else: df = pd.DataFrame([]) return (json.dumps(df.to_dict('records')))
def __dataframe(self): """Create vectors from data. Args: shift_steps: List of steps Returns: result: dataframe for learning """ # Calculate the percentage and real differences between columns difference = math.Difference(self._file_values()) num_difference = difference.actual() pct_difference = difference.relative() # Create result to return. # Make sure it is float16 for efficient computing result = pd.DataFrame(columns=[ 'open', 'high', 'low', 'close', 'volume', 'increasing', 'weekday', 'day', 'dayofyear', 'quarter', 'month', 'num_diff_open', 'num_diff_high', 'num_diff_low', 'num_diff_close', 'pct_diff_open', 'pct_diff_high', 'pct_diff_low', 'pct_diff_close', 'k', 'd', 'rsi', 'adx', 'macd_diff', 'proc', 'ma_open', 'ma_high', 'ma_low', 'ma_close', 'ma_volume', 'ma_volume_long', 'ma_volume_delta']).astype('float16') # Add current value columns result['open'] = self._file_values()['open'] result['high'] = self._file_values()['high'] result['low'] = self._file_values()['low'] result['close'] = self._file_values()['close'] result['volume'] = self._file_values()['volume'] # Add columns of differences result['num_diff_open'] = num_difference['open'] result['num_diff_high'] = num_difference['high'] result['num_diff_low'] = num_difference['low'] result['num_diff_close'] = num_difference['close'] result['pct_diff_open'] = pct_difference['open'] result['pct_diff_high'] = pct_difference['high'] result['pct_diff_low'] = pct_difference['low'] result['pct_diff_close'] = pct_difference['close'] result['pct_diff_volume'] = pct_difference['volume'] # Add date related columns result['day'] = self.dates().day result['weekday'] = self.dates().weekday result['week'] = self.dates().week result['month'] = self.dates().month result['quarter'] = self.dates().quarter result['dayofyear'] = self.dates().dayofyear # Moving averages result['ma_open'] = result['open'].rolling( self._globals['ma_window']).mean() result['ma_high'] = result['high'].rolling( self._globals['ma_window']).mean() result['ma_low'] = result['low'].rolling( self._globals['ma_window']).mean() result['ma_close'] = result['close'].rolling( self._globals['ma_window']).mean() result['ma_volume'] = result['volume'].rolling( self._globals['vma_window']).mean() result['ma_volume_long'] = result['volume'].rolling( self._globals['vma_window_long']).mean() result['ma_volume_delta'] = result[ 'ma_volume_long'] - result['ma_volume'] # Calculate the Stochastic values stochastic = math.Stochastic( self._file_values(), window=self._globals['kwindow']) result['k'] = stochastic.k() result['d'] = stochastic.d(window=self._globals['dwindow']) # Calculate the Miscellaneous values result['rsi'] = momentum.rsi( result['close'], n=self._globals['rsiwindow'], fillna=False) miscellaneous = math.Misc(self._file_values()) result['proc'] = miscellaneous.proc(self._globals['proc_window']) # Calculate ADX result['adx'] = trend.adx( result['high'], result['low'], result['close'], n=self._globals['adx_window']) # Calculate MACD difference result['macd_diff'] = trend.macd_diff( result['close'], n_fast=self._globals['macd_sign'], n_slow=self._globals['macd_slow'], n_sign=self._globals['macd_sign']) # Create series for increasing / decreasing closes (Convert NaNs to 0) _result = np.nan_to_num(result['pct_diff_close'].values) _increasing = (_result >= 0).astype(int) * 1 _decreasing = (_result < 0).astype(int) * 0 result['increasing'] = _increasing + _decreasing # Delete the first row of the dataframe as it has NaN values from the # .diff() and .pct_change() operations result = result.iloc[self._ignore_row_count:] # Return return result
def __dataframe(self): """Create vectors from data. Args: shift_steps: List of steps Returns: result: dataframe for learning """ # Calculate the percentage and real differences between columns difference = math.Difference(self._file_values()) num_difference = difference.actual() pct_difference = difference.relative() # Create result to return. # Make sure it is float16 for efficient computing result = pd.DataFrame(columns=[ 'open', 'high', 'low', 'close', 'volume', 'increasing', 'weekday', 'day', 'dayofyear', 'quarter', 'month', 'num_diff_open', 'num_diff_high', 'num_diff_low', 'num_diff_close', 'pct_diff_open', 'pct_diff_high', 'pct_diff_low', 'pct_diff_close', 'k', 'd', 'rsi', 'adx', 'macd_diff', 'proc', 'ma_open', 'ma_high', 'ma_low', 'ma_close', 'ma_volume', 'ma_volume_long', 'ma_volume_delta' ]).astype('float16') # Add current value columns result['open'] = self._file_values()['open'] result['high'] = self._file_values()['high'] result['low'] = self._file_values()['low'] result['close'] = self._file_values()['close'] result['volume'] = self._file_values()['volume'] # Add columns of differences result['num_diff_open'] = num_difference['open'] result['num_diff_high'] = num_difference['high'] result['num_diff_low'] = num_difference['low'] result['num_diff_close'] = num_difference['close'] result['pct_diff_open'] = pct_difference['open'] result['pct_diff_high'] = pct_difference['high'] result['pct_diff_low'] = pct_difference['low'] result['pct_diff_close'] = pct_difference['close'] result['pct_diff_volume'] = pct_difference['volume'] # Add date related columns result['day'] = self.dates().day result['weekday'] = self.dates().weekday result['week'] = self.dates().week result['month'] = self.dates().month result['quarter'] = self.dates().quarter result['dayofyear'] = self.dates().dayofyear # Moving averages result['ma_open'] = result['open'].rolling( self._globals['ma_window']).mean() result['ma_high'] = result['high'].rolling( self._globals['ma_window']).mean() result['ma_low'] = result['low'].rolling( self._globals['ma_window']).mean() result['ma_close'] = result['close'].rolling( self._globals['ma_window']).mean() result['ma_volume'] = result['volume'].rolling( self._globals['vma_window']).mean() result['ma_volume_long'] = result['volume'].rolling( self._globals['vma_window_long']).mean() result[ 'ma_volume_delta'] = result['ma_volume_long'] - result['ma_volume'] # Calculate the Stochastic values stochastic = math.Stochastic(self._file_values(), window=self._globals['kwindow']) result['k'] = stochastic.k() result['d'] = stochastic.d(window=self._globals['dwindow']) # Calculate the Miscellaneous values result['rsi'] = momentum.rsi(result['close'], n=self._globals['rsiwindow'], fillna=False) miscellaneous = math.Misc(self._file_values()) result['proc'] = miscellaneous.proc(self._globals['proc_window']) # Calculate ADX result['adx'] = trend.adx(result['high'], result['low'], result['close'], n=self._globals['adx_window']) # Calculate MACD difference result['macd_diff'] = trend.macd_diff( result['close'], n_fast=self._globals['macd_sign'], n_slow=self._globals['macd_slow'], n_sign=self._globals['macd_sign']) # Create series for increasing / decreasing closes (Convert NaNs to 0) _result = np.nan_to_num(result['pct_diff_close'].values) _increasing = (_result >= 0).astype(int) * 1 _decreasing = (_result < 0).astype(int) * 0 result['increasing'] = _increasing + _decreasing # Delete the first row of the dataframe as it has NaN values from the # .diff() and .pct_change() operations result = result.iloc[self._ignore_row_count:] # Return return result