Exemplo n.º 1
0
def transform_grid(ACT_fits, optical_fits):

    import tableio
    from astropy.io.fits import getheader
    import numpy

    header = getheader(ACT_fits)
    nx = header['NAXIS1']
    ny = header['NAXIS2']
    (iy, ix) = numpy.indices((ny, nx))

    # flatten (x,y) indices arrays and add 1.0 and put in a tmp file
    x = ix.ravel() + 1
    y = iy.ravel() + 1
    tableio.put_data('/tmp/xy_file', (x, y), format="%7d %7d")

    # system call for xy2sky and sky2xy
    cmd1 = "xy2sky -d %s @/tmp/xy_file  > /tmp/radec_file" % ACT_fits
    cmd2 = "sky2xy  %s @/tmp/radec_file > /tmp/xynew_file" % optical_fits
    os.system(cmd1)
    os.system(cmd2)

    # Read in new grid and re-shape
    (ixnew, iynew) = tableio.get_data('/tmp/xynew_file', (4, 5))
    ix_new = ixnew.reshape(ix.shape) - 1.
    iy_new = iynew.reshape(iy.shape) - 1.

    # Clean up files
    os.remove('/tmp/xy_file')
    os.remove('/tmp/radec_file')
    os.remove('/tmp/xynew_file')

    return ix_new, iy_new
Exemplo n.º 2
0
def sky2xy_list(ra, dec, fitsfile):
    import os
    import tableio

    inlist = "/tmp/%s_list.sky2xy" % os.environ['USER']
    outlist = "/tmp/%s_list.sky2xy.out" % os.environ['USER']
    tableio.put_data(inlist, (ra, dec),
                     header='',
                     format="%s %s J2000",
                     append='no')
    cmd = "sky2xy %s @%s > %s" % (fitsfile, inlist, outlist)
    os.popen(cmd)
    (x, y) = tableio.get_data(outlist, cols=(4, 5))
    #print cmd
    os.system("rm %s" % inlist)
    os.system("rm %s" % outlist)
    return x, y
Exemplo n.º 3
0
        # OK. header is now written
        vars = list(detection_variables)
        for i in range(ncats):
            #vars.append((m[i,:]))
            #vars.append((em[i,:]))
            vars.append((m_corr[i, :]))
            vars.append((em_corr[i, :]))
            vars.append((ap_corr[i, :]))
            vars.append((m_bpz[i, :]))
            vars.append((em_bpz[i, :]))

        variables = tuple(vars)
        format = '%i\t' + '%4f  ' * (len(variables) - 1)
        self.logfile.write('Writing data to multicolor catalog...')
        tableio.put_data(self.colorcat, variables, format=format, append='yes')
        self.outputList[os.path.basename(self.colorcat)] = preds
        self.logfile.write('Multicolor catalog complete.')
        return

    def writeXml(self):
        """
        writeXml marks the multicolor catalog with the pipeline protocol markup. 
        A new requirement has been placed upon this writeXml method to allow certain 
        fields of the catalog file to be excluded from the xml markup.  This is done 
        to avoid redundant fields for the same objects being sent to the SDA. 
        See Bugzilla bug #1436.
    
        New functionality in this method now has each filter producing it's own photometry
        catalog.  This functionality is implement via the excludeList which allows the
        method to select different fields to be excluded from the catalog markup.  This method
Exemplo n.º 4
0
    def BuildColorCat(self):

        # Change accordingly
        zp_error = 0.05

        # The default output names
        self.colorCat = self.tilename + ".color"
        self.columnsFile = self.tilename + ".columns"

        print('Processing catalogs... for: ', self.tilename, file=sys.stderr)

        flux = {}
        fluxerr = {}

        m = {}
        em = {}

        # Get the detection catalog required columns
        outColumns = ['NUMBER', 'X_IMAGE', 'Y_IMAGE']
        detCatalog = self.combcat['i']
        detcols = SEx_head(detCatalog, verb=None)
        detectionList = []
        for key in outColumns:
            detectionList.append(detcols[key])
        detectionColumns = tuple(
            detectionList)  # the get_data function requires a tuple
        detection_variables = tableio.get_data(detCatalog, detectionColumns)

        # Read in the MAG_ISO and MAG_ISOERR from each catalog
        for filter in self.filters:

            # Get the columns
            sexcols = SEx_head(self.combcat[filter], verb=None)

            ## Info for flux columns
            fluxList = []
            fluxList.append(sexcols['FLUX_ISO'])
            fluxList.append(sexcols['FLUXERR_ISO'])
            fluxColumns = tuple(
                fluxList)  # the get_data function interface requires a tuple

            # Get the array using tableio
            flux[filter], fluxerr[filter] = tableio.get_data(
                self.combcat[filter], fluxColumns)
            m[filter] = flux[filter] * 0.0
            em[filter] = flux[filter] * 0.0

            # Fix the NAN values
            flux[filter] = deNAN(flux[filter])

            # Those objects with flux equal or less than 0 are assigned a magnitude of 99
            # and a limiting magnitude equal to their SExtractor photometric error. This
            # is interpreted by BPZ as a nondetection with zero flux and 1-sigma error
            # equal to the limiting magnitude

            nondetected = Numeric.less_equal(
                flux[filter], 0.0) * Numeric.greater(fluxerr[filter], 0.0)

            # Those objects with error flux and flux equal to 0 are assigned a magnitude of -99
            # and a flux of 0, which is interpreted by SExtractor as a non-observed object

            nonobserved = Numeric.less_equal(fluxerr[filter], 0.0)

            # When flux error > 100*(flux), mark as nonobserved (Benitez, 24-Oct-03).

            # Fix for fc11 -- y[:] has change meaning
            #nonobserved = Numeric.where(fluxerr[filter] > 100*(abs(flux[filter])),1.0,nonobserved[:])
            nonobserved = Numeric.where(
                fluxerr[filter] > 100 * (abs(flux[filter])), 1.0, nonobserved)

            detected = Numeric.logical_not(nonobserved + nondetected)

            # Get the zero point for the final magnitudes
            zpoint = self.magbase

            print(filter, zpoint)

            flux[filter] = Numeric.clip(flux[filter], 1e-100, 1e100)
            m[filter] = Numeric.where(
                detected, -2.5 * Numeric.log10(abs(flux[filter])) + zpoint -
                self.XCorr[filter], m[filter])
            m[filter] = Numeric.where(nondetected, 99.0, m[filter])
            m[filter] = Numeric.where(nonobserved, -99.0, m[filter])

            # clip values from being too small or large, i.e. 0 or inf.
            fluxerr[filter] = Numeric.clip(fluxerr[filter], 1e-100, 1e100)
            em[filter] = Numeric.where(
                detected,
                2.5 * Numeric.log10(1.0 + abs(fluxerr[filter] / flux[filter]))
                + self.XCorrError[filter], em[filter])
            em[filter] = Numeric.where(
                nondetected,
                2.5 * Numeric.log10(abs(fluxerr[filter])) - zpoint, em[filter])
            em[filter] = Numeric.where(nonobserved, 0.0, em[filter])

            #outColumns.append(filter +'_SDSS_MAG_ISO')
            #outColumns.append(filter +'_SDSS_MAGERR_ISO')
            outColumns.append(filter + '_MOSAICII_MAG_ISO')
            outColumns.append(filter + '_MOSAICII_MAGERR_ISO')

        # Prepare the header
        header = \
               '## ' + time.ctime() + '\n'+\
               '## BPZ Catalog file for Observation: ' + self.tilename + '\n'+\
               '## (This file was generated automatically by the BCS Rutgers pipeline)\n##\n'
        for i in range(len(outColumns)):
            header = header + '# ' + str(i + 1) + '\t' + outColumns[i] + '\n'

            # Prepare the data
        vars = list(detection_variables)
        for filter in self.filters:
            vars.append(m[filter])
            vars.append(em[filter])

        variables = tuple(vars)
        format = '%i\t %10.2f %10.2f' + '%10.4f  ' * (len(variables) - 3)
        print('Writing data to multicolor catalog...', file=sys.stderr)
        tableio.put_data(self.colorCat,
                         variables,
                         header=header,
                         format=format,
                         append='no')
        print('Multicolor catalog complete.', file=sys.stderr)

        # And now write .columns file
        cfile = open(self.columnsFile, 'w')
        cfile.write('## ' + time.ctime() + '\n')
        cfile.write('## ' + 'BPZ' + ' .columns file for Observation: ' +
                    self.tilename + '\n')
        cfile.write(
            '## (This file was generated automatically by the BCS Rutgers pipeline)\n##\n'
        )

        i = len(detection_variables)
        for filter in self.filters:

            if filter == 'i':
                n_mo = str(i + 1)
            colmag = i + 1
            colmagerr = i + 2
            cfile.write('%s_MOSAICII\t %s,%s\t AB\t %.2f\t 0.0\n' %
                        (filter, i + 1, i + 2, zp_error))
            i = i + 2

        cfile.write('M_0\t%s\n' % n_mo)
        cfile.close()
        return
Exemplo n.º 5
0
    def _magFix(self, catalogFile):
        """This private method receives a path to a catalog file and sifts through the
        MAGERR field looking for values > 10.  It sets the corresponding MAG field = -99 and
        sets that object's MAGERR field to 0.0.  catalogFile is a path not a file object."""

        # fillHeader will return a list of tuples where which looks like
        #
        # [(1, 'NUMBER'),
        # (2, 'X_IMAGE'),
        # (3, 'Y_IMAGE'),
        # ...
        # (12, 'MAG_ISOCOR'),
        # (13, 'MAGERR_ISOCOR'),
        # (14, 'FLUX_APER', 1)
        # (15, 'FLUX_APER', 2),
        # (16, 'FLUX_APER', 3),
        # ...
        # ]
        #
        # The tuples are either of length 2 or 3.  If len is 3, the 3rd item of the
        # tuple is the nth occurance of that column identifier.  This occurs on those
        # columns of MAGs and MAGERRs for a series of increasingly larger apertures.

        # newFieldList will be a list of Numeric arrays containing the columns of the catalogs.
        # This list will contain fields which have not been altered, i.e. all fields other than
        # MAG_* and MAGERR_*, and the new MAG and MAGERR fields which have been corrected.
        # Once the list is complete, it is tuple-ized and send to the tableio pu_data function.

        newFieldList = []
        newMagsList = []
        newMagErrsList = []
        newMagHeaders = []
        newMagErrHeaders = []
        newHeaders = []
        magCols = []
        magErrCols = []
        selectSet = fillHeader(catalogFile)

        print "Searching catalog for required columns, MAG, MAGERR"
        for i in range(len(selectSet)):
            if len(selectSet[i]) == 2:
                column, name = selectSet[i]
                paramNames = name.split("_")
                if "MAG" in paramNames:
                    magCols.append((column, name))
                elif "MAGERR" in paramNames:
                    magErrCols.append((column, name))
                else:
                    oldField = tableio.get_data(catalogFile, (column - 1))
                    newFieldList.append(oldField)
                    newHeaders.append(name)
                    continue
            else:
                column, name, id = selectSet[i]
                paramNames = name.split("_")
                if "MAG" in paramNames:
                    magCols.append((column, name, id))
                elif "MAGERR" in paramNames:
                    magErrCols.append((column, name, id))
                else:
                    oldField = tableio.get_data(catalogFile, (column - 1))
                    newFieldList.append(oldField)
                    newHeaders.append(name)
                    continue

        # We now have
        #  catalog field  --> list
        # --------------------------------
        #        MAG_*    --> magCols
        #     MAGERR_*    --> magErrCols
        #
        # The algorithm will be to step through the magErrCols columns, extracting those fields
        # via get_data and getting Numeric arrays.  The matching mag columns are slurped as well.
        # We search the magErrCols arrays looking for >= 10 values and then marking the those mags
        # as -99.0 and the matching magerrs as 0.0
        # See Bugzilla bug #2700

        for item in magErrCols:
            magErrAperId = None
            # item may be of len 2 or 3
            if len(item) == 2:
                magErrColId, magErrColName = item
            else:
                magErrColId, magErrColName, magErrAperId = item

            magErrKind = magErrColName.split("_")[1]  # ISO, ISOCORR, etc.

            print "\n\nMAG type:", magErrKind
            if magErrAperId: print magErrColName, "Aper id is", magErrAperId
            print "Getting\t", magErrColName, "\tfield", magErrColId

            # MAGERR array:
            magErrs = tableio.get_data(catalogFile, magErrColId - 1)

            matchingMagColName = None
            matchingMagColId = None

            #----------------------- Search for matching MAG_* field -----------------------#

            for magitems in magCols:

                # We know that the magErrColName is MAGERR and if magErrNameId is true then
                # the tuple is of len 3, i.e. a MAGERR_APER field.  We look for the matching
                # MAG_APER field id, 1, 2, 3... etc.

                if len(magitems) == 3:
                    magColId, magColName, magAperId = magitems
                    if magColName == "MAG_" + magErrKind:
                        matchingMagColName = magColName
                        #print "Found matching field type:",magColName,"in field",magColId
                        if magAperId == magErrAperId:
                            print "Found matching aperture id."
                            print "MAG_APER id: ", magAperId, "MAGERR_APER id: ", magErrAperId
                            matchingMagColId = magColId
                            matchingMags = tableio.get_data(
                                catalogFile, magColId - 1)
                            break
                    else:
                        continue
                else:
                    magColId, magColName = magitems
                    if magColName == "MAG_" + magErrKind:
                        print "Found matching field type:", magColName, "in field", magColId
                        matchingMagColName = magColName
                        matchingMagColId = magColId
                        matchingMags = tableio.get_data(
                            catalogFile, magColId - 1)
                        break
                    else:
                        continue

            #--------------------------------------------------------------------------------#

            print " MAG err field:", magErrColName, magErrColId
            print "     Mag field:", matchingMagColName, matchingMagColId

            # Now the grunt work on the arrays,
            # magErrs, matchingMags
            #
            # update: flagging all MAGs as -99 when the corresponding MAGERR > 10
            # introduced a bug which unintentionally reset the magnitudes
            # SExtractor had flagged with a MAG = 99.0 and a MAGERR = 99.0
            # This now checks for a MAGERR of 99 and does not reset the MAG value
            # if MAGERR = 99.0 but does for all other MAGERRS > 10.0

            badMagErrs1 = Numeric.where(magErrs >= 10, 1, 0)
            badMagErrs2 = Numeric.where(magErrs != 99.0, 1, 0)
            badMagErrs = badMagErrs1 * badMagErrs2
            del badMagErrs1, badMagErrs2
            newMags = Numeric.where(badMagErrs, -99.0, matchingMags)
            newMagErrs = Numeric.where(badMagErrs, 0.0, magErrs)

            newMagsList.append(newMags)
            newMagHeaders.append(matchingMagColName)
            newMagErrsList.append(newMagErrs)
            newMagErrHeaders.append(magErrColName)

        # concatenate the lists.  This is done to preserve the MAG_APER and MAGERR_APER
        # grouping of the original SExtractor catalog.

        newFieldList = newFieldList + newMagsList
        newFieldList = newFieldList + newMagErrsList
        newHeaders = newHeaders + newMagHeaders
        newHeaders = newHeaders + newMagErrHeaders

        newVariables = tuple(newFieldList)

        # rename the old catalog file as catalogFile.old
        os.rename(catalogFile, catalogFile + ".old")
        self.outputList[os.path.basename(catalogFile) +
                        ".old"] = [os.path.basename(catalogFile)]
        fob = open(catalogFile, 'w')
        fob.write("## " + ptime() + "\n")
        fob.write("## " + self.modName +
                  " catalog regenerated by _magFix method.\n")
        fob.write(
            '## (This file was generated automatically by the ACS Pipeline.)\n##\n'
        )
        fob.write(
            "## This catalog has been photometrically corrected to remove\n")
        fob.write("## 'bad' magnitude values.\n")
        fob.write("##\n")
        for i in range(len(newHeaders)):
            fob.write("# " + str(i + 1) + "\t" + newHeaders[i] + "\n")
        fob.close()
        tableio.put_data(catalogFile, newVariables, append="yes")

        return
Exemplo n.º 6
0
def BuildColorCat(tilename, combcat, filters=['g', 'r', 'i', 'z', 'K'],
                  newfirm=True):

    # The default output names
    colorCat = tilename + "_complete.catalog"

    print('Processing catalogs... for: ', tilename, file=sys.stderr)

    flux = {}
    fluxerr = {}

    m = {}
    em = {}

    # Get the detection catalog required columns
    outColumns = ['NUMBER', 'X_IMAGE', 'Y_IMAGE']
    detCatalog = combcat['i']
    detcols = SEx_head(detCatalog, verb=None)
    detectionList = []
    for key in outColumns:
        detectionList.append(detcols[key])
    # the get_data function requires a tuple
    detectionColumns = tuple(detectionList)
    detection_variables = tableio.get_data(detCatalog,
                                           detectionColumns)

    # Read in the MAG_ISO and MAG_ISOERR from each catalog
    for filter in filters:
        if not newfirm and filter == 'K':
            continue
        # get the zeropoint Info
        tmp = np.genfromtxt('photometry_control_star_{}.dat'.format(
                            filter), names=True, dtype=None)
        zpoint = tmp['ZP']

        # Get the columns
        sexcols = SEx_head(combcat[filter], verb=None)

        ## Info for flux columns
        fluxList = []
        fluxList.append(sexcols['FLUX_ISO'])
        fluxList.append(sexcols['FLUXERR_ISO'])
        fluxColumns = tuple(
            fluxList)  # the get_data function interface requires a tuple

        # Get the array using tableio
        flux[filter], fluxerr[filter] = tableio.get_data(combcat[filter],
                                                                fluxColumns)
        m[filter] = flux[filter] * 0.0
        em[filter] = flux[filter] * 0.0

        # Fix the NAN values
        flux[filter] = deNAN(flux[filter])

        # Those objects with flux equal or less than 0 are assigned a
        # magnitude of 99 and a limiting magnitude equal to their
        # SExtractor photometric error. This is interpreted by BPZ as a
        # nondetection with zero flux and 1-sigma error equal to the
        # limiting magnitude

        #nondetected = np.less_equal(flux[filter], 0.0) * \
        #              np.greater(fluxerr[filter], 0.0)

        # update: There are a lot of really small positive values. I am
        # going to modify this to look for values really close to zero.

        nondetected = (flux[filter] < 1E-3) & (fluxerr[filter] > 0.0)

        # Those objects with error flux and flux equal to 0 are assigned a
        # magnitude of -99
        # and a flux of 0, which is interpreted by SExtractor as a
        # non-observed object

        nonobserved = np.less_equal(fluxerr[filter], 0.0)

        # When flux error > 100*(flux), mark as nonobserved (Benitez,
        # 24-Oct-03).

        nonobserved = np.where(fluxerr[filter] > 100 *
                                    (abs(flux[filter])), True,
                               nonobserved)

        detected = np.logical_not(nonobserved + nondetected)

        print(filter, zpoint)

        flux[filter] = np.clip(flux[filter], 1e-100, 1e100)
        m[filter] = np.where(detected,
                                  -2.5 * np.log10(abs(flux[filter])) +
                                  zpoint, m[filter])
        m[filter] = np.where(nondetected, 99.0, m[filter])
        m[filter] = np.where(nonobserved, -99.0, m[filter])

        # clip values from being too small or large, i.e. 0 or inf.
        fluxerr[filter] = np.clip(fluxerr[filter], 1e-100, 1e100)
        em[filter] = np.where(
            detected,
            2.5 * np.log10(1.0 + abs(fluxerr[filter] / flux[filter])), em[filter])
        em[filter] = np.where(
            nondetected,
            2.5 * np.log10(abs(fluxerr[filter])) - zpoint, em[filter])
        em[filter] = np.where(nonobserved, 0.0, em[filter])

        if filter == 'K':
            outColumns.append(filter + '_KittPeak_MAG_ISO')
            outColumns.append(filter + '_KittPeak_MAGERR_ISO')
        else:
            outColumns.append(filter + '_MOSAICII_MAG_ISO')
            outColumns.append(filter + '_MOSAICII_MAGERR_ISO')

    # Prepare the header
    header = \
           '## ' + '\n' + \
           '## BPZ Catalog file for Observation: ' + tilename + \
            '\n' + \
            '## (This file was generated automatically by' + \
            'the BCS Rutgers pipeline)\n##\n'
    for i in range(len(outColumns)):
        header = header + '# ' + str(i + 1) + '\t' + outColumns[i] + '\n'

        # Prepare the data
    vars = list(detection_variables)
    for filter in filters:
        if not newfirm and filter == 'K':
            continue
        vars.append(m[filter])
        vars.append(em[filter])

    variables = tuple(vars)
    format = '%i\t %10.2f %10.2f' + '%10.4f  ' * (len(variables) - 3)
    print('Writing data to multicolor catalog...', file=sys.stderr)
    tableio.put_data(colorCat,
                     variables,
                     header=header,
                     format=format,
                     append='no')
    print('Multicolor catalog complete.', file=sys.stderr)

    return