Exemplo n.º 1
0
def main(
    date,
    aws_access_key_id,
    aws_secret_access_key,
    bucket,
    prefix,
    elastic_net_param,
    reg_param,
    min_installed_addons,
    client_sample_date_from,
    sample_rate,
):
    print("Sampling clients since {}".format(client_sample_date_from))

    # Clobber the AWS access credentials
    os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
    os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key

    ctx = default_context()

    APP_NAME = "TaarEnsemble"
    conf = SparkConf().setAppName(APP_NAME)
    spark = SparkSession.builder.config(conf=conf).getOrCreate()

    taar_training = extract(
        spark, client_sample_date_from, min_installed_addons, sample_rate
    )
    coefs = transform(ctx, spark, taar_training, reg_param, elastic_net_param)
    load(coefs, date, prefix, bucket)
Exemplo n.º 2
0
def create_recommendation_manager():
    root_ctx = default_context()
    pf = ProfileFetcher(root_ctx)
    pf.set_client(ProfileController(root_ctx, "us-west-2", "taar_addon_data_20180206"))
    root_ctx["profile_fetcher"] = pf
    r_factory = recommenders.RecommenderFactory(root_ctx.child())
    root_ctx["recommender_factory"] = r_factory
    rm = recommenders.RecommendationManager(root_ctx.child())
    return rm
Exemplo n.º 3
0
def create_recommendation_manager():
    root_ctx = default_context()
    client = ProfileController('us-west-2', 'taar_addon_data_20180206')
    pf = ProfileFetcher(client)
    root_ctx['profile_fetcher'] = pf
    r_factory = recommenders.RecommenderFactory(root_ctx.child())
    root_ctx['recommender_factory'] = r_factory
    rm = recommenders.RecommendationManager(root_ctx.child())
    return rm
Exemplo n.º 4
0
def load_recommenders(ctx):
    from taar.recommenders import LocaleRecommender
    from taar.recommenders import SimilarityRecommender
    from taar.recommenders import CollaborativeRecommender

    ctx = default_context()

    reload_configuration()

    lr = LocaleRecommender(ctx)
    sr = SimilarityRecommender(ctx)
    cr = CollaborativeRecommender(ctx)
    return {LOCALE: lr, COLLABORATIVE: cr, SIMILARITY: sr}
Exemplo n.º 5
0
    def check_proxy_manager(PROXY_MANAGER):
        if PROXY_MANAGER.getResource() is None:
            ctx = default_context()
            profile_fetcher = ProfileFetcher(ctx)

            ctx["profile_fetcher"] = profile_fetcher

            # Lock the context down after we've got basic bits installed
            root_ctx = ctx.child()
            r_factory = recommenders.RecommenderFactory(root_ctx)
            root_ctx["recommender_factory"] = r_factory
            instance = recommenders.RecommendationManager(root_ctx.child())
            PROXY_MANAGER.setResource(instance)
        return PROXY_MANAGER.getResource()
Exemplo n.º 6
0
    def recommendations(uuid_client_id):
        """Return a list of recommendations provided a telemetry client_id."""
        # Use the module global PROXY_MANAGER
        global PROXY_MANAGER

        # Coerce the uuid.UUID type into a string
        client_id = str(uuid_client_id)

        branch = request.args.get('branch', '')

        extra_data = {'branch': branch}

        locale = request.args.get('locale', None)
        if locale is not None:
            extra_data['locale'] = locale

        platform = request.args.get('platform', None)
        if platform is not None:
            extra_data['platform'] = platform

        if PROXY_MANAGER.getResource() is None:
            ctx = default_context()
            profile_fetcher = ProfileFetcher(ctx)

            ctx['profile_fetcher'] = profile_fetcher

            # Lock the context down after we've got basic bits installed
            root_ctx = ctx.child()
            r_factory = recommenders.RecommenderFactory(root_ctx)
            root_ctx['recommender_factory'] = r_factory
            instance = recommenders.RecommendationManager(root_ctx.child())
            PROXY_MANAGER.setResource(instance)

        instance = PROXY_MANAGER.getResource()
        recommendations = instance.recommend(client_id=client_id,
                                             limit=TAAR_MAX_RESULTS,
                                             extra_data=extra_data)
        # Strip out weights from TAAR results to maintain compatibility
        # with TAAR 1.0
        jdata = {"results": [x[0] for x in recommendations]}

        response = app.response_class(response=json.dumps(jdata),
                                      status=200,
                                      mimetype='application/json')
        return response
Exemplo n.º 7
0
from funcsigs import signature as inspect_sig
import funcsigs

from taar.schema import INTERVENTION_A
from taar.schema import INTERVENTION_B
from taar.schema import INTERVENTION_CONTROL

from taar.context import default_context

from .lazys3 import LazyJSONLoader
import random

# We need to build a default logger for the schema validation as there
# is no class to bind to yet.
ctx = default_context()
schema_logger = ctx[IMozLogging].get_logger('taar.schema_validate')

TEST_CLIENT_IDS = [
    '00000000-0000-0000-0000-000000000000',
    '11111111-1111-1111-1111-111111111111',
    '22222222-2222-2222-2222-222222222222',
    '33333333-3333-3333-3333-333333333333'
]

EMPTY_TEST_CLIENT_IDS = [
    '00000000-aaaa-0000-0000-000000000000',
    '11111111-aaaa-1111-1111-111111111111',
    '22222222-aaaa-2222-2222-222222222222',
    '33333333-aaaa-3333-3333-333333333333'
]
Exemplo n.º 8
0
 def __init__(self, *args, **kwargs):
     self._ctx = default_context()
     self._ctx["profile_fetcher"] = kwargs["profile_fetcher"]
     super(ProfileFetcherEnabledRecommendationManager,
           self).__init__(args, kwargs)